MATERNAL CHANGES

- Fluids
- blood volume increases by ~ 30%,
 - a. increase in plasma ~ 50%
 - b. increase in RBC mass ~ 30%
 - \rightarrow decreased [Hb] & haematocrit
- plasma Na⁺, K⁺ and Cl⁻ fall slightly
- · albumin, globulins & total protein increase, but plasma []n's decrease
- the albumin/globulin ratio of 1.6:1 \rightarrow ~ 1:1 at term
- a hypercoagulable state exists due to,
 - a. an increase in clotting factors I, VII, VIII, IX, X, and fibrinogen
 - b. a decrease in antithrombin III

• plasma cholinesterase decreases ~ 30% and continues to fall for several weeks postpartum

• Cardiovascular

• cardiac output increases up to 40%, reaching a plateau at ~ 30/52

- this is due to;
 - a. an increase in SV & HR

b.	decreased TPR	- uterine AV shunt
		- decreased viscosity

NB: net change \rightarrow slight decrease in BP

• CVP changes little, except during labor and due to the effects of aortocaval compression \rightarrow decreased renal & placental function

- oxygen flux increases despite the slight decrease in [Hb] and $\rm O_2$ content, due to the marked increase in CO

• 2,3-DPG increases at term which improves unloading of O₂ to the foetus

- cardiac work is increased, which may \rightarrow LVF when there is poor cardiac reserve
- · increased blood flow to the epidural venous plexuses decreases spinal CSF volume
- this decreases the volume of LA required for epidural anaesthesia

• the valsalva maneuver during delivery may increase CSF turbulence and cephalad spread of anaesthetic ??

 \propto aldosterone & oestrogen

Uterine Circulation

• in the nonpregnant state, blood flow parallels the metabolic activity of the myometrium and endometrium, undergoing cyclic variations with the menstrual cycle

 \cdot during pregnancy, blood flow increases rapidly with the increasing uterus and foetus, producing up to ~ 20 fold increase

• early in pregnancy the O₂ extraction of the uterus is low

• therefore, some factor increases blood flow in excess of needs (? oestrogen)

• as the size, and requirements of the foetus increase >> than blood flow during pregnancy, the O_2 extraction ratio increases progressively with pregnancy

· early studies showed that just prior to parturition uterine blood flow decreased markedly

• this has now been shown to be due to aortocaval compression, and if this is avoided there is actually no change

• average blood loss during delivery;

- a. vaginal delivery ~ 200 ml
- b. episiotomy ~ 150 ml
- c. $LSCS + GA \sim 1000 \text{ ml}$
- d. LSCS + epidural ~ 600 ml

Respiratory

** overall ~ 50% loss of respiratory reserve

- i. increased BMR
- ii. increased O_2 consumption
- iii. decreased FRC
- iv. decreased CVS reserve
- v. airway changes

• thus, on induction mothers become hypoxic quickly

- capillary engorgement \rightarrow hoarse voice + greater nasal and upper airways obstruction
- therefore nasal intubation is generally avoided

• due to increased abdominal contents, the diaphragm is elevated and its maximal excursion decreased

• lung volumes decrease from about 5/52 and changes are exaccerbated by the supine position,

- i. FRC decreases up to 25%
- ii. RV decreases up to 25%
- iii. ERV decreases up to 25%
- iv. TV increases up to 25%
- v. VC unchanged
- vi. IRV decreases up to 25%

- the overall V/Q ratio decreases \rightarrow increased P_{AO2}
- however, there is little change in P_{aO2} as the P_{A-aO2} gradient increases
- increased levels of progesterone \rightarrow bronchodilation and decreased airways resistance
- lung compliance is unaltered, though, chest wall compliance is increased
- minute volume is increased, increase in TV > RR

NB:	$P_{AO2} = 105 \text{ mmHg}$ $P_{ACO2} = 32 \text{ mmHg}$
	$\Gamma_{ACO2} = 52$ mining

