Poisoning & Drug Overdose

Def'n: overdose: exposure to an amount of a substance likely to produce untoward effects in the individual

- 1. $\sim 20\%$ of overdoses are at any significant risk
- 2. \geq 50% of suicidal overdoses are *mixed*, frequently including *ethanol*

Age Distribution

- a. 25% < 5 years \rightarrow usually accidental
- b. 50% ~ 5-30 years \rightarrow F:M > 2:1
- c. 25% > 30 years
- *NB: overall mortality* $\sim 0.5\%$ 1:200

General Principals

NB: three basic management principles

1. *resuscitation* - ABC

2. diagnosis

- i. history and examination
- ii. investigation
 - E,C&U, FBE, AGA's, osmolality & osmolar gap
 - blood & urine drug screening
 - CXR
- iii. gastric lavage *if appropriate

3. treatment

- i. drug manipulation
 - general emetics, lavage, cathartics
 - dilution
 - activated charcoal
 - specific antidotes
 - forced diuresis \pm pH modification
 - altered drug metabolism (methanol/ethanol)
 - haemoperfusion, dialysis, plasmapheresis
- ii. complications airway obstruction, respiratory failure
 - hypoglycaemia, metabolic derangement
 - seizures
 - arrhythmias, hypotension
 - NB: CVS, CNS, RS, temperature

ICU Admission Criteria

- 1. requirement for intubation
 - i. ventilatory failure
 - ii. airway protection / maintenance
 - iii. therapy \rightarrow induced hypocapnia/alkalosis
- 2. CNS
 - i. uncontrolled seizures
 - ii. coma, GCS < 9
- 3. CVS
 - i. arrhythmias
 - ii. AV block, prolonged QRS
 - iii. hypotension requiring CVS support
- 4. large ingested dose
 - \pm high blood levels predictive of poor outcome

Serum Levels Predictive of Outcome		
Essential	Useful	
 paracetamol theophylline salicylates alcohols 	 lithium barbiturates phencyclidine phenytoin iron 	

Drug Removal General

• Emetics

• Ipecac syrup 10-30 ml, apomorphine, pharyngeal stimulation

• must have *awake* patient with gag reflex present

• use is controversial, there being *no direct evidence* that these agents improve morbidity or mortality associated with drug overdosage

absolute contraindications

- 1. unprotected airway
- 2. strong acids / alkalis
- 3. petroleum derivatives
- *NB:* generally *not recommended* as impedes the subsequent use of activated charcoal, which has been shown to improve clearance

Gastric Lavage

- exchange volumes £1 ml/kg *greater volumes promoting gastric emptying
- useful early after ingestion £1 hr

• doubtful efficacy after this but may be useful for slow release preparations and slowly absorbed agents, eg. tricyclics

• *indications* where large dose within 24 hours,

- 1. analgesics paracetamol, aspirin, dextropropoxyphene
- 2. antidepressants tricyclics
- 3. alcohols methanol, ethylene glycol
- 4. others theophylline, digoxin

contraindications

- 1. unprotected airway
- 2. strong acids / alkalis \rightarrow risk of *oesophageal perforation*
- 3. petroleum derivatives
 - most of these are relatively *nontoxic* following ingestion
 - aspiration of volumes ~ 1 ml may produce *severe pneumonitis*

Activated Charcoal

- 50-100g immediately following lavage, then 50g q4h
- repeated doses *effective* for,
 - 1. benzodiazepines, barbiturates, narcotics
 - 2. tricyclics, phenothiazines
 - 3. salicylates
 - 4. theophylline
 - 5. digoxin, digitoxin
 - 6. atropine
 - 7. some heavy metals

• relatively *ineffective* for,

- 1. most heavy metals $-Li^+$, Fe^{++} , boron
 - pesticides organophosphonates, DDT, carbamates
- 3. alcohols ethanol, methanol, ethylene glycol, isopropyl alcohol
- 4. cyanide
- 5. strong acids/alkalis

contraindications

2.

- 1. unprotected airway
- 2. strong acids / alkalis
- 3. petroleum derivatives

• Cathartics

3.

- sorbitol 70% with charcoal
- use with first dose, subsequent use doubtful

Drug Removal Specific

1.	forced diuresis	- acid or alkaline

- 2. altered drug metabolism N-acetylcysteine, thiosulphate, ethanol
 - antidotes chelating agents, antibodies
- 4. extracorporeal techniques haemodyalisis, haemoperfusion
 - plasmapheresis, exchange transfusion

Activated Charcoal

a.	non-specific absorbent	- drugs, toxins, gases
		- especially <i>alkaloids</i> and other <i>bases</i>

b. fine black powder, odourless, tasteless

c. insoluble in water or lipids

d. large surface area & absorptive capability

• prepared from vegetable matter, eg. sawdust, peat, coconut shells

- treated with "activators", CO₂, steam, strong acids
- contains 15% H_2O , therefore stored airtight
- absorptive capacity,
 - a. per gram charcoal ~ 100-1000 mg (ie. ~ 10-100% by weight)

(calculated for *salicylates*)

b. optimal charcoal:toxin ratio ~ 8:1

· increases systemic clearance of drugs through the GIT,

- 1. interrupted enterohepatic circulation
- 2. enteric "dialysis"

Repeated doses effective	Charcoal is <i>ineffective</i>
 benzodiazepines, barbiturates opioids tricyclics, phenothiazines salicylates theophylline digoxin, digitoxin atropine some heavy metals 	 alcohols - ethanol, methanol - ethylene glycol, isopropyl pesticides - organophosphates - DDT, carbamates heavy metals - Li, Fe, Hg - Cu, Au, Bo cyanide strong acids & bases paraquat¹

• contraindications include,

- a. inability to protect the airway
- b. strong acids & bases (caustics)
 - risk of oesophageal perforation with passage of the gastric tube
- c. petroleum derivatives
 - risk of aspiration & severe chemical pneumonitis

• Fuller's Earth

specific antidote for *paraquat*, also used in chemical warfare decontamination
paraquat neutralised by contact with soil & only 5-10% absorbed in 24 hrs

1.	initial dose	~ 30% solution, 300 g/l + 200 ml of 20% mannitol
2.	subsequently q2h	~ 15% solution, 150 g/l + mannitol q4h

Enhanced Elimination

• Forced Diuresis

a.	acid diuresis	\rightarrow	phencyclidine and amphetamine overdose
b.	alkaline diuresis	\rightarrow	salicylate and barbiturate overdose

unless managed carefully, potential for fluid overload & electrolyte abnormalities
sedation is preferred for the former, haemodialysis for salicylates and repeat charcoal for barbiturates

pH Dependent Renal Excretion			
Weak Bases	Weak Acids		
• amphetamine	sulphonamides		
• ephedrine	salicylates		
phencyclidine	• phenobarbitone		
• quinidine			
tricyclics			
optimal urine pH ≤ 5.5	optimal urine pH \geq 7.5		
ascorbic acid 0.5-2.0 g ó/IV NH ₄ Cl 0.1 g ó/IV	 bicarbonate 1-2 mmol/kg acetazolamide 500 mg 		

Peritoneal Dialysis

• effectively no place in management of drug overdose

Haemodialysis

• indications for use include *severe* poisoning with,

- 1. salicylate
- 2. lithium
- 3. alcohols isopropranolol, methanol, ethylene glycol
- 4. phenobarbitone

• Charcoal Haemoperfusion

NB: largely *unproven* form of therapy, \ rarely recommended

• filter composed of activated charcoal granules covered with *cellulose* or *cellophane*

- large active surface area ~ 1000 $m^2\!/g$
- effective for *lipid soluble* molecules, where plasma clearance may approach circuit plasma flow
- duration for drug overdose is ~ 4-8 hrs, or until symptoms are controlled
- for hepatic failure ~ 4-8 hrs/day

• recently developed *polystyrene resins* (Amberlite XAD-4) also have high affinity for lipid soluble compounds and have a clearance $\sim 2x$ charcoal

