Variables

Def'n: characteristics which change from person to person within a study

1.	quantitative	- varying by number
2.	qualitative	- varying by description
3.	discrete	- values differ only by a fixed amount
4.	continuous	- values differ by any amount

Distributions

1.	frequency distributions	- eg. tables of frequencies
2.		summary of frequencies into groupsallows concise review

- 3. relative frequencies each class interval expressed as a percentage of total
- 4. cumulative relative frequenciessummation of preceeding relative frequencies

• Graphical Representation

- 1. histogram summary of either class interval or relative frequency
- 2. bar charts useful for both qualitative & discrete variables

Measurement

1.	nominal measurement	- name, birthplace
2.	ordinal measurement	- mild - moderate - severe
3.	interval measurement	 meaningful distance between values Celcius temperature scale allows study of differences, but <i>not</i> absolute magnitude eg. 80°C is not twice as hot as 40°C
4.	ratio measurement	 allows study of absolute magnitude eg. metres length, degrees Kelvin

Summary Statistics

Measures of Location or Central Tendency

1. *mean* = arithmetic average value, where x is a quantitative variable \rightarrow interval or ratio

$$\overline{x} = \sum \frac{x_i}{n}$$

- 2. *median* = value above & below which $\frac{1}{2}$ the measurements fall \rightarrow interval or ratio, (± ordinal)
- 3. *mode* = most frequently occurring value \rightarrow nominal, ordinal, interval or ratio

• Measures of Dispersion or Variability

- 1. *range* = difference between minimum & maximum values
- 2. *interquartile range* = (largest value 3^{rd} quartile) (largest value 1^{st} quartile) $\rightarrow 75^{th} - 25^{th}$ percentiles in paediatrics

3. *standard deviation*

• "average deviation", how far variables are, on average, away from their mean

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}}$$

- where, n-1 compensates for small sample sizes (n < 30) and higher probability of falling outside the SD
- roughly, 68% of a sample will be within 1SD

95% of a sample will be within 2SD of the mean

Probability

- 1. all probabilities are between 0 and 1.0, or 0% and 100%
- 2. *independent events*
 - the probability of a given outcome remains the same, irrespective of any other outcomes (ie. successive rolls of a dice)
 - the probability of multiple events occurring is given by the *multiplication rule*
 - this can be modified for events which are not necessarily independent, eg. drawing successive aces from a pack of cards (4/52 x 3/51)
 - \rightarrow Event A *and* Event B happening
 - in general, the multiplication rule for non-independent events is the product of the probabilities of the first event, and the second event given that the first has taken place

3. *mutually exclusive events*

- ie. the occurrence of one event precludes the occurrence of the other
- the probability of *at least* one event happening is given by the *addition rule*
- this may be modified for non-mutually exclusive events (ie. compatible events),
 - \rightarrow Event A *or* Event B happening, minus the probability of *both* happening

4. binomial formula

- for a chance process, carried out in stages as a sequence of n trials
- the probability *P* of a given number of outcomes
- where, n = the number of trials, which must be fixed in advance
 - k = the number of times the event of interest occurs
 - p = the probability that the event will occur in any trial, which remains constant, \therefore only independent events

$$P = \frac{n!}{k!(n-k)!} \cdot p^k (1-p)^{n-k}$$

5. standard error

- for a given series of events, the actual number of outcomes will vary from the predicted number of outcomes
- the degree of variation from the predicted value is given by the standard error
- the method of calculation varies with the chance of the given outcome (see later)

Probability Distributions

Binomial Distribution

• applies where there are 2 possible outcomes to an event, eg. heads/tails, boy/girl

• using the binomial formula above, the likelihood of a given number of events from a series with 2 outcomes, forms distribution curve with a mean at the probability of the given event

• eg., the probability of 1, 2,..., 10 boys from 10 consecutive births, forms binomial distribution with the highest probability at 5 boys ($p \sim 0.25$)

