LUNG MECHANICS

Airways Resistance

• Measurement at 30 l/min

a.	awake		~ 0.6-3.2	cmH ₂ O/l/s	
b.	paralysed		~ 6.0	cmH ₂ O/l/s	
c.	partially paralyse	d + ETT	~ 10-15	cmH ₂ O/l/s	(AB says 5-10 cmH ₂ O/l/s)
d.	PEFR	males females	~ 450-700 ~ 300-500		
e.	FEV_1		~ 50-70 ≥ 70%	ml/kg of FVC	

• Factors

a.	airway narrowing		oedema, congestioninflammation, FB, etc.
b.	lung	volume	expiration > inspirationclosing volume
c.	post	ure	- supine FRC \leq CC
d.	neur	al factors	
	i.	constriction	 smoke, dust, chemicals hypoxia, hypercarbia, hypothermia pulmonary emboli ↑ PNS activity
	ii.	dilatation	 systemic hypertension inspiration ↑ SNS activity
e.	horn	nonal factors	- catechols, histamine, PG's, leukotrienes
f.	drug	S	
	i.	constriction	 histamine, methacholine alveolar hypocarbia ACh-esterase inhibitors anaphylactoid reactions
	ii.	dilatation	 catechols (β₂-agonists) PDE inhibitors, aminophylline anticholinergics steroids volatile anaesthetic agents nitric oxide

Anatomical Site

a.	nasal passages	~ 50%
b.	larynx	~ 25%
c.	large airways	~ 15%

NB: airways resistance is maximal at segmental bronchioles,

 $\rightarrow \geq 5^{\text{th}}$ generation / ≤ 2 mm

Lung Compliance

Def'n: the change in *lung volume* per unit change in *transpulmonary pressure*

	Static		Dynamic	
Posture	Lung	Respiratory	Lung	Respiratory
Upright	200	100	180	100
Supine	150			
GA & NMB'd	100-150	75	80	55
* all values in ml/cmH ₂ O				

Factors Affecting Static Lung Compliance

- 1. \uparrow FRC \rightarrow \uparrow C_L
 - i. age
 - ii. body size
 - iii. posture
 - *see below factors affecting FRC
- 2. \downarrow lung volume $\rightarrow \downarrow C_{L}$
 - i. lobar, lung resection
 - ii. collapse or consolidation
 - iii. diffuse atelectasis
- 3. changes in lung *elasticity*
 - i. ↑ lung elasticity emphysema
 - ii. \downarrow lung elasticity pulmonary oedema, congestion, fibrosis

• Nunn: Lung Compliance

- 1. lung volume absolute and relative
- 2. posture
- 3. pulmonary blood volume
- 4. age
- 5. restriction of chest expansion ? this is chest wall C, not lung
- 6. recent ventilatory history
- * monotonous ventilation
- 7. pulmonary disease

• Factors Affecting Dynamic Lung Compliance

- 1. airways resistance
- 2. respiratory rate
- 3. peak flow rate & inspiratory time for ventilated patients
- 4. autoPEEP
- actually should refer to *time constant*, $\tau = R \times C$
- the concept of dynamic compliance is flawed, as it is resistance & flow rate dependent
- resistance includes in its definition the time frame (cmH₂O/l/s), compliance *does not*
- ergo, compliance should be *time independent*, but dynamic compliance is not

Factors Affecting Chest Wall Compliance

- 1. muscle tone and phase of respiration
- 2. diaphragmatic movement
 - i. neural input
 - ii. muscle performance, fatigue
 - iii. abdominal hypertension pregnancy, ascites, obesity
- 3. chest wall diseases
 - i. spine & costo-vertebral joints
 - ii. obesity
 - iii. pleural disease, space occupying lesion
 - iv. skin & overlying tissues

Factors Affecting FRC

- 1. body size FRC \propto height (~ 32-51 ml/inch)
- 2. sex females ~ 90% of male FRC (= height)
- 3. age Nunn \rightarrow *no correlation* !
 - others have shown small increase
- 4. diaphragmatic muscle tone
 - · originally, FRC believed to represent equilibrium for lung/chest wall system
 - diaphragmatic tone maintains FRC ~ 400 ml above true relaxed state
 - $\rightarrow \quad \downarrow$ FRC with anaesthesia / ventilation
- 5. posture $\rightarrow \downarrow$ FRC in the supine position ~ 0.5-1.01

6. lung disease

- consolidation, collapse, atelectasis $\rightarrow \downarrow$ FRC
- \uparrow blood volume, alveolar oedema $\rightarrow \downarrow$ FRC
- loss of lung ER with emphysema \rightarrow \uparrow FRC
- increased expiratory resistance \rightarrow \uparrow FRC

7. chest wall

- increased abdominal contents $\rightarrow \downarrow$ FRC
- pleural space occupying lesion $\rightarrow \quad \downarrow \text{FRC}$
- 8. alveolar-ambient pressure gradient
 - PEEP increases the FRC

Closing Volume

Def'n: lung volume in which closure of dependent airways begins, or more precisely, lung volume in which dependent lung units cease to contribute to expired gas, ie., the beginning of *phase IV* of the washout curve to RV

normal values $\sim 15-20\%$ of VC, ie. a part of the VC manoeuvre

- $\sim 15-20\%$ of VC, ie. a part of the VC manu
- $\sim 10\%$ of the FRC in a young adult

~ 40% of FRC at 40 years of age

this is distinct from *closing capacity*, which is the difference between the onset of *phase IV* and zero lung volume = CV + RV, expressed at a % of TLC

- measured by either a *bolus* or *resident gas* technique,
 - 1. bolus technique
 - originally xenon or argon, usually now *helium*
 - inspiration from RV to TLC creating differential tracer gas composition
 - apical areas contain most of the gas cf. bases
 - 2. resident gas technique
 - also dependent upon a pre-expiration concentration gradient, but
 - i. N_2 already present, and
 - ii. normally little difference in $[N_2]$ between apex & base at TLC
 - therefore, inspiration of O₂ is used to dilute the already present N₂
 - this results in an apical to base concentration difference of $\sim 2x$
 - may result in smaller values cf. bolus technique in the presence of asthma or bronchoconstriction, probably due to air trapping (??)