• Clinical Uses

a. hepatic failure, encephalopathy

• randomised studies from King's group \rightarrow no additional benefit in *survival*

b. drug overdose

•	often recommended for	- theophylline
		- methotrexate
		- disopyramide
•	other drugs	- barbiturates
		- ethanol, methanol
		- lithium
		- paraquat
		- salicylates (dialysis better)

i. *theophylline*

- acute $\geq 500 \ \mu \text{mol/l}$ $\geq 100 \ \mu \text{g/ml}$ • chronic $\geq 200-300 \ \mu \text{mol/l}$ $\geq 40-60 \ \mu \text{g/ml}$
- severe refractory seizures, arrhythmias
- severe cardiac, respiratory, or hepatic disease $\geq 40 \ \mu g/ml$
- ii. *salicylates* $\geq 0.5-1.0$ mg/ml
 - · severe intoxication and unable to promote diuresis and alkalinisation

• Complications

- a. those of central line insertion
- b. those of anticoagulation
- c. thrombocytopaenia
- d. haemolysis
- e. electrolyte disturbances
- f. pyrogenic reactions
- g. time delay for commencement severe toxicity of paraquat
- h. hyperglycaemia primed with dextrose

Toxicological Screens

- a. <u>spot urine tests</u>
 - colour tests
 - rapid < 2 hrs, cheap
 - qualitative, non-specific
 - not for initial assay
 - use to confirm prior to more sensitive/specific assay
- b. <u>thin layer chromatography</u>
 - rapid ~ 2-4 hrs, qualitative
 - interference common
 - urine or plasma
 - not useful for volatiles, alcohols, metals, salicylates, cyanide
- c. gas and high pressure chromatography
 - useful for any specimen
 - not useful for initial screen
 - more specific & quantitative
- d. <u>emzyme immunoassay</u>
 - measures rate of conversion NAD/NADH with photometry
 - more expensive & specific
 - useful for conformation
- e. <u>mass spectometry</u>
 - highly specific/sensitive
 - qualitative & quantitative
 - expensive

Alcohols

• the various alcohols are metabolised by *alcohol dehydrogenase* and *aldehyde dehydrogenase*

	alcohol dehydrogenase		aldehyde dehydrogenase	
Ethanol	\longrightarrow	Acetaldehyde	\longrightarrow	Acetate
Methanol	\longrightarrow	Formaldehyde	\longrightarrow	Formate
Ethylene Glycol	\longrightarrow	Glycoaldehyde	\longrightarrow	Glycolate
Isopropranolol	\longrightarrow	Acetone	\longrightarrow	
Paraldehyde	\longrightarrow	Acetaldehyde Formaldehyde	\longrightarrow	Acetate Formate

• Ethanol

- hepatocyte alcohol dehydrogenase metabolises ETOH at a constant rate ~ 7-8 g/hr
- this reduces $NAD^+ \rightarrow NADH + H^+$ and increases the lactate:pyruvate ratio
- · clinical effects correlate with blood levels,

a.	0.5-1.5 g/l	\rightarrow	ataxia, slurring of speech, drowsiness
b.	1.5-3.0 g/l	\rightarrow	stupor
c.	> 3.0 g/l	\rightarrow	coma
d.	fatal dose ~ 320	g, whi	ch may produce blood levels ≤ 7.6 g/l

• management is largely supportive

• Methanol

• methanol itself is non-toxic, however its metabolite *formic acid* produces,

- 1. profound metabolic acidosis
- 2. inhibits cytochrome oxidase \rightarrow *lactic acidosis*
- 3. retinal damage \pm blindness
- as little as 4 ml may lead to *blindness*, 30-250 ml may be fatal
- · the clinical features of formaldehyde poisoning are essentially identical
- not reproducible in animal models as most readily metabolise formate to CO_2 & H_2O
- later discovered this pathway is also present in humans but requires \uparrow *folinic acid*
- \therefore in suspected methanol O/D \rightarrow Rx with folinic acid, then folate

- clinical features,
 - 1. often asymptomatic for 12-24 hrs
 - 2. nausea, vomiting, abdominal pain
 - 3. headaches, disorientation, vertigo
 - 4. blurring of vision, blindness > 24-72 hrs

- may be permanent

- 5. fixed, dilated pupils, coma death
- biochemistry,
 - 1. profound *metabolic acidosis*
 - often severe for clinical appearance
 - 2. high osmolar gap
 - 3. raised serum methanol
- *ineffective therapy* includes,
 - 1. gastric lavage absorption is rapid & usually complete by presentation
 - 2. activated charcoal
- specific therapy includes,

1. haemodialysis

- indicated if > 30 ml ingested
 - serum methanol > 0.3 g/l (0.03%)
 - severe metabolic acidosis
- high levels may be seen in chronic alcoholics (≥ 1.6 g/l) without signs of intoxication, due to ethanol inhibition of methanol metabolism
- dialysis should be continued until plasma levels $< 0.1 \ \mbox{g/l}$
- 2. IV ethanol
 - alcohol dehydrogenase has $\sim 20x$ the affinity for ethanol cf. methanol
 - acts as a *competitive substrate* at plasma levels ≥ 1.5 g/l
- 3. 4-methylpyrazone
 - inhibits action of alcohol dehydrogenase, ∴formate production
 - 10 mg/kg / 250 ml N.Saline over 45 mins, q12h
- 4. folinic acid
 - theoretically may increase the metabolism of formic acid, however doses required for significant effects are > 2000x normal plasma levels
- 5. fluids & electrolytes
 - i. acid-base status, osmolar gap
 - ii. hyperkalaemia
 - monitor q2h early in treatment & treat in standard manner

• Ethylene Glycol

- metabolised to glycolic acid \rightarrow glyoxylic acid & oxalic acid
- the former is converted to glycine and enters the citric acid cycle, with thiamine as a cofactor
- the later is excreted through the kidney as *calcium oxalate*
- this may precipitate in the proximal tubules and produce acute renal failure
- clinical features,
 - 1. often asymptomatic for 8-12 hrs
 - 2. nausea and vomiting
 - 3. headache, visual blurring, nystagmus
 - 4. stupor, seizures & coma
 - 5. pulmonary oedema
 - 6. cardiac arrhythmias
 - 7. acute renal failure > 48 hrs post-ingestion
- biochemical findings,
 - 1. high anion gap metabolic acidosis
 - 2. high osmolar gap
 - 3. hypocalcaemia
 - 4. hyperoxaluria, calcium oxalate crystals in the urine
- management,
 - 1. fluids & electrolytes
 - i. acid-base status, osmolar gap
 - ii. hyperkalaemia
 - iii. hyponatraemia

2. alkaline diuresis

- theoretically to reduce *calcium oxalate* precipitation and ARF
- N.Saline + mannitol ± bicarbonate
 - \pm acetazolamide

3. haemodialysis

- 4. IV ethanol
 - effective at levels $\sim 1.3-2.0 \text{ g/l}$
 - increases the elimination half-life from 3 hrs to ~ 17 hrs
 - recommended with > 0.5 g/l serum level
 - > 0.25 g/l in symptomatic patients

5. 4-methylpyrazone

- 10 mg/kg / 250 ml N.Saline over 45 mins, q12h
- inhibition of alcohol dehydrogenase

Antihistamines

- produce a mixture of,
 - 1. CNS excitatory & depressant effects
 - central *anticholinergic* action see later
 - 2. myocardial depression
 - quinidine-like effects

• clinical features,

- 1. nausea, vomiting, dry mouth
- 2. headache, drowsiness
- 3. agitation, tremors, ataxia, delerium, halucinations
- 4. seizures, coma
- 5. hyperthermia
- 6. tachycardia, hypotension, pulmonary oedema, shock

• management,

- 1. ABC
- 2. IVT
- 3. gastric lavage
- 4. repeated oral *charcoal*
- 5. physostigmine
 - may reverse CNS effects, however use is controversial
- 6. cooling if hyperthermic

Carbamazepine

- structurally related to tricyclics, however toxicity is not similar
- •

Carbon Monoxide Poisoning

Toxicity

- a. avid binding of CO to Hb $\sim 250x$ that for O₂ \rightarrow L.shift of HbO₂ curve
- b. vasodilatation
- c. stimulation of chemoreceptors
- d. cellular hypoxia
 - CO also binds to *cytochrome oxidase*, however affinity of $O_2 \sim 8x$ that of CO
- *NB*: complete clinical picture *not* explained by above, effects may result from action as a *cellular messenger* cf. NO