• the *expected value* is given by, E = np (10 x 0.5 = 5 boys)

however, the probability of exactly this number is only 25%

Poisson Distribution

• classically applied where a *large number* of individuals are each at a *small risk* of a *rare event*,

eg. number of fatal road accidents in SA in a day

• generally describes events which occur *independently* and *randomly* in,

1.	time	- at a fixed rate per unit time
		- probability of more than 1 event in a short interval is very small
2.	space	- at a fixed density per unit area/volume

- probability of more than 1 event in a small area is very small

• the chance of *k* events occuring is given by the formula,

e = 2.718

$$P(k) = \frac{e^{-\mu} \cdot \mu^k}{k!}$$

where

 μ = expected value, usually known from *empirical data*

• Continuous Distributions

in both binomial & Poisson distributions, the variable of interest in always a *discrete* variable
variables which can assume an infinite set of values over a given range form continuous probability distributions, the most important being the *normal* or *Gaussian distribution*these are represented graphically,

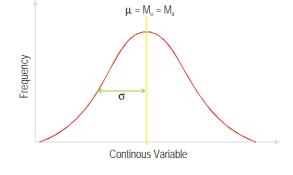
- 1. the variable of interest on the x-axis
- 2. the area under the curve represents the probability
- 3. the total area under the curve is 1.0 by definition
- 4. the curves are always symmetrical, or bell shaped
- 5. in a normal distribution, the *mean, median & mode* are identical

with continuous variables, the probability of a given value, eg. height = 156.78 cm, is virtually zero and it is more meaningful to confine probability to a *specified interval*the probability of an event within the specified interval is given by the area under the curve between the 2 specified points of the interval, eg height between 170-180 cm
a continuous probability distribution may be,

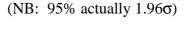
- 1. symmetrical
- 2. skewed to the left / negatively skewed
- 3. skewed to the right / positively skewed

Normal Distribution

- 1. distribution of a *continuous variable*
- 2. represented graphically as a bell-shaped curve
- 3. symmetrical about its mean, designated μ
- 4. the *mean, median & mode* are identical
- 5. described mathematically by 2 quantities,
 - i. the mean μ
 - ii. standard deviation σ



- 6. the probability of an event lying within the limits,
 - i. $\boldsymbol{\mu} \pm \boldsymbol{\sigma} \sim 0.68$
 - ii. $\mu \pm 2\sigma$ ~ 0.95 (NB: 95% as
 - iii. $\boldsymbol{\mu} \pm 3\boldsymbol{\sigma} \sim 0.99$



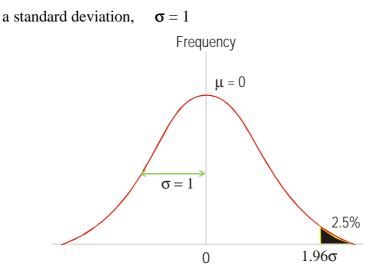
NB: In practice the probability distributions of the variables we observe are unknown; however, if their distribution is *bell-shaped* and reasonably *symmetrical* about the mean, then the properties of a normal distribution can be applied in analysing probability

Standard Normal Distribution

2.

• an infinite number of curves are possible depending upon $\mu \& \sigma$

• instead calculations are done referring to a standard normal distribution which has,



- intervals are then calculated in multiples of σ from the mean, ie. σ becomes the unit of measure

• any value (x) is represented by the *standard normal deviate, z* given by,

$$z = \frac{x - \mu}{\sigma}$$

• in any normal distribution with mean μ and standard deviation σ , the probability that an observation will lie between x_1 and x_2 is the same as the probability that a standard normal deviate lies between z_1 and z_2

- published tables calculate the area under the curve to the left of any value of \boldsymbol{z}

• from these areas between any 2 values can be calculated, or the area to the right

Populations & Samples

Def'n: population refers to any collection of people, objects, events, or observations; this is usually too large & cumbersome to study, so investigation is usually restricted to one or more *samples* drawn from the study population

• however, to allow true inferences about the study population from a sample there are a number of conditions,

- 1. the study population must be clearly defined, even if it cannot be enumerated
- 2. every individual in the population must have an equal chance of being included in the sample, ie. there should be a *random sample*
 - random does not refer to the sample, but the manner in which it was selected
 - the opposite of random sampling is *purposive sampling*, i.e. every 2nd patient