NB: \rightarrow single breath (100% O₂) *nitrogen washout*

 \rightarrow 4 phases I

- I dead space II transitional zone
- III alveolar plateau (~ 1.5% rise)
- IV closing volume
- as CV represents a portion of the VC manoeuvre, it is usually expressed as a percentage of such
- expiration must be performed *slowly* to prevent *dynamic* airways collapse ~ 0.5 l/sec

• changes in CV may represent small airways disease, or loss of elastic recoil and parenchymal supportive tissue

- loss of elastic recoil results in the gradual increase in CV with age, such that at 65 yrs CC > FRC
- · young children similarly have decreased elastic recoil & relatively increased CC's
- minimal values for CV/CC are seen in late the late second decade
- sensitive marker of early dysfunction, but difficulty defining normal limits

NB: closing capacity ~ FRC in the supine position at 6 & 44 years

• Factors

- CV is increased by,
 - 1. age
 - 2. smoking
 - 3. lung disease

• tidal volume encroaches upon CV in,

- 1. children < 6 years of age
- 2. adults progressively over the age of 45
- 3. where FRC is decreased obe
 - obesity
 - pregnancypostoperatively
 - paralysed/ventilated without PEEP
 - ascites
- 4. most lung diseases

Pulmonary Dead Space

1.

Def'n:	Anatomical:	that fraction of the inspired gas volume which, is contained in the <i>conducting airways</i> , is ineffective in arterialising mixed venous blood, and is exhaled unchanged at the beginning of expiration
	Alveolar:	that fraction of the inspired gas volume which, enters the <i>alveoli</i> , but is ineffective in arterialising mixed venous blood
	Physiological	: alveolar + anatomical dead space

Factors Affecting Anatomical Dead Space

body size

2.	age	
3.	lung volume	
4.	posture	
5.	drugs	bronchodilators / bronchoconstrictorsanaesthetic agents
6.	lung disease	- emphysema, asthma, CAL
7.	IPPV	
8.	flow pattern	- high flows and turbulence increase $\boldsymbol{V}_{\!\scriptscriptstyle D}$

• Additional Factors Affecting Alveolar Dead Space

- 1. blood volume
- 2. pulmonary artery pressure
- 3. lung disease
- 4. IPPV including waveform and PEEP
- 5. anaesthesia
- 6. respiratory rate and minute volume
- 7. oxygen rise in P_{AO2} vasodilatation & increased V_D

Bohr Equation (1891)

$$\frac{V_D}{V_T} = \frac{F_{ACO_2} - F_{\bar{E}CO_2}}{F_{ACO_2}}$$

• originally used to measure F_{ACO2} , using estimates of V_D^{Anat} from autopsy cast specimens • not used to estimate V_D^{Anat} until the *constancy of alveolar air* was established by Haldane and Priestly (1905)

• following this,

- 1. F_{ACO2} is estimated from ETCO₂ with a rapid gas analyser
- 2. the mean expired concentration from a Douglas bag
- this estimated anatomical V_D as ETCO₂ estimates mean, not "ideal" alveolar CO₂
- subsequently modified by Enghoff to estimate total, or *physiological* V_{D} , viz.

Enghoff Modification (1938)

$$\frac{V_D^{Phys}}{V_T} = \frac{P_{aCO_2} - P_{\overline{E}CO_2}}{P_{aCO_2}}$$

Ventilation/Perfusion Relationships

	Causes of Non-Uniformity		
	Perfusion	Ventilation	
Physiological	 gravity PA pressures posture exercise 	 airway closure (FRC < CC) V vs. Q mismatch posture 	
Pathological	 hypovolaemia hypervolaemia, LVF embolism regional ↑ PVR PEEP drugs 	 exaggeration of above regional compliance differences regional airway resistance change collapse, consolidation mucosal oedema, plugging diffusion block 	

Assessment		
Perfusion	Ventilation	
 CXR lung scan spiral CT + contrast pulmonary angiography Xe¹³³ washout calculation of V_D/V_T P_{a-ET}CO₂ difference 	 clinical assessment CXR single breath N₂ test N₂ washout Xe¹³³ venous admixture P_{A-a}O₂ difference pulmonary function tests 	

The Shunt Equation

$$\frac{\dot{Q}_S}{\dot{Q}_T} = \frac{C_{c'O_2} - C_{aO_2}}{C_{c'O_2} - C_{\bar{v}O_2}}$$

Alveolar-Arterial Oxygen Tension Gradient

Def'n: normal P_{A-aO2} **£20 mmHg**

- where the \boldsymbol{P}_{AO2} is given by the alveolar air equation, simplest form,

$$P_{AO_2} = P_{iO_2} - \frac{P_{aCO_2}}{R}$$

• rearranging the shunt equation,

$$Q_{S}/Q_{T} = (C_{cO2} - C_{aO2}) / (C_{cO2} - C_{mvO2})$$
$$C_{aO2} = C_{cO2} - (C_{a-mvO2} \times Q_{S} / [Q_{T} - Q_{S}])$$

also,

 $C_{aO2} \sim ([Hb] \times 1.34 \times S_{aO2}) + (0.003 \times P_{aO2})$

• therefore, the P_{A-aO2} is dependent upon,

- 1. $_{FI}O_2$ and P_{AO2} hyperbolic relationship
- 2. mixed venous P_{mvO2}
- 3. cardiac output inverse relationship
- 4. $DO_2 \& VO_2$ linear relationship
- 5. pulmonary shunt linear relationship
- 6. minor factors
 - i. [Hb] & position of dissociation curve
 - ii. respiratory quotient
 - iii. hypovolaemia

Pulmonary Gas Exchange

• O_2 diffusion is dependent upon,

- a. F_IO_2
- b. alveolar ventilation
- c. effective alveolar/capillary exchange area
- d. effective diffusion distance
- e. pulmonary capillary blood flow
- f. mixed venous Hb saturation
- g. position of Hb-O $_2$ dissociation curve
- normal Hb "fully" saturated in 0.3 sec, with a normal transit time of 0.75 s
 factors affecting diffusing capacity,
 - a. increased diffusion path length
 - b. decreased area definition of emphysematous lung disease
 - c. posture increased in supine position
 - d. exercise

CO₂ Transport

Content

a.	arterial		~ 49	ml/100ml	
b.	mixed venous		~ 53	ml/100ml	
c.	added to capillary bloodby where,		~ 3.75	ml/100ml	
	i. plasma ii. rbc • by form,		~ 2.35	ml/100ml	65%
			~ 1.4	ml/100ml	35%
	i.	CO_2 as HCO_3^-	~ 2.43	ml/100ml	65%
	ii. carbamino Hbiii. dissolved CO₂		~ 1.0	ml/100ml	26%
			~ 0.3	ml/100ml	8%
	iv. carbamino plasma pr		ein		< 1%

Haldane Effect

Def'n: the shift of the Hb- \mathbf{CO}_2 dissociation curve with variations in the SaO₂

- effectively reduces the rise in P_{aCO2} in venous blood, thereby limiting the fall in mixed venous pH