• ratio of V_D/V_T is unaltered

** importance for anaesthesia;

- a. intubation bleeding, hypoxia, difficult
- b. decreased respiratory reserve low P_{aO2} & FRC, high BMR
- c. induction rapid due to lowered MAC, low FRC, high MV

• *Hepatic Function*

- · LFT's show a general increase due to enzyme induction
- · liver blood flow is not altered significantly

• GIT

- tone of the lower oesophageal sphincter decreases
- in addition, tone decreases with,
 - a. narcotics
 - b. anti-ACh agents
 - c. diazepam

• this, together with increases in,

- a. gastric emptying decreased by pain, drugs
- b. intragastric pressure uterus, lithotomy
- c. gastric acidity
- NB: greatly increased risk of aspiration (Mendelson's Synd)

• Endocrine

a.

- · earliest changes are increased levels of,
 - a. oestrogen
 - b. progesterone
 - c. βhCG
- there are increases in the size of,
 - thyroid remain euthyroid
 - b. parathyroid PTH rises \rightarrow increased Vit.D₃ increased Ca⁺⁺ absorption decreased Ca⁺⁺ excretion - plasma [Ca⁺⁺] remains normal, the increase supplying foetus
 - c. anterior pituitary \rightarrow ACTH & PRL
 - d. adrenals \rightarrow cortisol & aldosterone

Metabolism

- increases in BMR & O_2 consumption by ~ 25% at term
- O_2 consumption increases by 100% at delivery

• <u>Acid-Base Balance</u>

- there are small decreases in plasma levels of Na⁺, Cl⁻, Mg⁺⁺, & Ca⁺⁺
- plasma HCO_3^- decreases to ~ 21 mmol/l to compensate for increased ventilation
- therefore, mother has less buffer reserve

Renal

- there is a progressive increase in GFR starting early in the first trimester
- urine volume increases due to the need to excrete a greater mass of waste products, mother + foetus
- · both BUN and [Cr]pl decrease due to an increased creatinine clearance
- during the 3rd trimester there may be alterations of renal function due to aortocaval compression
- $\boldsymbol{\cdot}$ generally tone decreases and volume increases in the collecting system

NB: predisposing to UTI's

FOETAL PHYSIOLOGY

Placental Circulation			
Normal Values	(* average at maturity)	Adult Comparison	
Weight	500 g		
Lobules	200, each multiple villi		
Diffusion Distance	3.5 µm	c.f. 0.5 µm in lung	
Surface Area	3-4 m ²	c.f. 70 m ² in lung	
P _{ma}	30 mmHg		
Blood Flow _m	600 ml/min		
Blood Volume _m	150 ml intervillous spaces		
RBC Transit Time	15 secs		
PmO ₂	50 mmHg		
P _f	?		
Blood Flow _f	300 ml/min	(~ 50% of CO)	
PfO ₂	30 mmHg		

• the placenta is effectively the "foetal lung"

• the maternal portion is a large blood sinus, or lake, into which project the foetal placental villi

• these contain the small branches of the umbilical arteries and vein (see Ganong, fig. 32-17)

• O₂, CO₂ and nutrient exchange occur across the cellular layers covering the villi

• these are thicker and less permeable than those for the lung and exchange is considerably less efficient

• Foetal Circulation (See Ganong, Fig. 32-19)

• ~ 55% of the foetal CO supplies the placenta via the umbilical arteries, where $S_{\mu a O2} \sim 60\%$

- umbilical vein $S_{uvO2} \sim 80\%$ c.f. 98% of maternal arterial blood

• of this, the majority passes through the liver, a small fraction passing directly into the IVC via the ductus venosus

• the portal and systemic venous blood of the foetus \rightarrow S_{sv02} ~ 26%

• the mixed venous blood in the IVC $\rightarrow S_{v02} \sim 67\%$

• most of the blood entering the RA from the IVC passes directly to the LA via the patent foramen ovale

• most of the blood entering the RA from the SVC passes into the pulmonary artery, then via the ductus arteriosus into the descending aorta