NB: studying samples cf. populations results in loss of precision

• Statistics & Parameters

Def'n:	a s <i>tatistic</i>	is an index descriptive of a sample
	a <i>paramete</i>	er is an index descriptive of a <i>population</i>

Sampling Errors

- 1. <u>sampling errors</u>
 - the smaller the sample *size*, the greater the error
 - the greater the *variability* of the observations, the greater the error
- 2. <u>non-sampling errors</u>
 - these do not necessarily decrease as the sample size increases
 - result in *bias*, or systematic distortion of the results

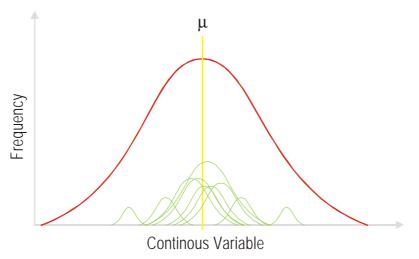
• if a large number of samples are drawn from a population, each sample with its own mean, then these sample means will,

- 1. tend to be distributed normally, even if the population distribution is markedly non-normal
- 2. form a normal distribution, with a mean equal to the true population mean, μ
- 3. have a standard deviation, the *standard error of the mean*, given by,

$$SE(\overline{x}) = \frac{\sigma}{\sqrt{n}}$$

where σ is the standard deviation of x in the *population*

4. as the sample means are normally distributed, then the means of 95% of the samples will lie within the range: $\mu \pm 1.96 (\sigma/\sqrt{n})$



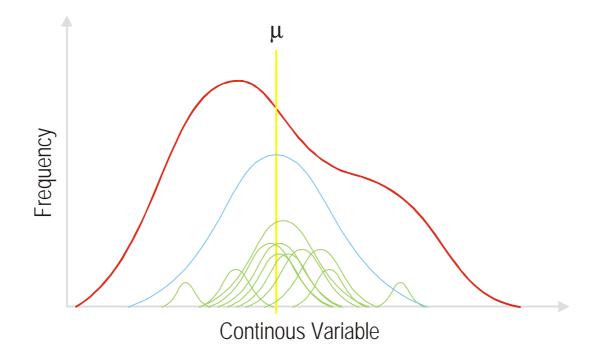
- usually only one sample is taken from the population, of size n and mean x'
- the accuracy with which x' predicts the true population mean, μ is determined by,
 - 1. the sample size as n increases, the SE(x) decreases
 - 2. the standard deviation of the population values, or the variability of x, as σ increases, so SE(x) increases

• Confidence Intervals & Limits

- in real life population means are unknown and have to be estimated from sample means
- from one sample of size *n* there is a 95% chance of getting the sample mean within the interval,

 $\mu \pm 1.96 \text{ SE}(x)$ $\text{SE}(x) = (\sigma/\sqrt{n})$

- this is termed the 95% confidence interval for μ
- the upper and lower values the 95% confidence limits
- if greater certainty is required, a larger standard normal deviate is chosen $\pm 2.58 \text{ SE}(x) > 99\%$
 - *NB*: the "normal" distribution of sample means remains even for distributions which are themselves non-normal



Tests of Signifcance

Def'n: signifcance refers to the likelihood of an observed outcome being due to chance *the null hypothesis* is that the observed difference reflects chance variation

the alternative hypothesis is that the observed difference represents a real deviation from the population mean, due to some additional factor

• Test Statistics

• a statistic derived from *sample data*, used to measure the difference between the observed data and what would be expected under the null hypothesis,

i.	z-statistics	- apply the principal of the standard normal deviate
ii.	t-statistics	- small samples, with limited degrees of freedom
iii.	χ^2 -statistics	- categorical or <i>qualitative</i> variables

Significance Levels

• usually denoted by the letter p, and represents the probability of the observed value being due solely to chance variation

• the smaller the value of p the less likely the variation is to be due to chance and the stronger the evidence for rejecting the null hypothesis

• most scientific work, by *accepted convention*, rejects the null hypothesis at p < 0.05