	Arterial	Mixed Venous
P _{CO2}	40 mmHg	46 mmHg
C _{CO2}	49 ml/100ml 22 mmol/l	53 ml/100ml 24 mmol/l
pН	7.4	7.37
P ₀₂	100 mmHg	40 mmHg
S ₀₂	97.5%	74 %

Effects of Hypocapnia

- 1. \uparrow TPR
- 2. cerebral vasoconstriction
- 3. placental vasoconstriction
- 4. \downarrow cardiac output
- 5. \downarrow ICP
- 6. \uparrow pain threshold
- 7. hypoventilation
- 8. respiratory alkalosis
- 9. *left* shift of the HbO₂ dissociation curve
- 10. hypokalaemia \rightarrow ICF shift
- 11. \downarrow HCO₃ reabsorption by the kidney
- 12. \downarrow plasma ionized Ca⁺⁺ \rightarrow tetany

Effects of Hypercapnia

- 1. cerebral vasodilatation
- 2. ↑ ICP
- 3. \uparrow CNS sympathetic outflow
- 4. ↑ cardiac output & BP indirect effect
- 5. direct depressant effect upon the CVS
- 6. cardiac arrhythmias
- 7. hyperventilation
- 8. respiratory acidosis
- 9. *right* shift of the HbO₂ dissociation curve
- 10. hyperkalaemia
- 11. \uparrow HCO₃ reabsorption by the kidney

CONTROL OF VENTILATION

Feedback Mechanism

- 1. sensory mechanisms central / peripheral
- 2. central integration
- 3. effector systems

Brainstem Influences

a.	carotid and aortic chemoreceptors	- $P_{aO2} / P_{aCO2} / pH$
b.	central CSA	- P _{2CO2}

- $r_{aCO2} CSF pH$
- c. cerebral blood flow
- d. lung reflexes

i.

k.

1.

- i. Hering-Breuer reflex *inhibito*-inspiratory reflex
- ii. paradoxical reflex of Head inspiratory triggering
- iii. chest wall/parenchymal reflexes
- e. muscle spindles respiratory muscles - *not* diaphragm
- f. carotid and aortic baroreceptors
- g. thoracic chemoreceptors
- h. peripheral receptors pain - temperature
 - mechanoreceptors cerebral cortex - emotion
- j. reticular activating system

hormones

drugs

- olfactory sense

- voluntary control

- speech

- speech - SNS

- progesterone
- almitrine, ? aminophylline

Peripheral Chemoreceptor Stimulation - Factors

a.	ischaemia	
b.	hypoxia	- rectangular hyperbola - inflexion at ~ 60 mmHg & maximal \uparrow V _M ~ 32 mmHg
c.	increase P_{aCO2}	~ 10 mmHg
d.	decrease in pH	~ 0.1-0.2
e.	drugs	 cyanide, nicotine lobeline, doxapram
NB:	<i>not</i> by	 anaemia carbon monoxide methaemoglobinaemia *ie. responds to P_{aO2} <i>not</i> C_{aO2}

Chemoreceptor Stimulation - Effects

a.	\uparrow V _T , frequency & V _M	ſ
b.	bradycardia	- carotid body
c.	tachycardia	- aortic body
d.	hypertension	- systemic & pulmonary vasoconstriction
e.	bronchoconstriction	

Effects of Apnoea

<i>NB</i> : P _{aCO2}	\rightarrow	initial rise ~ 6 mmHg in first minute \rightarrow	lung "washin"
	\rightarrow	subsequent rise ~ 1-3 mmHg/min	

 $\mathbf{P_{a02}} \longrightarrow \text{ falls dependent upon } F_1O_2, \text{ FRC and } VO_2$

• body stores of O_2 are small, being ~ 1550 ml on air, which corresponds to only 6 mins consumption at a basal VO_2

• thus, with changes in V_A the P_{a02} rapidly assumes its new value, the *half time* of change being only 30s

• in contrast the body stores of CO_2 are large, being ~ 120 l, or 600 mins of the basal output

- the time course of change for P_{aCO2} is slower for a reduction of V_A than for an increase

• the half time of rise for $P_{aCO2} \sim 16$ mins

• thus, during the *acute phase* of hypoventilation, the P_{aO2} may be low while the P_{aCO2} is still within the normal range

NB: .:. during acute hypoventilation, the *respiratory exchange ratio* may fall far below the *respiratory quotient*, which it equals at steady state, as CO_2 production is partly diverted to the body stores

CO₂ & Ventilation

NB: $\uparrow V_{\rm M} \sim 2.0 \, \text{l/min/mmHg} \propto \uparrow \text{PaCO}_2$

the predominant effects are upon the *central chemosensitive area* CSA large interpatient variation in slope of the V_M/P_{aCO2} line

Factors Shifting the V _M -CO ₂ Curve		
Left	Right	
 hypoxia acidosis hyperthermia catecholamine release 	 sleep ↑ work of breathing ↑ resistance ↓ compliance drugs - narcotics - barbiturates, etc. 	

OXYGEN THERAPY

Isobaric

a.	fixed	performance
----	-------	-------------

- high flow venturi masks
- low flow anaesthetic machine
- b. *variable* performance
 - small capacity nasal specs, Hudson
 - large capacity O_2 tent, cribs

Device	FGF (l/min)	$\mathbf{F}_{\mathbf{I}}\mathbf{O}_{2}$ %
Nasal Canulae ¹	2-6	28-44
Hudson Mask	4	35
	6	50
	8	55
	10	60
	12	65
O ₂ Tent	7-10	60-80
Incubator	3-8	20-40
Head Hood	4-8	30-50

■ <u>Venturi</u>

- delivered F_1O_2 is estimated as follows,
 - 1.
 6-8 l/min FGF + entrainment gas
 ~ 40-60 \text{ l/min total flow}

 2.
 8 l/min O_2 + 21% of (40-8) l/min
 ~ 30% F₁O₂
 - 3. 10 l/min O_2 + 21% of (60-10) l/min ~ 35% F_1O_2
- the actual delivered F_1O_2 is determined by,
 - 1. O_2 % of FGF and variability of flow
 - 2. maximal FGF
 - 3. entrainment ratio
 - 4. size of O_2 reservoir
 - 5. patient peak inspiratory flow rate and minute ventilation

Oxygen			
MW	• 32		
BP	• -182.5°C		
H ₂ O solubility 37°C ¹	• 2.4 vol%		
H ₂ O solubility 0°C	• 4.9 vol%		
Critical temperature	• -118.4°C		
Critical pressure	• 50.14 atm.		
Liquid:gas volume ratio	· 1:840		
Specific gravity (gas)	• 1105 (air = 1000)		
Cylinders	 pressure 132 atm. vol. at STP 682 1 C colour code black/white 		
¹ Ostwald solubility coefficient for O_2 in blood at 37°C = 0.0034 ml/100ml blood/mmHg			
\therefore at 760 mmHg = 2.58 ml / 100 ml			