NB: the net effect being the head receives the better oxygenated blood

Foetal Respiration

• the tissues of foetal and newborn mammals have high resistance to hypoxia

- three factors aid in foetal transfer of O_2 ,
 - a. [HbF] ~ 50% greater than [HbA] \rightarrow greater [O₂] ml
 - b. HbF binds 2,3-DPG less effectively \rightarrow left shift
 - c. "double" Bohr effect, \rightarrow HbF-CO₂ \rightarrow HbA-CO₂

NB: HbF-O₂ dissociation curve lies above and to the left,

• the total diffusing capacity of,

- a. the placenta at birth $\sim 1.2 \text{ ml/O}_2/\text{min/mmHg}$
- b. normal lung ~ 20 ml/O₂/min/mmHg

• the gamma chains of HbF have the neutral amino acid valine at 143 & 146 position

• the replacement of histidine in beta chains is the basis for the decreased binding affinity for DPG

• maternal 2,3-DPG increases near term, improving unloading of O_2 to the foetus

 \bullet HbA begins to appear around the 20th week of foetal life and at birth constitutes ~ 20% of the circulating Hb

• no HbF is formed after birth and by 4 months > 90% is HbA

• as CO_2 is 20x more diffusable and []n gradient is high, diffusion does not present a problem

- maternal $\boldsymbol{P}_{\text{CO2}}$ is reduced by hyperventilation of pregnancy

Normal Values	Maternal	Foetal	
Hb concentration	12 g/100ml	18 g/100ml	
Blood flow	600 ml/min	300 ml/min	
Uterine/Umbilical aa.			
• P _{aO2}	95 mmHg	15 mmHg	
• SaO ₂	97%	58%	
• P _{aCO2}	35 mmHg	48 mmHg	
Uterine/Umbilical vv.			
• P ₀₂	33 mmHg	30 mmHg	
• SvO ₂	50%	80%	
• thus the maternal capillary blood $P_{50} = 33 \text{ mmHg}$			

Double Bohr Effect

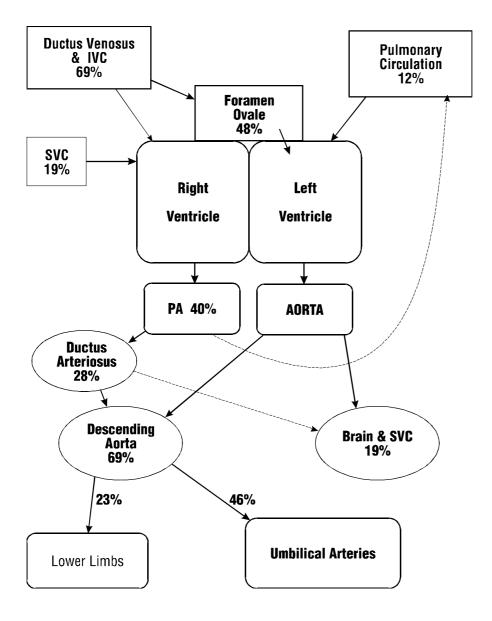
- a. HbF loses CO_2 shifting its dissociation curve to the left
- b. HbA gains CO_2 shifting its dissociation curve to the right
- \rightarrow increases the gradient for oxygen diffusion

• Foetal Oxygen Extraction

 $\rm Q_{f02} ~\sim~ (80\text{-}60)/100$. (18g x 1.37) . (300/100 ml/min) $\sim~ 15~ml.O_2/min$

Placental Oxygen Extraction

 $Q_{pO2} \sim (97\text{-}50)/100$. (12g x 1.37) . (600/100 ml/min) $\sim 46 \text{ ml.O}_2/\text{min}$


NB: the foetus uses only ~ 1/3 of the placental MRO₂

• Other Placental Functions

a.	active nutrient absorption	- where $[x]_F > [x]_M$ - amino acids, Cr, PO ₄
b.	metabolism	- various drugs by MFO's and Plasma-ChE
c.	metabolic functions	 stores Pr., Fe, Ca⁺⁺ acts ~ liver early until foetal liver est.
d.	hormone synthesis	- βhCG - oestrogen - progesterone - hPL