• Severity

a.	mild	< 30% COHb
	 symptoms 	- headache, nausea, vomiting
	 signs 	- vasodilatation (>10%)
		- no neurologic or CVS dysfunction
	• R _x	- admit if COHb > 20%
		- $F_1O_2 = 100\%$ until COHb < 5%
		- symptomatic therapy
		- CVS monitoring if pre-existing disease
b.	moderate	~ 30-40% COHb
	 symptoms 	- headache, nausea, vomiting
		- fatigue, drowsiness, weakness
	 signs 	- vasodilatation
		- <i>no</i> neurologic or CVS dysfunction
	D	- dyspnoea on exertion
	• R _x	- admit
		- $F_1O_2 = 100\%$ until COHb < 5% - symptomatic therapy
		- CVS & acid-base monitoring
		Ũ
c.	severe	>40% COHb or CVS/CNS dysfunction
	• symptoms	- above plus dyspnoea, confusion
	 signs 	* neurologic \pm CVS dysfunction
		- tachycardia, tachypnoea
		> 50% respiratory failure, seizures, coma> 70% rapidly fatal
	• P	$- F_1 O_2 = 100\%$
	• R _x	- $F_1O_2 = 100\%$ - <i>hyperbaric</i> O_2 if available
		- CVS & acid-base monitoring
		e i a ce acta case monitoring

Blood COHb	Clinical Features
< 5%	• normal
5-10%	• smokers
10-20%	headache, mild dyspnoea
20-30%	 increasing headache, dyspnoea <i>admit</i> to hospital
30-40%	 further increasing headache, dyspnoea irritability, confusion nausea & vomiting
> 40%	visual disturbance, severe headachetachycardia, tachypnoea, dyspnoea
40-50%	cerebral hypoxia, syncope
50-60%	• coma, convulsions, respiratory failure
70-80%	rapidly fatal

Delayed Complications

- 1. diffuse cerebral demyelination
 - gradual neurological deterioration with *polyneuropathy*
- 2. dementia
- 3. parkinsonism
- 4. late coma ~ 1-4 weeks following initial hypoxic insult
- *NB:* frequency ~ 2-10% of patients *N-acetyl-cysteine*, may reduce the frequency of late onset complications

Management

• the elimination *half-life* of COHb,

a.	room air	$t_{\mu_{2\beta}} \sim 4 \text{ hrs}$	
b.	$F_{I}O_{2} = 100\%$	$t_{\mu_{2\beta}} \sim 40-90 \text{ min}$	
c.	hyperbaric O_2	$t_{_{1/2}\beta} \sim 30 \min$	(2.0 Atm.)

NB: if there is no impairment of *consciousness*, then hyperbaric O_2 is not indicated

Central Anticholinergic Syndrome

NB: toxic dose for *atropine* child ~ 10 mg adult ~ 100 mg * but wide variability

• commonly involved drugs,

- a. atropine
- b. hyoscine
- c. propantheline
- d. methylbromide
- e. benzhexol
- f. benztropine eg. accidental ingestion
- g. anti-ACh effects of *tricyclics*, or antihistamines

• Clinical Features

a.	fixed <i>dilated pupils</i>	- ↑ IOP			
b.	dry mouth				
c.	flushed, dry skin	- unable to sweat			
d.	cardiovascular	 tachycardia, tachyarr hyper, then <i>hypotens</i> 	•		
e.	CNS	 agitation, delerium, excitement disorientation, hallucinations <i>hyperpyrexia</i>, disordered thermoregulation seizures, coma 		ation	
f.	GIT	 reflux, vomiting gastric stasis, ileus 			
g.	GUS	- urinary retention			
h.	respiratory	- tachypnoea, stertorou	us respiration	n	
NB:	$\Delta\Delta$ use of <i>cholinergic</i>	<i>eyedrops</i> for D_X	no miosis miosis	\rightarrow \rightarrow	anti-ACh neurologic

• Treatment

- a. ABC supportive
- b. physostigmine 1 mg in cases of coma (controversial)

Chloral Hydrate

• drug levels,

a.	therapeutic	20 mg/kg
b.	toxic	100-150 mg/kg
c.	lethal	> 10 g

- a halogenated hydrocarbon \rightarrow $CCl_3 CH(OH)_2$
- rapid GIT absorption

• high first pass metabolism, rapidly metabolised to trichlorethanol

• enzyme inducer, metabolism increased with ethanol use

NB: tolerance, dependence, and withdrawal syndromes are common

• Features

a.	cardiovascular	malignant and resistant <i>ventricular arrhythmias</i>, SVThypotension
	• sensitization of	of the myocardium to catecholamines
	• $\leq 30\%$ of seve	ere cases have SVT or ventricular tachyarhythmias
b.	neurological	 profound respiratory depression ± coma
c.	GIT	- irritation - <i>hepatitis</i>

■ <u>Treatment</u>

- a. supportive
- b. gastric aspiration and lavage
- c. repeated *charcoal* administration \pm mannitol NG

- no data for repeated charcoal

- d. **b**-adrenergic blockade for arrhythmias
 - propranolol $\sim 0.5 \text{ mg IV} + 1-2 \text{ mg/hr}$
 - esmolol ~ 0.5 mg/kg stat, rpt x1
 - lignocaine
 - amiodarone
- e. charcoal haemoperfusion

Colchicine Poisoning

- occurs within 3-6 hrs of toxic ingestion and may be fatal within 24 hrs
 - a. toxic dose \geq 6-10 mg
 - b. fatal dose $\geq 20 \text{ mg}$

• side-effects of normal dosage include,

- a. nausea, vomiting, diarrhoea
- b. agranulocytosis, thrombocytopaenia
- c. impaired B₁₂ metabolism

• Toxic Features

a.	GIT	 mouth pain, sore throat, nausea, vomiting profuse watery diarrhoea, abdominal pain GIT haemorrhage, colic, tenesmus
b.	skin	- rashes, toxic epithelial necrolysis
c.	renal	- anuria, bladder spasm, ? toxic nephritis
d.	neurological	 <i>peripheral neuritis</i>, ascending paralysis convulsions, respiratory arrest
e.	cardiac	- hypotension

■ <u>Treatment</u>

- a. respiratory and cardiovascular support ABC
- b. gastric lavage, repeated activated charcoal, and cathartics
- c. morphine for cramps, diarrhoea etc.
- d. $?? B_{12} / folinic acid$

Cyanide Toxicity

- CN⁻ combines with cytochrome oxidase Fe⁺⁺⁺ effectively paralysing cellular respiration
- lethal dose of hydrocyanic acid ~ 50 mg, cf. ingested cyanide salt ~ 250 mg

• poisoning may also occur with *amygdalin* toxicity, a cyanogenic glycoside found in the kernels of almonds, apricots, peaches & plums

- a. large doses are associated with rapid death, usually within 1-15 mins
- b. moderate doses usually result in death within 4 hrs

<u>Clinical Features</u>

- a. tachypnoea, high V_M
- b. agitation, confusion, convulsions, coma
- c. vomiting
- d. hypotension, tachycardia
- e. breath smells of "bitter almonds"

Metabolism

- CN⁻ ions have 4 fates,
 - 1. 60-70% *enzymatically* converted \rightarrow *thiocyanate*
 - catalyzed by *rhodanese* in the liver and kidneys
 - requires thiosulphate and B_{12} as cofactors
 - rate limiting factor is the availability of endogenous *thiosulphate*
 - 2. combination with MetHb \rightarrow *cyanmethaemoglobin*
 - 3. combination with hydroxocobalamin \rightarrow *cyanocobalamin*
 - 4. combination with tissue *cytochrome oxidase* \rightarrow *toxicity*

■ <u>Treatment</u>

• aimed at the formation of MetHb and detoxification of CN-

- 1. supportive measures
 - i. *oxygen* should be administered
 - ii. potentiates the effectiveness of sodium nitrite & thiosulphate (? mechanism)
 - iii. removal of contaminated clothing / washing skin
- 2. *dicobalt edetate*
 - chelating agent with higher affinity for CN^{-} than cytochrome oxidase
 - give in 2 divided 300 mg doses, with 50 ml 50% dextrose between doses, due to risk of *angioneurotic oedema*
 - only use if *definite* history of cyanide exposure