• Methods of Preparation

- 1. fractional distillation of air by pressure / cooling
- 2. electrolysis of H_2O
- 3. Brin process using BaO_2

Oxygen Toxicity

- 1. *hyperoxic* syndromes
 - i. optic neonatal retrolental fibroplasia
 - ii. neural hyperbaric O_2 seizures
 - iii. pulmonary tracheobronchitis, ARDS
 - ? bronchopulmonary dysplasia
- 2. *normoxic* syndromes
 - presence of factors enhancing formation of free radicals at normal O_2 tension
 - i. excessive phagocytic activity
 - ii. *reperfusion* following ischaemia
 - iii. drugs / toxins paraquat, bleomycin

Mechanisms

- a. free oxygen radicals
- b. oxidation of glutathione
- c. lipid peroxidation
- d. glycolytic GPDH inhibition
- e. altered glutamate & GABA metabolism
- species generated,

a.	superoxide	O ₂ +	superoxide dismutase $\; ightarrow$	hydrogen peroxide
b.	hydrogen peroxide	$H_2O_2 +$	catalase \rightarrow	water
c.	hydroxyl radical	OH + +	catalase, or $glutathione \ peroxidase \rightarrow$	water

- factors influencing O₂ toxicity,
 - a. increased tolerance with increased levels of,
 - i. SOD
 - ii. catalase
 - iii. glutathione peroxidase
 - pulmonary levels are increased with *endotoxin*
 - may reduce O_2 lung injury in sepsis
 - b. decreased tolerance with,
 - i. nutritional deficiency vit. E, C, selenium, glutathione & SH-compounds
 - ii. hyperthyroidism
 - iii. hypercortisolism
 - iv. drugs / toxins

Pulmonary Oxygen Toxicity

- first described by J.L. Smith in 1899
- difficult to distinguish from the effects of hypoxia in critically ill patients
- CXR changes are non-pathognomonic
- inspired oxygen tension is more important than F_1O_2
- tracheobronchitis & \downarrow VC may occur after 12-24 hours breathing 100% O $_2$ at 1 Atm.
- the pulmonary *endothelial cell* is most sensitive, progressing to

 \rightarrow type I alveolar cells showing damage at \geq 48 hrs

• there is considerable patient variation

• an absolute "safe level" of O_2 has not been established, but $\leq 50\%$ tolerated for prolonged periods

• two phases,

1. *acute exudative phase*

- endothelial oedema, capillary damage & haemorrhage
- cellular infiltrate
- reduced compliance & VC
- ? type I alveolar damage
- 2. *late proliferative*
 - type II alveolar proliferation with type I cell destruction
 - · leukocyte infiltrate, interstitial fibrosis and septal thickening

• pulmonary oxygen toxicity is hastened by,

- 1. higher F_IO_2
- 2. inhalation of CO_2
- 3. radiation
- 4. paraquat, bleomycin
- 5. chemotherapy
- pulmonary oxygen toxicity is delayed by,
 - 1. brief intermittent exposure to $F_1O_2 = 21\%$
 - 2. a high P_{A-aO2} gradient
- secondary cardiovascular changes,
 - 1. \uparrow SVR & PVR
 - 2. \downarrow cardiac output

Pulmonary Changes in Early Oxygen Toxicity

- 1. \downarrow VC *most useful
- 2. \downarrow FRC
- 3. \downarrow compliance
- 4. \downarrow CO-diffusing capacity
- 5. \uparrow respiratory rate

• the following factors are *not altered* in early oxygen toxicity,

- 1. RV
- 2. airways resistance
- 3. P_{A-aO2} gradient

• Complications

- 1. chemical toxicity
- tracheobronchial tree, alveolar & endothelial cells
- pulmonary damage, atelectasis
- hypoxia, acidosis
- 2. retinal damage
- 3. erythrocytic damage, haemolysis
- 4. hepatic effects
- 5. myocardial damage
- 6. endocrine effects
- 7. renal damage
- 8. CNS enzyme / cell toxicity twitching, convulsions, cell necrosis

Organ Systems Susceptible to Oxygen Damage

- a. blood-brain barrier, cognition, neuromuscular function
- b. glomerular function
- c. endocrine function, reproduction
- d. vision, auditory-vestibular function
- e. hepatic function
- f. respiratory function
- g. myocardial function
- h. haemopoietic function
- i. temperature regulation

• Oxygen Limits in Normal Man

- 1. $F_1O_2 \le 55\%$ safe for indefinite periods
- 2. 1 Atm. / 24 hours ~ 10% fall in VC
- 3. \geq 2 Atm. / 24 hours CNS toxicity

• Other Factors: Animal Studies

a. *factors hastening toxicity*

- i. corticosteroids, ACTH
- ii. CO_2
- iii. convulsions
- iv. drugs
- paraquatdextroamphetamine
- adrenaline, noradrenaline, insulin
- v. hyperthermia
- vi. thyroid hormones
- vii. vitamin E deficiency

b. *factors delaying toxicity*

- i. acclimitization to hypoxia
- ii. adrenergic blocking agents, ganglionic blocking agents, reserpine
- iii. antioxidants
- iv. general anaesthesia
- v. chlorpromazine
- vi. GABA, glutathione
- vii. hypothermia, hypothyroidism
- viii. starvation
- ix. vitamin E
- x. immaturity

Oxygen Cost of Breathing

Def'n: normal $\sim 0.5-1.0 \text{ ml.O}_2 / \text{ litre of ventilation}$ $\sim 2-4 \text{ ml.O}_2 / \text{ min}$

• this is increased by,

- 1. exercise
- 2. asthma, CAL
- 3. cardiac failure
- 4. obesity
- *NB*: lung disease (\downarrow compliance / \uparrow resistance) increases both the *baseline* O₂ consumption and the *slope* of the graph

SIMV Work of Breathing

- demand flow SIMV systems $\rightarrow \uparrow VO_2 \sim 6-46\%$ (*mean* ~ 16%)
- factors in this increase are,
 - a. work during IMV
 - b. *triggering* of the demand valve
 - c. circuit/ETT resistance
 - d. isometric contraction prior to reduction of airway pressure
 - e. auto-PEEP
 - f. inefficient action of the diaphragm with *hyperinflation* states
 - g. low *compliance* disease states of the lung
 - h. insufficient *peak flow* rates during inspiration