NEONATAL PHYSIOLOGY

Distribution of the Foetal Cardiac Output

• Circulatory Changes at Birth

• umbilical vessels have thick, muscular walls that are extremely reactive to trauma, tension, catecholamines, bradykinin, angiotensin and changes in P_{02}

• closure of these vessels \rightarrow increase in foetal TPR and BP

 $\boldsymbol{\cdot}$ when flow through the umbilical vein ceases, the ductus venosus closes by an unknown mechanism

• asphyxia from the cessation of placental circulation and cooling of the body

 \rightarrow activation of the respiratory centre of the newborn

- with inflation of the lungs, pulmonary vascular resistance falls to about $1/10^{\text{th}}$ of its intrauterine value

- this is not caused by the presence of O_2 , as inflation with N_2 produces the same decrease in resistance

• the LA pressure rises above that of the RA and IVC due to;

- a. decrease in pulmonary resistance \rightarrow increased LA filling
- b. decreased RA filling due to occlusion of the umbilical vein
- c. increased LV afterload due to closure of the umbilical arteries
 - \rightarrow abrupt closure of the foramen ovale & fusion in several days

• pulmonary arterial pressure falls to 1/2 of its intrauterine value $\rightarrow 35 \text{ mmHg}$

• this change, plus the increase in aortic pressure, reverses flow through the ductus arteriosus

· however, within minutes the ductus begins to close producing turbulent flow

 \rightarrow "murmur of the newborn"

- closure of the ductus is usually complete 1-2 days after birth, and appears to be initiated by the raised $_{\rm PaO2}$

• possible mediators being prostaglandins, bradykinin, or adenosine

• at birth, the two ventricles are about the same weight, having been pumping in parallel in the foetal circuit

• the arterioles of the pulmonary circuit are thick and muscular, maintaining the high pulmonary vascular resistance during foetal life

• after birth, the RV fails to grow to the same extent as the LV, the later becoming predominant and the muscular layer of the pulmonary vessels is lost

• these changes take several weeks

	Respira	atory Changes at l	Birth		
Normal Values	At Birth		Adult	Adult	
Respiratory Rate	30-40 ¹ b	pm	15	bpm	
Tidal Volume, TV	7.0	ml/kg (~ 20 ml)	same	(~ 500 ml)	
Minute Volume, V _M	230	ml/kg/min	70	ml/kg/min	
Vital Capacity, VC	40	ml/kg	50-60	ml/kg	
FRC	27-30	ml/kg	30	ml/kg	
Physiological V _D /V _T	0.3-0.5		0.3		
Physiological Q _S /Q _T	0.1	(10%)	0.01-0.0	03 (1-3%)	
			-		
Lung Compliance, Specific	0.067 67	l/cmH ₂ O/l ml/cmH ₂ O/l	same		
Lung Compliance, Absolute	0.005 5	$1/cmH_2O$ m $1/cmH_2O$ ~ $1/20^{th}$ adult	0.100 100	l/cmH ₂ O ml/cmH ₂ O	
Compliance, chest wall	0.26 260	l/cmH₂O/l ml/cmH₂O/l ~ 5x adult	0.06 60	l/cmH ₂ O/l ml/cmH ₂ O/l	
Total Pulmonary Resistance	30-50	cmH₂O/l/s ~ 10x adult	4-5	cmH ₂ O/l/s	
Mean Time Constant (tau)	0.12 s		0.5 s		
PaO_2 (NB: Q_s/Q_T)	65-80	mmHg	98	mmHg	
PaCO ₂	34	mmHg	40	mmHg	
O_2 consumption	7.0 (thermo	ml/kg/min neutral)	3.5	ml/kg/min	
Airways Resistance:	 high, proportional to 1/r⁴ obligate nose breather 				
Compliance: • similar in infants/adults \rightarrow increased work of breathing					
 the increased RR acts to decrease the work of breathing, increased due to a. lower compliance of chest wall b. the higher oxygen consumption 					

• Respiratory Changes At Birth

Element	Appearance	Maturation		
bronchi	16/52 ~ 23/52			
alveoli	17/52	post-partum		
surfactant 24/52* ~ 36/52		~ 36/52		
* composition is different and production is unstable until 36/52 L/S ratio increases to 2:1 at term production is <i>decreased</i> with stress, hypoxia, acidosis, etc.				