• this means that we shall reject the null hypothesis on 5% of occasions, when it is in fact true, ie. there was simply a chance variation

• the level of probability accepted will depend on the inherent variability of the variable being measured, as well as the nature of the alternative hypothesis

• One & Two Sided Tests

• the null hypothesis is that there is no significant difference, and chance has occurred, it makes no assumption about the direction of change or variation

• the alternative hypothesis states that the difference is real, further that it is due to some specific factor,

- 1. where no direction of change is specified, ie. that there is simply a difference between the population mean and the observed data, both ends of the distribution curve are important, and the test of significance is *two-sided*, or two-tailed
- 2. where the direction is specified, then only one tail of the curve is relevant, and the test of significance is *one-sided*, or one-tailed

• the *critical value* is the value of a test statistic at which we decide to either accept or reject the null hypothesis

• the critical value for a one-sided test at significance p, will be equivalent to that for a two-sided test at 2p (one-sided p = 0.025 / two-sided p = 0.05)

• thus, it is tempting to use one-sided tests as the significance is greater, but the decision should be made *before* the data is collected, not after the direction of change is observed

The t-distribution & Degrees of Freedom

• the *z-test* requires that,

- 1. the sample size is *large* (n > 30)
- 2. the population standard deviation, σ is known
- 3. the variable could be assumed to be normally distributed in the population
- *NB*: commonly the population σ is unknown, however it is possible to use the sample standard deviation, *s* as an estimate of σ

the type of test to be used then depends upon the sample size

• Large Samples

• if the sample size is large, n > 30, then the sample standard deviation, *s* is considered to be an adequate estimate of the population σ

• thus, the standard error of the sample mean becomes,

$$SE(x) = (s/\sqrt{n})$$

• under these circumstances the *z*-test can again be used to test the significance of the difference between the population mean μ and the sample mean x'

• this assumes that the population fits a normal distribution

Small Samples

• if the sample size is small, n < 30, then the sample standard deviation, *s* is *not* considered to be an adequate estimate of the population σ

• to test small samples, *Student's t-test* is employed (actually Gosset in 1908)

• the *t-distribution* actually describes a series of curves,

- 1. dependent upon the number of *degrees of freedom* (v nu)
 - as opposed to standard deviation, and is integrally related to the sample size
- 2. as for the normal distribution, these are symmetrical with a mean $\mu = 0$

· degrees of freedom refers to the number of observations completely free to vary

- often conditions exist which restrict freedom and the $\boldsymbol{\nu}$ is less than the actual sample size

• the corresponding tables are in effect *more conservative* in rejecting the null hypothesis, due to the added uncertainty of using *s* as the population standard deviation, where,

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

where, there are *n*-1 degrees of freedom

NB: the corresponding *critical value* for the *t-test*,

at the p = 0.05 level of significance, is 2.26, cf. 1.96 for the z-test at the p = 0.01 level of significance, is 3.25, cf. 2.58 for the z-test

• tables for t-tests vary from z-tables,

- the listed area (α) is to the *right* of the t-statistic and is *one-sided* therefore for two-sided tests the values need to be doubled
- 2. the values for α are listed under verious values of v
- 3. as for z-tests, if the value of the t-statistic exceeds the critical value, then the null hypothesis may be rejected

• Confidence Limits

• as for significance tests, when the population σ is unknown, the sample *s* may be used as an approximation

• if sample sizes are large (n > 30), then *s* is an adequate estimate

• if sample sizes are small, then instead of using the standard normal deviate to estimate the confidence interval, the t-distribution at (n-1) degrees of freedom is used

Comparison of Sample Means

Def'n: variance is the standard deviation squared, and is a measure of dispersion,

$$s^2 = \frac{\sum (x_i - \bar{x})^2}{n - 1}$$

where, \mathbf{s} = sample standard deviation

 s^2 = sample variance

 σ = population standard deviation

 σ^2 = population variance

• this is useful for comparing sample means from two different populations
$$(x_1' - x_2')$$

• ie. is any difference real, ie. due to a difference $\mu_1 - \mu_2$, or due simply to chance