Hyperbaric Oxygen

Clinical Uses

a. decompression sickness *not really hyperbaric O₂

- b. gas gangrene
- other severe anaerobic infections c.
- severe carbon monoxide poisoning d.
 - i. COHb > 40%
 - ii. associated cardiorespiratory limitation
- e. cerebral air embolism
- f. research
- with DXRT as cancer chemotherapy g.
- h. surgery - to prolong cardiac arrest time - superseded by hypothermia

Dissolved Plasma Oxygen			
sea level	21 %	~ 0.3	ml
sea level	100 %	~ 2.1	ml
2 atm.	100 %	~ 4.2	ml
3 atm.	100 %	~ 6.3	ml (~ total VO_2)
$\alpha_{\rm O2}$ ~ 0.003 ml / 100ml / mmHg			

Other Effects

- hypercarbia a.
 - $P_{vO2} \ge 50 \text{ mmHg} \longrightarrow \sim \text{no CO}_2 \text{ bound to Hb}$
 - \downarrow buffering capacity \rightarrow \uparrow minute ventilation

Haldane effect

- *left* shift of HbO₂ dissociation curve b.

c.	\uparrow work of breathing	- \uparrow gas density
d.	pulmonary vasodilatation	$-\uparrow Q_s/Q_t \propto \text{ loss of HPV}$
e.	systemic vasoconstriction	- ↑ diastolic BP
f.	cerebral vasoconstriction	
g.	\downarrow HR	- reflex baroreceptor
h.	\downarrow cardiac output	? reflex / direct

• Other Effects 100% O₂

a. absorption atelectasis

lungmiddle earpneumothorax

- b. $\uparrow P_{A-aO2}$ gradient
- c. reduces the effect of low V/Q areas but *increased shunt fraction*
- d. $\uparrow O_2$ stores, apnoea time ~ FRC/VO₂
- e. O_2 toxicity

Hazards

- a. fire, explosion
- b. pulmonary O_2 toxicity
- c. cerebral O_2 toxicity convulsions, coma
- d. avascular bone necrosis head of femur
- e. barotrauma middle ear - lung
- f. "bends" if removed rapidly
- g. retrolental fibroplasia
- h. CO_2 narcosis
- CAL - high altitude dwellers
- * loss of hypoxic drive

HYPOXIA			
Cause	P _{aCO2}	δP _{A-aO2}	δP _{aO2} 100%
low F _I O ₂	low	low	large increase
hypoventilation	high	normal	large increase
V/Q mismatch	normal	high	large increase
low D ₀₂	normal	high	increase
$R \rightarrow L$ shunt	normal	very high	small increase

Humidification

• Complications

- 1. bulk, complexity
- 2. condensation
 - "rain-out", drowning
 - \uparrow resistance
 - scalding
 - circuit valve malfunction
 - decrement in filter function
- 3. over-spill of water scalding
 - pulmonary oedema
- 4. bacterial contamination
- 5. high compliance
- 6. high resistance
- 7. overheating
- 8. electrocution
- 9. disconnection sites

Consequences of Dry Gases

- 1. heat loss
- $\leq 1-3^{\circ}$ C/hr
- 2. water loss
 - impaired mucociliary escalator
 - mucociliary damage
 - mucosal desquamation, ulceration
 - drying of secretions, sputum retention
- 3. altered lung mechanics
 - \downarrow FRC
 - \downarrow compliance
 - \uparrow shunt fraction
 - $\downarrow P_{aO2}$
 - bronchoconstriction
- 4. increased incidence of *respiratory infections*

Heat & Moisture Exchangers

Advantages

- a. cheap, simple, lightweight, silent, reliable
- b. disposable, no energy source
- c. bacterial filtration, low dead space & resistance
- d. useful for,
 - i. children and adults
 - ii. transport, retrievals
 - iii. tracheostomy, spontaneous ventilation via ETT

Disadvantages

- a. inefficient with high minute volumes & gas flows
- b. inefficient after 1-2 hours
- c. airways resistance / dead space significant for small children
- d. potential for disconnection or obstruction

INTUBATION

• CVS Response

a.	hypertension		AAP ~ 20-40 y have up to	0 mmHg o 60% ↑ MAP
b.	tachycardia	- 1 H	IR ~ 50%	
с.	arrhythmias			
d.	↑ ICP	- up	to 100%	
e.	\downarrow uterine blood fl	low		
NB:	potential for,			
	 i. myocardial ii. LVF iii. intracranial iv. foetal hypot v. eclampsia 	hypertensio	infarction on / haemorr	hage
• methods	for minimising CV	S changes,		
a.	rapid laryngoscop	by	\leq 45 secs	
b.	avoid vasoconstri	ictors	ketaminecocaineadrenalin	e, POR8
с.	adjuvant dose of	STP		
d.	deep volatile anae	esthesia		
e.	fentanyl	~ 5-10 µg/	kg	5-7 min pre-ETT
f.	lignocaine	~ 1.5-3.0 n	ng/kg	2-3 min pre-ETT
g.	nitroprusside	$\sim 0.5 \ \mu g/k_{z}$	g	30 secs pre-ETT
h.	hydrallazine	~ 5-10 mg		5-10 min pre-ETT
i.	GTN			
	i. paste 5cm (15 mins	
	ii. infusion 0.1iii. IV bolus 50		20 mins 30 secs	
i	α / β -blockade	<i>-25</i> 0 μg		nine 1-5 mg
j.	a / p-blockade		- proprano	U
k.	trimethaphan		- 0.7 mg/kg - then 0.1-0	g bolus 0.4 mg/kg over 10 mins

Indications

- 1. upper airway obstruction
- 2. airway protection
- gastrointestinal contents
- blood or secretions
- 3. application of mechanical ventilation
- 4. inability to clear secretions
- 5. to enable specific therapy
 - i. induced hypocapnia
 - ii. high F_1O_2 / PEEP
 - iii. pulmonary toilet / lavage
 - iv. BAL

• Complications

a.	immediate			
	i.	laryngosco		- trauma
				- aspiration - autonomic reflexes
	••	PTT		
	ii.	ETT		misplacementobstruction / kinking / disconnection
	iii.	cuff		- herniation
				- overinflation
				- perforation, leakage
b.	shor	t-term	(hours-days))
	i.	obstruction	ı ·	- endobronchial misplacement
				- obstruction / kinking
				- overinflation, herniation
	ii.	dislodgeme	ent / disconne	ction
	iii.	colonizatio	n ·	- sinusitis, tracheitis
				- nosocomial pneumonia
	iv.	dry gases		- dehydration
				- hypothermia
				- thickened secretions, inspissation
c.	long	term	(days-weeks	3)
	i.	laryngeal ti	rauma	
	ii.	tracheal tra	uma	
	iii.	infections		- sinusitis, otitis
				- tracheitis, nosocomial pneumonia
				- microaspiration, lung abscess
				- septicaemia