3.	sodium thiosulphate	~ 150 mg/kg over 15 mins \rightarrow SH ⁻ ions necessary for the formation of <i>thiocyanate</i>
4.	sodium nitrite	 ~ 5 mg/kg over 3-4 mins - reduces HbO₂ to <i>MetHb</i> - competes with cytochrome oxidase for CN⁻ ions ~ 25% [metHb] is optimal for R_x
	aim	$\sim 25\%$ [metric] is optimal for K_X
5.	amyl nitrite inhalation	achieves ~ 5% MetHb which is inadequatemay however be used as interim measure in emergency
6.	hydroxocobalaminLIGW states require	~ 5-10 mg slowly IV \rightarrow <i>cyanocobalamin</i> ed dose ~ 50 mg/kg (~ 3000 ampoules)

- not effective in acute toxicity cf. above agents
- *NB*: normal metabolism will remove ~ 50% of CN^{-} within 1 hour

: if patient is stable, conscious & oriented, observation for 1-2 hrs is appropriate

Digoxin Toxicity

Def'n: toxic level **3** 2.6 nmol/l $(> 2.0 \,\mu g/l)$

Predisposing Factors

- a. increased *cardiac sensitivity*
 - i. acute hypoxia
 - ii. electrolyte disturbances
 - $\downarrow K^+, Mg^{++} \rightarrow$ altered receptor binding
 - severe $\uparrow K^+$, Ca^{++}
 - iii. respiratory alkalosis
 - iv. myocardial ischaemia & ? AMI
 - v. increased sympathetic tone
 - vi. elderly
 - vii. DC cardioversion

b. toxic serum levels

- i. overdose accidental, iatrogenic
- ii. renal failure
- iii. drug interactions
 - quinidine, quinine
 - verapamil
 - amiodarone
 - diuretics
 - spironolactone
 - erythromycin, tetracycline \downarrow 'd bacterial metabolism

- K⁺-wasting

Clinical Features		
Acute Toxicity	Chronic Toxicity	
 arrhythmias nausea & vomiting confusion, coma, seizures hyperkalaemia 	 arrhythmias anorexia, nausea, vomiting visual disturbance confusion 	

- the incidence of arrhythmias is *dose dependent*,
 - a. 2.2 nmol/l ~ 10%
 - b. 3.3 nmol/l ~ 50%
 - c. 4.4 nmol/l ~ 90%
 - $NB: \rightarrow$ ventricular ectopy, ventricular bigeminy ventricular tachycardia, bidirectional ventricular tachycardia increased atrial rate conduction blockade, especially AV

• Mechanism of Toxicity

a. excessive Na ⁺ /K ⁺ -ATPase inhibition \rightarrow	
---	--

- hyperkalaemia
- increased ICF Ca⁺⁺ \rightarrow conduction block - *afterdepolarisations*
- decreased ICF K^+
- b. increase in central vagal & sympathetic tone

c.	stimulation of <i>area postrema</i>	\rightarrow	GIT effects
----	-------------------------------------	---------------	-------------

Management

a.	supportive measures an	re usually sufficient for	- sinus bradycardia - PAT - junctional tachycardia
b.	atropine or ventricular	pacing for	SA or AV blocksevere sinus bradycardia
c.	phenytoin, lignocaine,	or Fab fragments for	 PVC's, ventricular bigeminy bidirectional VT, VT, VF
d.	glucose/insulin/HCO ₃ ⁻	for	- hyperkalaemia
e.	Fab fragmentsFab dose (mg)Fab dose (mg)ingested dose	 ~ ingested dose (mg) x ~ serum level (nmol/l) ~ level (nmol/l) x wt. x 	x 3 x wt. *chronic
f.	decreased GIT absorption i. <i>activated charco</i>	tion <i>al</i> or cholestyramine	\downarrow enterohepatic circulation

ii. emesis, lavage for acute ingestion ? maybe

Digoxin Antibodies

- purified digoxin specific antibody derived from sheep, $\cot \sim 10 / 40 \text{ mg}$
- cleaved to leave the F_{ab} fragment \rightarrow *less immunogenic*
- rapid, extensive distribution into the ECF
- rapid renal elimination of Ab-digoxin complexes
- produces control of,
 - a. GIT symptoms ~ immediate
 - b. bradyarrhythmias ~ 30-60 min
 - c. hyperkalaemia ~ 60 min
 - d. tachyarrhythmias ~4 hrs
- criterea for use in digoxin toxicity,
 - 1. life-threatening toxicity
 - 2. failed conventional therapy
 - 3. negative skin test for hypersensitivity to Ab
- complications occur $\leq 1\%$ and include,
 - 1. hypersensitivity
 - 2. skin rash, urticaria
 - 3. angioneurotic oedema
 - 4. serum sickness

Heavy Metal Intoxication

Iron Poisoning

• elemental iron content of principal preparations are,

a.	gluconates	~ 12%
b.	sulphates	~ 20%
c.	fumarate	~ 33%

• ingestions are described as,

- 1. nontoxic < 20 mg/kg (< 1.5g / 70 kg elemental iron)
- 2. mild ~ 20-60 mg/kg
- 3. severe > 60 mg/kg

NB: serum levels > 60 μ mol/l are usually associated with toxicity (N: 13-32 μ mol/l)

- · poisoning occurs frequently in paediatric age groups
- clinical features relate to direct corrosive properties, and are divided into 4 stages
 - 1. 0-6 hrs post-ingestion
 - nausea, vomiting, abdominal pain, diarrhoea
 - haemorrhagic gastritis, intestinal necrosis, perforation & peritonitis
 - hypotension, hypovolaemia & haemoconcentration
 - 2. 6-12 hrs post-ingestion
 - often clinically appear to be improving and severity of overdose underestimated
 - 3. 12-24 hrs post-ingestion
 - systemic signs of toxicity appear
 - metabolic acidosis, hepatic failure, renal failure, shock
 - fever, seizures, coma
 - haemorrhagic complications
 - 4. 1-2 weeks hrs post-ingestion
 - intestinal scarring & obstruction

• management,

- 1. supportive measures
- 2. desferrioxamine
 - iron-specific chelating agent \rightarrow 1g binds ~ 85 mg elemental iron
 - administered both *enterally*, to reduce absorption, and *parenterally* to complex circulating iron, which is then excreted via the kidney

•	gastric lavage	~ 2g/l water	
		+ 5g / 50 ml	post-lavage
•	IV dose for severe toxicity	~ 5 mg/kg/hr	(350 mg/70 kg/hr)
		$\leq 80 \text{ mg/kg/day}$	maximum

■ Barium

	a.		e rapid <i>hypokalaemia</i> ± hypomagnesaemia duced membrane K-permeability by direct <i>channel blockade</i>
	b.	GIT	- nausea, vomiting & diarrhoea
	c.		/ CNS - muscle <i>fasciculations</i> - seizures, tremor, paralysis, coma n initiate or potentiate synaptic transmission
	d.	CVS	- arrhythmias, bradycardia, CCF
	NB:	R _x	gastric aspiration and lavage Dimercaprol acid diuresis haemodialysis for severe intoxication
•	<u>Copper</u>		
	a.	GIT	 profuse vomiting, diarrhoea oesophagitis, gastritis, mucosal haemorrhage hepatic necrosis, haemolysis
	b.	CNS	- convulsions, coma
	NB:	R _x	gastric aspiration and lavage demulcent (milk, paraffin) analgesics Penicillamine 2g/day or Na ⁺ /Ca ⁺⁺ -EDTA
	<u>Gold</u>		
	a.	skin	- pruritis, rashes, contact dermatitis, photosensitivity, p
	b.	GIT	- stomatitis, colitis, toxic hepatitis
	с.	Haem	- thrombocytopaenia, aplastic anaemia, agranulocytosis
	d.	GUS	- haematuria, proteinuria, nephrotic syndrome
	e.	CNS	- peripheral neuritis, encephalitis

NB:	R _x	gastric aspiration and lavage	
		Dimercaprol 3-5mg/kg q4h IM	
		N-acetylcysteine IV (proven <i>in vitro</i> chelator)	

purpura

■ Lead

a.	GIT	 thirst, metallic taste burning abdominal pain, V&D, melaena 		
b.	CVS	- hypotension, oliguria, shock		
C.	chronic	 anaemia, *basophilic stipling of RBCs abdominal pain, constipation *blue gum line, *lead-line on XRays convulsions, encephalopathy, dementia, neuropathy 		
NB:	NaH	ric aspiration and lavage $(SO_4 30g, both cathartic and inactivator ators Dimercaprol 3-5mg/kg q4h IM Penicillamine or Na+/Ca++-EDTA$		