• if multiple samples are taken from the 2 populations, then the differences between the means $(x_1' - x_2')$ will also form a normal distribution, with a mean about the true difference between the two population means $(\mu_1 - \mu_2)$

• analagously, the standard error of the difference of two means is given by,

$$SE(\bar{x}_1 - \bar{x}_2) = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$$

Tests of Significance

NB: these formulae are generated algebraically by the assumption of the null hypothesis that there is no difference between the means, ie. $\mu_1 - \mu_2 = 0$

Population Standard Deviations Known

- · require calculation of the z-statistic, and use of the normal distribution tables
- where, z is given by,

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

Population Standard Deviations Unknown Sample > 30

- accept calculation of the z-statistic, with use of the sample s as the population σ
- where, z is given by,

$$z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\frac{\mathbf{s}_1^2}{n_1} + \frac{\mathbf{s}_2^2}{n_2}}}$$

Population Standard Deviations Unknown Sample < 30

• require calculation of the t-statistic, which relies on the weighted average of s_1^2 and s_2^2

• such that t is given by,

$$t = \frac{\bar{x}_1 - \bar{x}_2}{s\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

• if it cannot be assumed that the population variances σ_1^2 and σ_2^2 are *equal*, then the t-test cannot be used

• the equality of population variances, as estimated by sample variances, can be measured by the *variance ratio test*, with reference to the continuous probability *F-distribution*

NB: if the t-test cannot be used, then a statistical test not dependent on any underlying *probability distribution* is used, tests of this type being termed, *distribution-free* or *non-parametric*

The Chi-Squared Test

Contingency Tables

• used when investigations concern *categorical* or *qualitative* variables

• the t-test can in fact be used to compare 2 categories

• the advantage of the χ^2 test is that it allow comparison of many more categories, drawn-up into a *contingency table*

• the null hypothesis is that any number of categories have equal chance of any other factor

• from this, tables of *expected frequencies* can be calculated by cross-multiplication

• the test then concernes itself with wheather the gap between *observed & expected* frequencies is too large to have airsen simply by chance

• the χ^2 -*statistic* is given by,

$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

- like the t-distribution, the χ^2 distribution is actually a family of distributions, depending upon the number of differences involved

• generally, the number of *degrees of freedom* for such a table is given by,

$$v = (r - 1).(c - 1)$$

• ie., for a 2x2 table there is 1 degree of freedom

• calculation of the *expected frequency* for each cell of a table is given by,

E = (row total).(column total) / overall total

	Expected Frequencies						
Table	Α						
С	$(\mathbf{x}_{\mathrm{C}} \times \mathbf{y}_{\mathrm{A}})/n$	$(x_{c} \times y_{B})/n$	X _C				
D	$(x_{\rm D} \times y_{\rm A})/n$	$(x_{\rm D} \times y_{\rm B})/n$	X _D				
	У _А	y _B	Total = n				

Goodness of Fit

• apart from using contingency tables, the χ^2 -statistic can be used to see if an observed set of observations follows a particular distribution

• eg. by calculating the expected frequencies from say a Poisson distribution, and then comparing these with the observed data

• alternatively the distribution may be a genetic model

• the degrees of freedom will be the number of observations, n - 1

• General Features

1. the formula:
$$\chi^2 = \sum \frac{(O-E)^2}{E}$$

is valid only for comparing observed and expected *frequencies*, it cannot be used for comparing percentages or proportions directly, nor can it be used for derived statistics, eg. means, rates etc.

- 2. when dealing with a continuous variable, the range must be divided into suitable *intervals*, and the observed & expected frequencies in each interval compared
- 3. the χ^2 should *not* be calculated when the expected frequency in a cell is < 5
- 4. χ^2 is actually a probability distribution, whereas observed frequencies are discrete, when frequencies are small a *continuity correction* for $\nu = 1$ should be added,

$$\chi^{2}_{(1)} = \sum \frac{(|O-E| - 0.5)^{2}}{E}$$

this correction is of little consequence unless the frequencies are small

• Other Non-Parametric Tests

i.