Difficult Intubation

Physiological

- a. short muscular neck
- b. receding mandible
- c. prominent upper teeth
- d. narrow mouth with high arched palate
- e. limited jaw opening
- f. large breasts
- g. anterior larynx
- h. effective mandibular length thyromental distance
- i. receding lower jaw / maxillary protrusion
- j. short occipito-atlantis distance
- k. short C_1 - C_3 distance

Pathological

a.	TM joint disease	- RA - trismus - fracture
b.	limited cervical extension	- trauma, fracture - spondylitis - RA
c.	oropharyngeal masses	- tumours - oedema - abscess, cysts
d.	contractures of face/neck	- burns, scars - tumours
e.	trauma	 mandibular, facial bones cervical spine larynx airway bleeding
f.	congenital	 craniofacial disorders macroglossia, Down's encephalocele cleft palate
g.	endocrine	- obesity - acromegaly - goitre

Assessment of Airway

- 1. *history*
 - i. letters etc. re previous difficult intubation
 - ii. previous anaesthetic records

2. *examination* \rightarrow "MOUTHS"

- i. **M**andible
 - thyromental distance > 6 cm, or > 3 "finger-breadths"
 - alveolar-mental distance < 2 cm
 - "receeding", length
 - subluxation
 - obtuse mandibular angles
- ii. **O**pening
 - incisor gap >4 cm
- iii. Uvula
 - Mallampati grades I-IV as per Samsoon & Young
- iv. Teeth
 - prominent upper incisors, "buck" teeth
 - solitary incisors, "nuisance" teeth
 - loose teeth
 - crowns, caps, plates & dentures

v. Head & Neck

- flexion, extension, lateral flexion & rotation
- tracheal position, neck masses, upper mediastinal masses
- vi. Silhouette
 - obesity
 - Dowager's hump
 - "no neck"
 - craniofacial anomalies

3. investigations

- i. awake laryngoscopy direct or indirect
- ii. fluoroscopy
- iii. XRays (Bellhouse)
 - mediastinal masses & tracheal position / diameter
 - effective mandibular length
 - atlanto-occipital distance & C₁-C₂ interspace
 - anterior-posterior thickness of the tongue
- iv. CT scan
 - tracheal deviation, luminal diameter
 - intrathoracic trachea, mediastinal masses

VENTILATION

• claimed advantages of IMV over CMV,

- a. minimises respiratory alkalosis
- b. minimise sedative/relaxant requirements
- c. lower mean airway pressures
- d. more uniform gas distribution
- e. expedite weaning process
- f. reduce muscle atrophy & dis-coordination
- g. reduce cardiac decompensation with weaning

• possible *disadvantages*,

- a. risk of hypercarbia, cf. with AMV
- b. increased work of breathing
- c. respiratory muscle fatigue
- d. prolonged ventilation if rate reduced too slowly
- e. cardiac decompensation in patients with compromised cardiac function

• Groeger (CCM, 1989), SIMV vs. assist control \rightarrow advantages of SIMV

- 1. lower P_{IP}
- 2. improved CO & MAP
 - DO₂ - LVSWI

3. less alkalosis

NB: SIMV was associated with a *higher* respiratory rate, despite similar minute volumes and oxygen consumption

IPPV and Muscle Relaxants

Short Term

- 1. masking of clinical signs
 - i. level of consciousness
 - ii. epilepsy, neurological change
 - iii. acute abdomen, etc.
- 2. inadequate analgesia and sedation
- 3. impaired secretion clearance loss of cough reflex
- 4. histamine release, anaphylaxis / anaphylactoid reactions
- 5. asphyxia from circuit malfunction

Long Term

- 1. muscle wasting & atrophy
 - \uparrow negative nitrogen balance
 - difficulty in weaning
 - ? myopathy associated with steroid use, especially in status asthmaticus
 - ?? predisposition to CIP, but EMG changes are *dissimilar*

2. DVT & pulmonary emboli - need for prophylaxis/anticoagulation

- 3. pressure sores
- 4. drug metabolite accumulation laudanosine

- M₆G

Advantages

1.	tolerance of mechanical ventilation - particularly PCIRV		- particularly PCIRV
2.	tolerance of hypercarbia		
3.	avoidance of	 breath stacking high peak P_{AW} inadequate ventilatio 	? theoretically may not matter
4.	reduction in VO ₂		
5.	in infants	 improved oxygenatic reduced inspiratory t reduced barotrauma 	
6.	R _x in patients with raised ICP		
7.	less baro/volutrauma		? evidence for this
8.	? neurophysiological studies		

Special Indications

- a. infant respiratory distress syndrome,
 - decreased pneumothorax rate
 - no change in intraventricular haemorrhage rate
 - *no change* in mortality
- b. cerebral disorders
 - less rise in ICP with various stimuli
 - *no change* in ICP rise with *pain*
 - · less sedation required therefore aiding CNS assessment
 - less indication now propofol allows adequate sedation & periodic assessment
 - recent article in ?J.Trauma showing ↑mortality in NMJ paralysis group for management of severe head injury
- c. tetanus
- d. severe acute asthma
- e. severe restrictive respiratory deficits, ARDS
- f. ? cardiogenic shock to reduce VO_2

IPPV Adverse Effects

a.	resp	respiratory		
	i.	barotrauma	 alveolar rupture, PIE pneumomediastinum / pneumothorax 	
		• alveolar overdistensi		
	ii.	surfactant loss / inactiv	vation	
	• \downarrow FRC and encroachment of CC on FRC		ament of CC on FRC	
	iii.	\uparrow lung water \propto	?↓lymphatic drainage ?↑LAP	
		• disproportionate effect on PV & PA pressures $\rightarrow \uparrow \mathbf{P}_{\mathbf{PC}}$		
	iv.	\uparrow V/Q mismatch	- $\uparrow \mathbf{Q}_{s}$, \mathbf{V}_{p} & regional alkalosis - low flow areas & regional ischaemia	
	v.	frequently associated w	y associated with potentially toxic F_IO_2	
b.	cara	cardiovascular		
	i.	RV effects	\downarrow venous return	
↑ PVR & RV afterload				
	↑ RVEDV			
			\downarrow RV perfusion pressure	
	ii.	LV effects	\downarrow LV afterload	
			↓ LVEDV * ventricular interdependence	
	iii.	dual effects	- global cardiac compression	
		dual effects	? \downarrow coronary blood flow (most studies \rightarrow no change)	
	iv.	\downarrow VO ₂		
	v. \downarrow inspiratory muscle blood flow		ood flow	
c.	rend			
c.	i.		ion $\rightarrow \downarrow$ urine output and Na ⁺ excretion	
	ı. ii.	redistribution of intrare		
	ш. ;;;	\uparrow WC & renal vein pre		

iii. \uparrow IVC & renal vein pressure

d. *CNS*

- i. ↑ ICP
 - unpredictable, but clinically insignificant at levels of $PEEP \le 10 \text{ cmH}_2\text{O}$
- ii. \downarrow cerebral blood flow \propto induced hypocapnia

e. hormonal

- i. \uparrow plasma adrenaline and noradrenaline
- ii. \uparrow ADH / \downarrow ANF
- iii. \uparrow renin & aldosterone
- most of these effects are reversed with *volume replacement*