■ <u>Arsenic</u>

a.	GIT	 severe gastroenteritis, NV&D which may be bloody severe abdominal pain hepatic failure at 1-3 days 		
b.	CVS			
	i.	acute	 hypotension from hypovolaemia, fluid loss haemolysis 	
	ii.	chronic	- CCF and arrhythmias	
c.	CNS			
	i.	acute	- seizures & coma	
	ii.	chronic	* predominant form in chronic toxicity- headache, dizziness, cramps, paralysis	
d.	GUS	- rena	al failure at 1-3 days	
e.	MSS		es' lines in nails, hyperpigmentation mar/plantar hyperkeratosis, superficial BCC's	
NB:	R _x	R _x cf. lead intoxication		

Manganese

- b. Parkinsonian features, coma
- *NB:* R_x gastric aspiration and lavage ?? EDTA ?? Levodopa

• Mercury

- a. rapidly absorbed through the skin and mucosa
- b. GIT thirst, metallic taste
 - severe abdominal pain, vomiting, bloody diarrhoea, colitisashen discolouration of the mouth, stomatitis
- c. CVS hypovolaemic shock
- d. chronic GIT above & loose teeth, salivation, blue gums
 - tremor, weakness, mental change
 - dermatitis, acrodynia
 - anaemia
 - nephritis

NB: R_x gastric aspiration and lavage Dimercaprol 5mg/kg in first 2 hrs, then 2.5mg/kg/d for 10/7 Acetylpenicillamine 250 mg qid

■ Silver

- a. GIT mouth pain, salivation, diarrhoea, vomiting
- b. CNS convulsions, coma
- c. blue-black skin discolouration
- d. methaemoglobinaemia
- *NB*: R_x gastric aspiration and lavage NaHSO₄ 30g, both cathartic and inactivator

Antidotes to Heavy Metals			
Dimercaprol	• bismuth, gold, mercury, lead		
Penicillamine	• copper		
NaHSO ₄	• barium, silver		
Na ⁺ /Ca ⁺⁺ -EDTA	• copper, lead		

Heroin Overdose

- 1. CNS depression
- 2. respiratory depression
- 3. pulmonary oedema
 - i. neurogenic
 - ii. secondary to sepsis
 - iii. quinine & other "cutting" substances
- 4. aspiration pneumonitis
- 5. acute cor pulmonale talc pneumonitis
- 6. hypotension
- 7. ECG changes ST/T wave changes
 - 1° HB
 - long QT syndrome
 - VT (?quinine)
- 8. acute cardiomyopathy
- 9. SBE
- 10. rhabdomyolysis
 - i. pressure necrosis | compartment syndrome
 - ii. direct drug | impurity toxicity

11. hyperkalaemia

- 12. acure renal failure
 - ATN myoglobinuria
- 13. hepatitis B, C, D, HIV, CMV
- 14. opportunistic infections CMV pneumonia, PCP, fungi, etc.

Lithium Toxicity

- peak serum concentrations occur ~ **2-4 hrs** post-ingestion
- long $t_{_{1/2\beta}} \sim 8$ hrs, with predominantly *renal excretion* \rightarrow
 - 1. ~ 30-60% is excreted after 12 hrs
 - 2. oliguria & dehydration potentiate toxicity
- therapeutic plasma levels ~ 0.6 1.2 mmol/l
 - a. side-effects $\geq 1.5 \text{ mmol/l}$

*ie. narrow safety margin

- i. nausea, malaise, fine tremor, weakness
- ii. polyuria, thirst also with chronic toxicity - *nephrogenic DI*, polyuria
- iii. *hypothyroidism*, goitre
- b. minor toxicity < 2.0 mmol/l
 - i. vomiting, diarrhoea
 - ii. slurred speech, blurred vision, ataxia
 - iii. coarse tremor, confusion & fasciculations
- c. severe toxicity $\geq 2.0 \text{ mmol/l}$
 - i. nausea, vomiting, diarrhoea
 - ii. ataxia, tremor, hyperreflexia, extensor spasms, confusion, seizures, coma
 - iii. potentiation of sedatives and muscle relaxants
 - *flaccid paralysis*, coma and cerebral oedema occur > 3.0 mmol/l
 - iv. hypotension, syncope, cardiac failure, arrhythmias (? hypokalaemia)refractory ventricular tachycardia, bradycardia or asystole
 - v. nephrogenic DI, polyuric renal failure
- *NB: chronic toxicity* usually presents as *thyroid* or *renal* dysfunction, *acute toxicity* usually presents as *neurologic* or *cardiac* dysfunction

Investigations

a.	serum lithium level	0.5-1.0 mmol/l 1.3-2.0 mmol/l	therapeutic toxic
	1 <i>.</i> .	2.0-3.0 mmol/l	severe toxicity

- b. hyponatraemia
- c. hypokalaemia may be "normokalaemic" with total body deficit
- d. ECG T wave depression/inversion - VE's, sinus bradycardia

■ <u>Treatment</u>

a. gastric lavage

ii.

- b. maintain *euvolaemia*
 - saline loading & enhanced diuresis per se is of no value
 - alkalinisation of urine NaHCO₃, acetazolamide
- c. indications for *dialysis*
 - i. plasma level > 4.0 mmol/l
 - plasma level $\sim 2-4 \text{ mmol/l} + \text{deteriorating clinical status}$
 - ~ 2-4 mmol/l + acute renal failure
 - iii. extrapolated time to level < 0.6 mmol/l > 36 hrs
 - CVVHD effective but *slow* 2° to large V_{dSS}
- d. β -adrenergic blockers for severe tremors
- e. *no* useful effect from
 - i. diuretics frusemide (may worsen toxicity)
 - spironolactone
 - ii. KCl
 - iii. activated charcoal

Monoamine Oxidase Inhibitors

- *tranylcypromine* and *phenylzene* are the commonly used agents
- *moclobamide* is a more recently introduced agent
- selective for MAO_A and therefore has minimal pressor effect in conjunction with *tyramine*

• Clinical Features

- a. fixed, widely *dilated pupils*
- b. excitement, agitation, delerium, ataxia, seizures
- c. pyrexia, tachycardia, hypotension, diaphoresis
- d. muscle rigidity, opisthotonus, trismus
- e. metabolic acidosis, rhabdomyolysis
- *NB*: these may be *exacerbated* by,
 - i. sympathomimetic amines
 - ii. pethidine *not other opioids
 - iii. theophylline
 - iv. tyramine containing foods/drugs

Management

- 1. supportive
- 2. gastric lavage
- 3. activated charcoal
- 4. β-blockade providing hypovolaemia is not present - may require close monitoring
 5. dantrolene ~ 2.5 mg/kg q6h for 24 hrs - has been used for muscle rigidity & hyperthermia

Mushroom Poisoning

- only ~ 50 of 2000 species are poisonous to man, 90% of these from the genus *Amanita*
- milder poisoning occurs with varieties which contain either,
 - a. atropine \rightarrow narcosis, seizures, hallucinations
 - b. muscarine alkaloids \rightarrow excess secretions
- severe poisonings occur with,
 - 1. Gryomitrin esculenta
 - 2. Amanita phalloides

• Gryomitrin Esculenta

- a. N,V&D, often bloody diarrhoea, severe abdominal pain
- b. liver failure
- c. seizures, coma & death in 15-40% of severe cases
- d. due to *monomethylhydrazine*
- e. management
 - i. supportive
 - ii. IV pyridoxine hydrochloride ~ 25 mg/kg

Amanita Phalloides

- a. GIT irritability due to toxin *phalloidin*
 - occurs 6-12 hrs post-ingestion
 - abdominal pain, N, V and watery diarrhoea
- b. hepatic, renal and cerebral damage due to *alpha-amanitin*
 - occurs 24-48 hrs post-ingestion, often after resolution of GIT symptoms
 - grossly elevated LFT's, prolonged INR
 - elevated creatinine / urea
 - *encephalopathy* follows progressive hepatic and renal failure
- c. fatal in ~ 50% of cases with ingestion of 50 g $(\ge 3 \text{ mushrooms})$
- d. management
 - i. gastric lavage & repeated activated charcoal
 - ii. *penicillin G* $\leq 10^{6}$ U/kg/d
 - specific *antitoxin* effect and enhances urinary excretion
 - iii. *plasmapheresis* $\rightarrow \downarrow$ mortality from 80% to 12%
 - α-amanatin is highly bound to plasma proteins
 - iv. liver transplantation