• production is decreased with stress, hypoxia, acidosis, etc.

• stimulus to first breath includes circulatory changes, (raised TPR), and physical stimuli such as cold, pain, voices, etc.

• with the first gasps against the low compliance, lung PIP reaches -60 cmH₂O

• however this rapidly decreases as the lung expands and compliance increases

Intubation

- poor tone of the neck muscles and the large head \rightarrow "floppy"
- high position of the larynx
- "V-shaped", highly mobile epiglottis
- the cricoid area is narrow, therefore use uncuffed tubes
- the trachea only 4 cm long, therefore tube easily dislodged, or positioned in right main bronchus
- relatively large nose \rightarrow nasal and oropharyngeal airways ~ the same diameter

Renal Changes

Normal Values	Neonate	Adult	
GFR • <i>premature</i> • at birth • at 1 month	10-20 ml/min/m² 0.7-0.8 ml/min/m² 1-2 ml/min/m² 50 ml/min/m²	60-80 ml/min/m ² (70kg \rightarrow 1.7m ²)	
Maximum Urine Concentration	450-600 mosmol/l	1400 mosmol/l	
Plasma Creatinine	 maternal at birth¹ infant ~ 18-35 μmol/l child ~ 30-60 μmol/l youth ~ 45-90 μmol/l 	 male ~ 55-120 μmol/l female ~ 45-95 μmol/l pregnant ~ 30-80 μmol/l 	
рН	7.35	7.4	
[HCO ₃ ⁻]	20 mmol/l	25 mmol/l	
¹ decreases due to low muscle mass and high rate of anabolism			

• the renal cortex is relatively underdeveloped at birth

• this reaches maturity by 12-18 months

• urea excretion is always low due to protein anabolism

• there is limited excretion/conservation capability of the kidney for salt, water and acid-base alterations

• renal drug excretion is decreased, eg. tubular secretion of penicillin is low due to underdeveloped active tubular transport systems

Body Compartment Volumes				
Normal Values	Premature	Term	Adult	
Total Body Water	80%	75%	55-60%	
ECF ICF	45% 35%	40% 35%	20% 40%	
Blood Volume	90-100 ml/kg	85 ml/kg	~ 70 ml/kg	
H_2O/day - at 1 day - at 1 week ¹	50 ml/kg/d 150 ml/kg/d			

• Fluid Requirements

<u>Daily Calculation Of Fluid Requirements</u>

Weight	Water Requirement ¹	Cumulative Total		
0 to 10 kg	100 ml/kg	1000 ml		
10 to 20 kg	50 ml/kg	500 ml		
20 & over	20 ml/kg	$??^{2}$		
¹ daily kcal can be substituted in the same formula				
$^{2} \rightarrow 2500 \text{ ml}$ for a 70 kg male				

Temperature Regulation

Deficits In Regulation:

- sweating
- b. high SA/weight ratio ~ 2x adult
- c. high evaporative losses high RR & MV
- d. inability to take evasive action

• Gains In Regulation:

= posses "brown fat" \rightarrow heat production by the uncoupling of oxidative phosphorylation in increased number of mitochondria

- this is present in the neck, back, axillae, inguinal regions and around the kidneys
- activity is mediated by the action of NA on β -receptors
- this requires an increased O_2 consumption ~ 60%
- neither neonates, nor adults, can temperature regulate via white fat

NB: \rightarrow neonates must be kept in *thermoneutral zone*

~ 32-35 °C naked, or ~ 24 °C clothed