Assessment of Respiratory Function During IPPV

1.	clinical			
	i. signs of hypoxia	- tachycardia, hy	pertension, cyanosis	
	ii. signs of hypercarbia - bounding pulse		e, tachycardia	
2.	<i>shunt fraction</i> - $AaDO_2$, PaO_2 : F_1O_2 radius - shunt equation		atio	
3.	dead space	$\propto P_{aCO2} :: V_{M}$	$\propto P_{aCO2} :: V_{M}$	
4.	lung volumes	* VC \ge 15 ml/kg	* VC \geq 15 ml/kg	
5.	<i>respiratory rate</i> ≤ 30 bpm			
6.	<i>compliance</i> ~ $\delta V_L / (P_{MAW} - [PEEP + autoPEEP])$ ³ 75 ml/cmH ₂ O		P + autoPEEP])	
	<i>intrinsic PEEP</i> prese	nt in most ventilated pat	ients,	
	i. ARDS	$\geq 8 \text{ cmH}_2\text{O}$		
	ii. ARF	~ 4 cm H_2O		
\rightarrow <i>underestimation</i> of compliance by ~ 20-30%				
7.	resistance	~ $(P_{max} - P_{p1})/flow$ ~ 2-6 cmH ₂ O/l/s	\leq 10-15 cmH ₂ O (NMJB/ETT)	
8.	MMV	~ 2 x V _M		
9.	maximal inspiratory of	cclusion pressure	$\mathrm{MIP}_{0.1} \geq -20 \ \mathrm{cmH}_2\mathrm{O}$	
10.	${\rm f}/{\rm V}_{\rm T}{>}100\qquad\rightarrow$	not ready to wean	$(V_{T} in litres)$	

Pressure Support

• optimal pressure support is influenced by,

ventilator factors a.

i. size of ETT

ii.	ventilator circuit	- demand valves
		- tubing resistance / compliance
		\pm humidifier
iii.	ventilation mode	- CMV, IMV, CPAP

- ventilation mode - CMV, IMV, CPAP
- trigger method & sensitivity iv.

patient factors b.

- airways resistance i.
- ii. respiratory compliance
- iii. respiratory rate
- minute volume iv.
- muscle strength v.

CPAP Circuits

Benefits

- a. \uparrow FRC \rightarrow alveolar recruitment
- b. improved V/Q match
- c. improved oxygenation
- d. \downarrow work of breathing
 - i. \uparrow compliance
 - ii. \downarrow inspiratory muscle work
 - iii. \downarrow autoPEEP * some, not all patients
- e. "open lung" theory

• Other Effects

- a. \downarrow LV afterload
- b. \downarrow venous return in CCF, acute LVF
- c. redistribution of lung water out of alveoli
 - however, total lung water *increases*

• Clinical Uses

- 1. low FRC states
 - i. ARDS
 - ii. IRDS
 - iii. acute pulmonary oedema
 - iv. diffuse interstitial lung disease
 - v. pneumonitis
 - vi. bronchiolitis
- 2. high autoPEEP states
 - i. asthma
 - ii. CAL

<u>CPAP</u> Potential Disadvantages

- a. excessive \uparrow FRC
- b. \uparrow work of breathing
- c. \downarrow venous return
- d. patient discomfort
- e. gastric distension / aspiration
- f. skin / nasal bridge necrosis

NB: the work of breathing is proportional to the δP_{AW} , where,

$\mathbf{\Phi}_{AW} \propto \text{resistance \& reactance}$

resistance = pressure / flow reactance = (inertia x acceleration) - (volume / compliance)

• therefore, the work of breathing through a CPAP circuit is affected by,

1.	flow	< PIFR	$\rightarrow \uparrow W_{_{\mathrm{BR}}}$
		> PIFR	$\rightarrow \uparrow$ turbulence

- 2. ↑ resistance narrow tubing
 demand valves
 flow resistors
- 3. gas inertia & circuit geometry
- 4. gas acceleration
- 5. bag compliance

Inverse I:E Ratio

- claimed advantages,
 - a. adequate ventilation without high peak inspiratory pressures
 - b. less barotrauma
 - not substantiated in RCTs where *mean* P_{AW} has been equal
 - c. use of a lower F_1O_2

NB: assumption, peak $P_{AW} > 60 \text{ cmH}_2\text{O}$ and a $F_1\text{O}_2 > 0.6$, → probably cause damage unless very brief

• Lachmann, *lung lesion index*,

LLI = $P_{aO2} / (F_IO_2 \times P_{AW})$

£4 suggests high probability of lung damage

- main aims of ventilation during ARDS are,
 - a. restoration/maintenance of FRC
 - b. maximise *recruitment* of functional gas exchange units
 - c. minimise *barotrauma*

• the respiratory pressure/volume curve changes throughout the disease process, therefore one ventilator setting may not be the best

- the justifications for reversing the I:E ratio include,
 - a. overcome the critical opening pressure during inspiration
 - b. sustain opening pressure
 - c. expiratory time short enough to prevent closure of lung units

• additional PEEP is usually required but is low, $\sim 4-8 \text{ cmH}_2\text{O}$

NB: the *autoPEEP* produced may be profound, ~ 8-16 cmH₂O

• Lessard *et al.* (Anaesthesiology 1994) review of PCIRV versus conventional ventilation, controlling for mean airway pressures & PEEP, showed *no advantage* for the former with respect to,

- 1. oxygenation
- 2. barotrauma

Positive End-Expiratory Pressure

NB: the important therapeutic change is an *increase in FRC*

Possible Beneficial Effects

NB: dependent upon the level of PEEP

- a. respiratory
 - \uparrow transpulmonary pressure \rightarrow \uparrow end-expiratory lung volume / FRC
 - \uparrow lung compliance
 - $\downarrow V/Q$ mismatch / \downarrow shunt $\rightarrow \uparrow P_{aO2}/C_{aO2}$??DO₂
 - conflicting information on V_D/V_T
 - reduced *apnoeic periods* in infants and sleep apnoea patients
- b. CVS
 - \uparrow stroke volume / \downarrow LVESV
 - ?? reversal of LVF