Organophosphate Overdosage

- OGPs phosphorylate the *esteratic site* of the enzyme
- aging occurs over next 12 hrs & inactivation becomes irreversible
- new enzyme synthesis requires 1-3 weeks
- carbamates combine reversibly at the anionic site, lasting up to 12 hrs for the insecticides

Clinical Features

- 1. muscarinic
 - i. *miosis*[§], lacrimation
 - ii. *bradycardia*[§], junctional rhythm, peripheral vasodilatation, sweating
 - iii. bronchorrhoea, bronchospasm, pulmonary oedema
 - iv. salivation, colicky abdominal pains, diarrhoea
 - v. urinary incontinence
- 2. nicotinic
 - i. muscle *fasciculation*[§], followed by *paralysis*
 - ii. sympathetic ganglia stimulation
 - initially \rightarrow \uparrow HR/BP
 - later \rightarrow ganglionic paralysis, exacerbating bradycardia/hypotension
- 3. mixed- CNS effects, anxiety, tremor, convulsions, coma

NB: \equiv^{T} cholinergic over-stimulation [§] most characteristic signs

Delayed Peripheral Polyneuropathy

- due to CNS tissue esterase phosphorylation
- rapid onset of distal, symmetrical sensorimotor polyneuropathy
- onset ~ 2-5 weeks post-exposure
- early onset motor paralysis developing 1-4 days post-exposure has also been described
- may require up to 18 days mechanical ventilation

Monitoring

- a. erythrocyte "true" cholinesterase more sensitive for *chronic* OGP exposure
- b. plasma "pseudo" cholinesterase acute OGP or carbamate poisoning
- levels reduced markedly & usually < **30-50%** with onset of symptoms
- during recovery phase, may have return of muscle power with $\geq 20\%$ enzyme activity
- RBC esterase levels return after 5-7 weeks & pseudocholinesterase after 4-6 weeks

■ <u>Treatment</u>

1. *decontamination*

- treating staff must wear gloves ± respirators
- discard clothing, wash skin with soap & water
- gastric aspiration & lavage
- 2. supportive $R_x O_2$, IPPV, IV fluids, etc.
- 3. *atropine* 1-5 mg every 5 mins until control PNS \rightarrow *HR* > 60 bpm
 - *failure to produce anti-ACh effects is diagnostic of poisoning
 - *ineffective* against neuromuscular paralysis
- 4. *pralidoxime* 1-2 g slowly IV, within 24 hrs of poisoning \pm infusion 0.5 g/hr (or 1-2 g q4h)
 - plasma levels better maintained by infusion, $t_{_{1/2}B} \sim 1-2$ hrs
 - more effective against *nicotinic* symptoms, not useful for *carbamate* poisoning
 - may actually worsen carbamate poisoning, due to weak anticholinesterase activity
 - does not cross the BBB, \therefore no use in CNS symptoms
 - one large comparative study showing *no improvement* in outcome

Classification

a.	latent poisoning	 plasma cholinesterase activity ≥ 50% no clinical manifestations
b.	mild poisoning	 fatigue, headache, dizziness N,V&D, abdominal cramps sweating, salivation, chest tightness plasma cholinesterase activity ~ 20-50% PAM 1g IV, Atropine 1mg s/c good prognosis
c.	moderate poisoning	 miosis, fasciculations generalized weakness, unable to walk, difficulty speaking plasma cholinesterase activity ~ 20-50% PAM 1g IV atropine 1-5mg IV q5m[§]
d.	severe poisoning	 miosis, fasciculations, coma, flaccid paralysis, no light reflex profuse sweating, salivation and bronchorrhoea plasma cholinesterase activity ≤ 10% PAM 1-2g IV ± infusion 0.5g/hr atropine 1-5mg IV q5m[§] IPPV & CVS support fatal if untreated
NR:	[§] atronine until control	of salivation / sweating, or, flushing & mydriasis occur.

NB: [§]*atropine* until control of salivation / sweating, or, flushing & mydriasis occur, aim for *HR* > *60 bpm*

Paracetamol Poisoning

Pathogenesis

- principal route of metabolism in the liver $\sim 85\%$
 - a. glucuronidation ~ 55%
 - b. sulphation $\sim 30\% \rightarrow$ both excreted by the kidney
 - c. P-450 MFO ~ 5-8% \rightarrow *N-acetyl-p-benzoquinoneimine*
 - normally conjugated with *glutathione* and then excreted by the kidney
 - toxic intermediate, binds to sulphydrly containing proteins resulting in acute hepatic *centrilobular necrosis*

 $(\geq 10 \text{ g} / 70 \text{ kg})$

- increased susceptibility to toxicity with,
 - 1. overdose & saturation of normal conjugation
 - $\geq 140 \text{ mg/kg} \rightarrow zero \text{ order kinetics}$
 - $\geq 25g / 70kg \rightarrow$ usually fatal
 - 2. hepatic glutathione depletion[§]
 - 3. induction of P-450 MFO system[§]
 - NB: [§]both of the later occur in *chronic alcoholism*
 - \rightarrow these patients may develop toxicity with chronic "normal" usage

• Clinical Features

- a. nausea & vomiting
- b. abdominal pain & tenderness
- c. pallor
- d. coma unusual, unless other drugs or late presentation
- e. liver dysfunction * late, usually ≥ 24 hours
 - $\sim 60\%$ of non-treated above "treatment line" show severe liver damage at 3-5 days
 - ~ 5% progress to *hepatic failure*, encepalopathy, coma & death
- f. uncommon complications
 - i. renal failure ATN \pm papillary necrosis
 - ii. cardiac failure
 - iii. pancreatitis

■ <u>Treatment</u>

- a. gastric lavage
- b. activated charcoal (100g) & mannitol (500 ml 20%)
- c. N-acetyl-cysteine

•	dosage	\rightarrow	150 mg/kg/200 ml D_5 W over 15 min, then
			50 mg/kg/500 ml D_5 W over 4 hrs
			100 mg/kg/1000 ml D_5 W over 16 hrs
•	total dose	\rightarrow	~ 300 mg/kg/24 hrs

- actions → increases *glutathione* levels
 increases detoxification, "glutathione substitute"
 antioxidant
- in fulminant hepatic failure, dose ~ 150 mg/kg/24 hrs until encephalopathy resolves
- this equates to 1 x 10g ampoule / day / 70kg patient

d. other therapies

- i. supportive therapy
- ii. l-methionine substitute for NAC - 2.5g q6h for 4 doses
- iii. haemoperfusion
- iv. liver transplantation

N-Acetyl-Cysteine Indications

a.	paracetamol ingestion	\geq 150 mg/k	g (10.5g/70kg)	
b.	plasma level	> 800 > 300	μmol/l (200 μg/ml) μmol/l (120 μg/ml) μmol/l (50 μg/ml) μmol/l (30 μg/ml)	at 4 hrs at 10 hrs at 12 hrs at 15 hrs

c. within 36 hrs of ingestion

- most effective within 8-10 hrs of ingestion
- even if given after onset of encephalopathy, still lowers *mortality*

■ <u>Side Effects</u> NAC

- ADRAC records show 9 reactions over 30 yrs
- none of these had high risk blood levels \rightarrow *anaphylactic response*
 - 1. rash, pruritis occur most commonly
 - 2. angio-oedema, bronchospasm, hypotension, N & V (occur less commonly)
 - *NB*: 2° *histamine* release ~ 9%

Prognosis With NAC

a.	none	~ 75% severe liver damage ~ 60% mortality
b.	within 10 hrs	low incidence of liver failure1% mortality
c.	between 10-36 hrs	- 50% liver damage - 40% mortality

NB: the degree of encephalopathy and coagulopathy show *no correlation* with the timing of the overdose and subsequent teatment