- 1. <u>Wilcoxon's Rank Sum Test</u>
 - paired data the signed rank test
 - two groups matched for other confounding factors prior to treatment
 - the differences between the pairs is calculated, then ranked in order
 - 2 pairs having the same difference are given the mean of what would have been their successive ranks (ie. 2 & 3 → 2.5 & 2.5)
 - these ranks are then given the *sign* of the actual difference between the pairs
 - each of the (+) & (-) ranks is totalled, & the smaller referred to a table
 - ii. unpaired data the two-sample test
 - all results are ranked in order, but the two groups distinguished
 - the ranks for the two samples are then added seperately & the smaller total used
 - requires greater numbers to produce a significant result cf. pairing`
- 2. <u>Mann-Whitney U Test</u>
 - similar aproach to (1) and entirely comparable results

Correlation & Regression

The Scatter Diagram

• this is used to study 2 variables which are *quantitative*, cf. qualitative variables using χ^2

• classically these are represented by a series of dots, each representing a *pair* of data, ie. one x and one y coordinate for the two variables being studied

• the resulting graph is termed a scatter diagram

• in studies of relationships of 2 variables, usually one is labelled the *independent* variable (x-axis), and the other the *dependent* variable (y-axis)

Correlation Coefficient

- for any cluster of points, the following summary statistics are readily calculated,
 - 1. mean & standard deviation of x values x' and s_x
 - 2. mean & standard deviation of y values y' and s_y
- however, these tell nothing about the association between the two variables
- to assess this the *correlation coefficient (r)* is calculated,

$$r = \frac{\sum (x - \bar{x}) \cdot (y - \bar{y})}{\sqrt{\sum (x - \bar{x})^2 \times \sum (y - \bar{y})^2}}$$

General Features

- 1. correlations are always between -1 and +1
 - a positive correlation means as one value increases, so does the other
 - a negative correlation means as one value increases, the other decreases
 - a value of zero means there is no linear correlation

2. $r = \pm 1$ is referred to as a *perfect correlation*, in that there is a perfect *linear* relationship between variables

- 3. *r* does not always give a true indication of clustering, the two main exceptions are,
 - i. non-linearity *r* only measures linear association
 - ii. outliers result in a dramatic approach of $r \to 0$
 - these should only be excluded for sound reasons

4. important to remember, *correlation does not equal causation*

• further there may be an indirect association, or a confounding factor

- 5. the following is a rough guide to the *magnitude* of *r*,
 - i. 0.8 1.0 strong
 - ii. 0.5 0.8 moderate
 - iii. 0.2 0.5 weak
 - iv. 0.0 0.2 negligible
- 6. the *variance* of *r*, given by r^2 measures the dependence of one variable on the other • ie. if $r^2 = 0.72$, then 72% of the value of dependent variable (y) is due to the
 - independent variable (x)
- 7. the *significance of r*, in determining wheather the variation from zero is real or simply due to chance can be measured by the t-test, where,

$$t = r \sqrt{\frac{n-2}{1-\mathbf{r}^2}}$$

and the table is entered at n - 2 degrees of freedom

Regression

- correlation predicts whether one variable is related to another, but not *how*
- regression constructs the *line of best fit*, for a linear correlation, such that,

$$y = a + bx$$

- where **b** is the *regression coefficient*, and describes the slope of the line
- this is achieved by looking at the difference between the observed & expected values,

$$d = y - (a + bx)$$
 or,
 $d^{2} = [y - (a + bx)]^{2}$

- the charteristics of the regression line is that the sum of values for d^2 is a minimum
- this may be achieved by calculus, and is the *least squares method*
- fortuitously it turns out that,

$$b = \frac{\sum (x - \bar{x}) \cdot (y - \bar{y})}{\sum (x - \bar{x})^2}$$
$$a = \bar{y} - b\bar{x}$$

• this allows prediction of y for a given value of x, within the range of values of x, extrapolation from lines of regression is usually risky