Poor Prognosis

- 1. drug levels in the high toxic range
- 2. late presentation
- 3. plasma bilirubin $> 120 \mu mol/l$ at day 3-5
- 4. INR > 2.2

Paraquat Poisoning

Clinical Features

- organs affected early include,
 - 1. $lung^{\ddagger}$
 - 2. liver[‡] [‡]also affected *late*
 - 3. kidney
 - 4. adrenals
 - 5. brain
- nausea, vomiting & abdominal pain occur early
- signs of *renal & hepatic* dysfunction develop within 1-3 days & are usually *reversible*
- · pulmonary oedema occurs within 24 hrs of ingestion
- followed after 1-2 weeks by progressive pulmonary fibrosis
- pulmonary effects are similar to those of O_2 toxicity \rightarrow "fibrosing alveolitis"
- this is *non-reversible* and is the common cause of death
- severe toxicity presents with multisystem failure \rightarrow lum
 - lung, kidney & hepatic ± cardiac, adrenal & cerebral

Metabolism

- herbicide with rapid GIT absorption and slow *renal excretion*, $t_{_{1/2}} \sim 24$ hrs
- during the first 24 hrs there is active & selective uptake by,

type II pneumocytes > type I pneumocytes > endothelial cells

- this occur even against a concentration gradient, and plasma levels fall reciprocally
- uptake is reduced by hypothermia and decreased VO₂
- mechanism of toxicity believed to be,
 - 1. inhibition of *superoxide dismutase*

 \rightarrow \uparrow O₂ free radicals and NADPH/NADH depletion

- 2. single electron, cyclic reduction-oxidation, forming superoxide radicals
 - superoxide is nonenzymatically transformed to *singlet oxygen*
 - produces *lipid hydroperoxides*, which are unstable in the presence of *trace metals*
 - these subsequently form lipid-free-radicals

• the reaction rate is enhanced by,

- a. high paraquat levels
- b. high F_IO_2
- c. Fe⁺⁺
- d. low NADPH states
- e. high BMR or body temperature

- plasma levels $\geq 1.0 \ \mu g/ml$ are almost always fatal
- prevention is best achieved by,
 - 1. restricted sale
 - 2. adequate *labelling* and *education*
 - 3. emetics may also be added to the formulation

Treatment

- *NB*: without treatment, *mortality* ~ 85-100% ∴treat *all* cases aggressively & early
- 1. gastric lavage
- 2. absorbents
 - i. charcoal
 - · one study showing equally efficacious to Fuller's earth
 - ii. Fuller's earth
 - specific binder, paraquat is inactivated on contact with soil
 - LIGW states only 5-10% of paraquat absorbed from GIT in 24 hrs
 - 1000 ml 30% solution, 300 g/l, followed by 200 ml 20% mannitol
 - definitely require *laxative* due to risk of constipation/obstruction
 - subsequently q2h -15% solution, 150 g/l + mannitol q4h
 - · monitor biochemistry for electrolyte disturbances

3. cathartics~ 200 ml mannitol 20%~ 100 ml sorbitol 70%

- 4. haemoperfusion[§] limited to use within the first 12 hrs
 - may be some improvement if started early for severe cases

5. minimise lung injury

- titrated to minimal F_1O_2
- desferrioxamine decreases Fe⁺⁺
- steroids of *no use*
- ? hypothetical 6-7 Å molecule to block lung uptake
- *NB:* [§]LIGW states haemodialysis, haemoperfusion and peritoneal dialysis are *ineffective* for paraquat removal

Quinine / Quinidine Poisoning

• quinidine is the dextrostereoisomer of quinine, and has all of the pharmacological actions of this agent \rightarrow antimalarial, antipyretic, oxytocic

• however, its actions on the *myocardium* are far more potent than quinine

$NB: \rightarrow$	cinchonism	visual disturbance, headache, tinnitus/deafness	
		N&V, abdominal pain, rashes	

i.	toxic dose	з 4g
ii.	fatal doses usually	^з 8g

• quinine is frequently used to lace *heroin* \rightarrow combined poisoning

a.	CNS	 fever, headache, excitement, confusion vertigo, nystagmus, blindness, tinnitus, deafness convulsions, coma, respiratory failure
b.	CVS	 hypotension (2° α-blockade), negative inotropy paradoxical <i>rate rise</i> with AF (vagolysis) occasional VT, torsade de pointes, cardiac arrest
	ECG	 \$\begin{pmatrix} QRS prolongation proportional to dose SA/AV node blockade, bundle branch block polymorphic VT
c.	skin	 rashes, purpura, dermatitis, erythema multiforme jaundice (G6PD deficiency)
d.	eyes	 diplopia, toxic amblyopia, scotomata, tunnel vision photophobia, night blindness, distorted colour vision extraocular ophthalmoplegia mydriasis, retinal oedema, optic disc pallor
e.	allergic	 Stevens-Johnson syndrome (erythema multiforme major) haemolytic anaemia, thrombocytopaenia angioneurotic oedema

• Treatment

- a. gastric lavage
- b. repeated charcoal and purgatives
- c. correct biochemistry * hyperkalaemia & hypocalcaemia potentiate toxicity
- d. respiratory and cardiovascular support
 - may require PA catheter, pacing, rarely IABP
- e. agents useful in the treatment of *ventricular tachyarrhythmias* caused by quinidine,
 - i. sodium lactate
 - ii. glucagon
 - iii. catecholamines
 - iv. magnesium sulphate
- f. toxic amblyopia Na-nitrite
 - nicotinamide
 - stellate ganglion blockade

Salicylate Overdose

• inhibits many enzymes including,

- a. cyclooxygenase platelet > endothelial
- b. oxidative phosphorylation
- c. Kreb's cycle succinate dehydrogenase

- α -ketogluarate dehydrogenase

d. hyaluronidase

• the uncoupling in oxidative phosphorylation results in,

- a. increased heat production
- b. glycogenolysis \rightarrow early hyperglycaemia
- c. increased energy requirement \rightarrow late *hypoglycaemia*
- d. increased *lactate* production, liberation of FFA's and *ketogenesis* \rightarrow *metabolic acidosis*
- produces central respiratory stimulation, in addition to the \uparrow VO₂ and CO₂ production
 - \rightarrow the net effect being a *respiratory alkalosis*
- hyperpyrexia may occur if sweating decreases due to excessive dehydration
- the therapeutic level is $150 300 \,\mu \text{g/ml}$ (2200 $\mu \text{mol/l}$)
- toxicity and serum levels correlate *poorly* but usually \geq 350-500 µg/ml
 - 1. maximal therapeutic doses $\sim 4-6g/d$
 - 2. toxic dose $\geq 10g$
 - 3. fatal doses are usually $\geq 30g$

• GIT absorption is usually rapid and within 1 hr

- · large single doses may delay gastric emptying and prolong absorption for up to 24 hrs
- displays *dose-dependent kinetics*, ie. half-life increases with larger doses,
 - a. $300 \text{ mg} \rightarrow 2.5 \text{ hr}$ b. $1000 \text{ mg} \rightarrow 5-7 \text{ hrs}$ c. $4000 \text{ mg} \rightarrow 15-30 \text{ hrs}$
- small changes in plasma pH significantly alter *free fraction*,

pH ~ 7.4 \rightarrow 7.2 free fraction \uparrow 2x

Clinical Features

a.	neurological	 altered mental state, confusion agitation, tremor, seizures, coma (esp. children) tinnitus, deafness hyperthermia Kussmaul breathing 	
b.	metabolic	 respiratory alkalosis metabolic acidosis ↑ anion gap ∝ ↑ lactate & ketones fluid & electrolyte loss, esp. K⁺ early hyperglycaemia, later hypoglycaemia 	
c.	GIT	 nausea, vomiting and epigastric pain liver dysfunction, usually mild gastritis & haemorrhage 	
d.	haematological	- platelet dysfunction \rightarrow \uparrow SBT - \downarrow Factor VII \rightarrow \uparrow INR	

■ <u>Treatment</u>

- a. gastric lavage avoid alkalis
- b. *activated charcoal* ~ 8g/g of salicylate
 - repeated q2h \rightarrow * decreases t_{1/28} from 24-30 hrs to < 4 hrs
- c. fluid & electrolyte replacement glucose to avoid hypoglycaemia
- d. hyperventilation & bicarbonate
 - aimed at correction of respiratory & metabolic acidoses respectively
- e. Vit.K for coagulopathy
- f. forced alkaline diuresis NaHCO₃ \pm acetazolamide \rightarrow pH > 7.5
 - may worsen acidaemia & increase *free fraction*, ∴check AGA's
 - salicylate excretion is only marginally increased at urine pH > 7.5
 - excretion *is not* enhanced by the use of diuretics
 - complications of fluid overload, pulmonary oedema, electrolyte disturbance
 - really of marginal benefit
- g. cooling measures
- h. anticonvulsants prn
- i. *haemodialysis*
 - i. clinically severe intoxication
 - coincident pulmonary oedema, acute renal failure, coma
 - acidosis unresponsive to R_x
 - ii. salicylate level $> 750 \ \mu g/ml$ (range: 500-1000 $\ \mu g/ml$)

Strychnine

- fatal dose ~ 15-30 mg
- produces glycine receptor blockade on post-synaptic inhibitory neurones
- similar effects cf. *tetanus* (tetanospasmin TT)
 - \rightarrow prevents glycine release from *presynaptic* terminal

Clinical Features

- a. increased muscle tone
- b. extensor spasms
- c. respiratory paralysis
- d. seizures
- e. lactic acidosis
- f. hyperthermia
- g. rhabdomyolysis

Management

- 1. support respiration
- 2. maintain CVS status
- 3. control spasms
- 4. prevent seizures
- *NB*: normal excretion / detoxification is rapid, ∴*no* specific therapy required prognosis is good providing patient supported for 6-12 hrs

Theophylline Toxicity

• Clinical Effects

a.	GIT	transient motility depressionnausea and vomiting with toxicity
b.	CNS	 general stimulation, increased arousal antagonism of benzodiazepine depression respiratory centre stimulation and ↑ V_M vasomotor stimulation, vasoconstriction, ↑ MAP and HR stimulation of <i>vomiting centre</i>
c.	CVS	 positive inotropic & chronotropic effect ↑ CO and CMRO₂ direct vasodilatation ? reflex from baroreceptor stimulation → central effects predominate potentiates effects of β-adrenergic agonists
d.	RS	 bronchodilatation (5-20 µg/ml) ↓ histamine release ↑ V_M ? improved mucociliary transport
e.	renal	$- \uparrow RBF/GFR \propto \uparrow CO \& MAP$ - direct depression of tubular reabsorption \rightarrow <i>diuresis</i>
f.	metabolic	 hyperglycaemia, hypercalcaemia hypokalaemia, hypomagnesaemia, hypophosphataemia <i>lactic acidosis</i> proportional to severity of toxicity respiratory alkalosis rhabdomyolysis

• toxic doses are usually $\geq 10 \text{ mg/kg}$

- in severe intoxication, the overall *mortality* ~ 10%
- hepatic clearance becomes saturated \rightarrow *zero order kinetics*
- effective plasma half-life, $t_{_{1\!\!2\!\beta}} \sim 8-30$ hrs
- blocks both adenosine receptors and phosphodiesterase III
- plasma levels and clinical features correlate reasonably well

Plasma Level		Clinical Features
µmol/l	µg/ml	
30-110	5-20	therapeutic range
> 200	> 36	tachyarrhythmias in chronic toxicity
> 500	> 90	• tachyarrhythmias in acute toxicity
> 500-800	> 90-145	• seizures

- plasma levels should be monitored 2-4 hourly until level plateaus
- indications for *ICU admission*,

a.	$> 220 \ \mu mol/l$	(40 µg/ml)	 chronic toxicity elderly or child
b.	$> 275 \ \mu mol/l$	(50 µg/ml)	- adult with acute toxicity

Treatment

a.	gastri	ic aspiration and la	avage	
b.	charo	coal and mannitol	via NG tube	* repeat q2h
c.	• eff		g systemic theophy educes morbidity /	
d.	plasn	napheresis	? better than haemoperfusion	
e.	supportive therapy			
	i.	CVS	- verapamil, esmolol, propranolol	
	ii.	GIT	 ranitidine, metoclopramide * avoid cimetidine & phenothiazines (↓ Cl & epileptogenic) 	
	iii.	CNS	 phenobarbitone * phenytoin is <i>ineffective</i> 	

Indications for Extracorporeal Techniques

a.	severe clinical toxicity	refractory arrhythmiasrefractory seizuresrefractory vomiting	
b.	serum level	 > 350 µmol/l in acute > 220 µmol/l in chronic 	(LIGW: $> 550 \ \mu mol/l$)

c. severe hepatic/cardiac/respiratory disease and level $> 220 \,\mu mol/l$

Tricyclic Overdose

$NB: \rightarrow$	hot	as a hare
	dry	as a bone
	red	as a beet
	blind	as a bat
	mad	as a hatter

severe toxicity occurs at doses > 1000 mg (70 kg)

• most complications occur *within 1 hour* of admission and are almost never seen if patient remains alert with a normal ECG for over an hour

- however, complications may occur up to 6 days after ingestion (when severe)
- anticholinergic effects may slow GIT transit and absorption
- avid tissue binding \rightarrow large V_{dSS} ~ 10-50 l/kg
- hypoalbuminaemia and acidaemia increase the free drug fraction & toxicity
- increasing plasma pH from 7.38 to 7.5 decreases free fraction by ~ 21%
- mechanism of effects includes,
 - 1. *anticholinergic* effects
 - 2. *quinidine-like* effects
 - 3. blockade of *catecholamine reuptake*
- Clinical Effects
 - a. CVS postural hypotension
 - prolonged QT_c and RAD
 - * some argue evidence for $\uparrow QT_c$ minimal
 - tachyarrhythmias: AF, SVT, VEB's, VT, VF
 - $\uparrow QRS duration$, \uparrow PR interval, AV block
 - $-\downarrow VF$ threshold
 - acute congestive failure

b. CNS * central anticholinergic syndrome

- respiratory depression
- nystagmus, ataxia, dysarthria
- choreoathetosis, myoclonic jerks
- extensor plantars
- seizures, coma
- c. metabolic hypothermia | hyperthermia
 - hypokalaemia, metabolic acidosis
 - rhabdomyolysis

Monitoring

- a. blood levels correlate *poorly* with CNS / CVS toxicity
- b. if maximal limb lead QRS > 0.10s at 6 hrs then monitor for 24 hours
 correlates with blood level > 3.7 µmol/l & severe intoxication
- c. seizures & ventricular arrhythmias may occur up to 6-24 hours post-ingestion

Treatment

- a. supportive therapy
- b. drug absorption / elimination
 - i. gastric lavage (up to 24 hrs)
 - ii. *activated charcoal* repeated administration
 - iii. sorbitol / mannitol
- c. CNS toxicity
 - i. airway support / protection as required
 - ii. control of seizures diazepam or thiopentone

+ phenytoin

- seizures worsen acidaemia & CVS toxicity, ∴ control promptly
- iii. physostigmine may reduce central depression
 - · lasts ~ 30-60 min and has no effect on CVS toxicity
 - · contraindicated if seizures or bradycardia are present
- d. CVS toxicity
 - i. phenytoin, magnesium, or lignocaine for ventricular arrhythmias
 - ii. *alkalinisation* may decrease cardiotoxicity
 - hyperventilation & bicarbonate
 - iii. DCCV for VT low energy (50J)
 - iv. temporary pacing wire torsade or CHB
- **NB:** dialysis is *unhelpful* due to large V_{dSS} and high lipid solubility repeated charcoal is of probable benefit

Specific Antidotes		
paracetamol • N-acetylcysteine		
methanol, ethylene glycol	 ethanol 4-methylpyrazone	
cyanide	 dicobalt EDTA Na-thiosulphate B₁₂ 	
carbon monoxide	 100% F₁O₂ hyperbaric oxygen 	
organophosphates	 atropine pralidoxime	
paraquat	Fuller's earthactivated charcoal? plasmapheresis	
α-blockers	 α-agonists 	
β-blockers	β-agonistsglucagon	
calcium channel blockers	• CaCl ₂	
benzodiazepines	• flumazenil	
opioids	• naloxone	
warfarin	• vit.K, FFP	
heparin	• protamine	
digoxin	Fab-digoxin fragments	
Amanita phalloides	• penicillin	