Multiple Regression

- · frequently multiple factors are implicated in disease processes
- simple one-to-one cause effect is rare
- · some of these factors may be interrelated, others may be independent
- this involves constructing a *multiple regression equation*,

$$y = a + b_1 x_1 + b_2 x_2 + b_3 x_3 + \dots$$
 etc.

where, $b_1, b_2, b_3,...$ are the *partial regression coefficients* $x_1, x_2, x_3,...$ are the multiple factors being examined

• the dependent variable, y, would represent the diesease process in question

• each partial regression coefficient predicts the amount the dependent variable will change, for a given change in that factor

• this allows an estimate of the relative importance of multiple factors in disease causation

Significance Tests & Errors

• with a test of significance, with a value of p < 0.05, there is a 5% chance that the variation observed is in fact due to random variation

• rejection of the null hypothesis at this level means that we will, in 5% of cases reject the null hypothesis when it is actually true

Def'n:	incorrectly <i>rejecting</i> the null hypothesis	\rightarrow	type I error, or a -error
	incorrectly accepting the null hypothesis	\rightarrow	type II error, or b -error

• it is inherent in statistical concept, that attempts to quantify the probability that you are correct, carries with it the probability that you are wrong

• in general there are 2 factors which result in investigators failing to show a real difference, ie. where one actually exists,

- 1. <u>chance alone</u>
 - an unusual data sample which does not support a difference
 - this is *type II error*
 - statistical methods can produce incorrect conclusions
- 2. too small a sample size
 - the smaller number of individuals included in a study, the greater must be the real difference before statistical difference may be shown
 - in extreme, no matter how small the real difference, this may be shown statistically if a large enough sample is drawn
 - the probability that a study can predict a difference, when a real difference actually exists, is termed the statistical *power* of the study
 - the higher the power of the study, the smaller the difference which may be detected

Statistical Test Errors		Real Difference		
		No	Yes	
	No Effect Demonstrated	1 - α	Type II Error β-error	
Significance Tests	Effect Demonstrated	Type I Error α-error	Power 1 - β	

Def'n: by definition, if β is the probability of accepting the null hypothesis, ie. saying that no real difference has occurred, where a real difference exists, then the probability of finding a real difference, when one exists, is given by, $1 - \beta = \text{the power of the study}$

How Many Subjects

• the standard error of estimation of a population mean, from a sample mean,

$$SE(\overline{x}) = \frac{\sigma}{\sqrt{n}}$$

- thus, as the number in the sample *n* increases, the error decreases
- if we choose a 95% confidence interval, then then true value is given by,

$$\overline{x} \pm 1.96 \times SE(\overline{x})$$

• if we then state the desired mean difference we wish to demonstrate, this can be rearranged to give the value of n

- similar derivations may be made for comparisons between two sample means etc.
- what is required for these calcuations is,
 - 1. a designated *power* of the study how accurate do we require it to be ? what chance of success do we want ?
 - 2. the amount of difference we wish to show, and
 - 3. at what level of *significance* we wish to demonstrate this
- when comparing two samples, the minimum total sample size is achieved when $n_1 = n_2$

Prediction Models

Event (eg Death) Continency Table		Prediction by Test		
		No	Yes	
True Occurrence	No	TN	FP	
"Gold Standard"	Yes	FN	ТР	

Def'n:	Sensitivity	of those who <i>actually</i> die, how many did the test predic	
		= TP / (TP + FN)	
	Specificity	of those who <i>did not</i> die, how many did the test predict = $TN / (TN + FP)$	
	Predictive Value	of those <i>predicted</i> to die, how many actually died = TP / (TP + FP)	
	Discrimination	overall <i>correct classification rate</i> , ie. how well the model separates those who will & will not die, = (TP + TN)/n	
	False Classification	= (TP + TN)/n Rate = (FP + FN) / n = 1 - Discrimination	

Example Papazian AJRCCM 1995

	BAL VAP Continency Table		\mathbf{BAL}^1		
			No		Yes
	Post-Mortem	No	95 ²		5
	"Gold Standard"	Yes	45		552
1	Predictive value ~	- 90%	Discrimination	~ 75%	
2	Specificity ~	- 95%	Sensitivity	~ 55%	