Adverse Effects

NB: especially if excessive PEEP

- a. respiratory
 - adverse redistribution of blood flow \rightarrow diseased lung
 - \rightarrow \uparrow V/Q mismatch / \uparrow shunt

- \downarrow lung compliance
- \uparrow in total lung water
- barotrauma, alveolar rupture/pneumothorax
- inactivation of surfactant
- b. CVS
 - ↑ pulmonary capillary pressure
 - $P_C = LAP + 0.4(P_{mPA} LAP)$
 - PEEP increases LAP & P_{mPA}
 - P_{C} increases ~ 0.5 x PEEP, assuming $C_{L} \sim C_{CW}$
 - \uparrow RV afterload
 - \downarrow cardiac output / \downarrow venous return
 - ventricular interdependence
 - humoral factors $\rightarrow \downarrow ANF / \uparrow ADH$
 - global cardiac compression
 - ? decreased coronary blood flow disproved in most studies

- c. renal
 - \downarrow urine output / Na⁺ excretion
 - \uparrow ADH, \downarrow ANP
 - \uparrow IVC, renal vein pressure
 - redistribution of intrarenal blood flow
- d. CNS
 - \uparrow ICP unpredictable
 - ? decrease in CBF
- e. hormonal
 - \uparrow adrenaline, noradrenaline ~ 3x after 5 min of 20 cmH₂O
 - \uparrow renin, aldosterone
 - \uparrow ADH (conflicting data)
 - \downarrow ANP
- NB: most of these effects are *reversible* with volume replacement

Optimal PEEP

Def'n: "that level of PEEP which provides the maximal increase in O_2 -flux "

first coined by Suter et al., NEJM 1975

• schools of thought actually vary as to the *end-point*,

1.	Suter (NEJM, 1975)	 maximum DO₂ also happened to equate with best compliance * however, this was not substantiated by later studies
2.	Gallager, Civetta (CCM, 1978)	 pulmonary shunt fraction ≤ 15% used fluid loading and inotropes to maintain cardiac output PEEP required ranged from 15-65 cmH₂O !!!
3.	Carroll [§] (Chest, 1988)	 minimal PEEP with P_{aO2} > 60mmHg / F₁O₂ ≤ 0.5 aimed at avoidance of hypoxia and barotrauma claimed "maximal" PEEP of no benefit and increases the risk of barotrauma

4. other terms

i. *best PEEP*

- ii. *minimal effective PEEP*[§]
- *NB*: 1. practically, where $PEEP \le 10 \text{ cmH}_2\text{O}$, most patients benefit in terms of FRC and P_{aO2} without significant adverse effects
 - 2. adverse effects are minimal if the patient has an adequate BP, peripheral perfusion and renal output (UO, Cr/Ur)
 - 3. where $PEEP > 10cmH_2O$, or the patient is critically-ill (sepsis, MODS, multiple trauma), O_2 flux and haemodynamic variables should be calculated to optimise PEEP

Consensus Statement ICM 1994

• beneficial effects of PEEP,

- 1. lung recruitment
- 2. elevation of P_{mAW}
- 3. improved oxygenation
- NB: assessment of "best" level of PEEP depends upon physiological response desired;

"most agree that in ARDS the *lower limit* should be set at, or slightly above the *inflexion point* of the pressure-volume curve"

AutoPEEP

• causes of *dynamic hyperinflation*,

1. \uparrow airways resistance	- bronchospasm, asthma, CAL
----------------------------------	-----------------------------

- bronchomalacia
- dynamic airways collapse
- foreign body
- 2. tachypnoea
- 3. inspiratory muscle activity during expiration (asthma)
- 4. glottic closure during expiration
- 5. mechanical ventilation
- 6. resistance of ETT, circuit

• present in most ventilated patients \rightarrow underest	timates of compliance by 20-30%
--	---------------------------------

- a. ARDS ~ 8 cmH₂O (AB says virtually zero in ARDS patients)
- b. ARF ~ $4 \text{ cmH}_2\text{O}$

• static autoPEEP monitored by measurement of airways pressure after end-expiratory occlusion

• *dynamic autoPEEP* monitored by oesophageal balloon or intrapleural catheter & δP_{IP} prior to the onset of gas flow

dynamic autoPEEP generally 2-3 cmH₂O < static, and thought to be more clinically relevant
 effects of end-expiratory occlusion,

- a. dynamic hyperinflation
- b. decrease compliance & under-estimation of static compliance by ~ 50%,

Compliance = $\delta V_L/[P_2 - (PEEP + autoPEEP)]$ ~ $\delta V_L/P_{AW}$ ~ 75 ml/cmH₂O (N)

- c. \uparrow work of breathing
- d. barotrauma
- e. CVS and renal effects of conventional PEEP

■ <u>Treatment</u>

- 1. treat bronchospasm & clear secretions
- 2. \downarrow I:E ratio \rightarrow long expiratory times
- 3. \downarrow circuit resistance
- 4. CPAP maintain airways open
 - \downarrow inspiratory activity & \downarrow inspiratory threshold load
 - \downarrow LV afterload
 - facilitate weaning

High Frequency Ventilation

IPPV	< 60	bpm	< 1.0 Hz
HFPPV	60 - 110	bpm	1.0 - 1.8 Hz
HFJV	110 - 400	bpm	1.8 - 6.7 Hz
HFO	400 - 2400	bpm	6.7 - 40 Hz

Advantages

- a. less movement of the operating field
- b. adequate $O_2 \& CO_2$ exchange
- c. adequate gas exchange where IPPV complicated or impossible,
 - i. bronchopleural fistula
 - ii. communicating lung cyst
 - iii. tracheal surgery
- d. lower peak airway pressures
 - i. less barotrauma
 - ii. *no studies* showing more beneficial than IPPV/PEEP in ARDS
- e. surfactant not damaged
- f. less effect upon cardiac function
- g. volume and ? clearance of secretions increased

Disadvantages

- a. requires expensive equipment and trained personnel
- b. the increased volume of *secretions* may be detrimental
- c. *humidification* difficult
- d. CO₂ exchange dependent upon resistance to mass flow and diffusion,
 - \rightarrow limited at high frequencies, ? > 20Hz
- e. **O**₂ *exchange* proportional to mean lung volume, ie. maintenance of FRC important
 - \rightarrow *mean* intrathoracic pressure similar to IPPV/PEEP
- f. resonant frequency may be reached in some alveoli,
 - \rightarrow ? resulting in increased barotrauma
- *NB*: high frequency ventilation appears very effective at removal of CO₂ over a wide range of frequencies, however *oxygenation* appears more dependent upon lung volume and therefore mean airway pressure

Mechanisms of Gas Movement

- 1. convection simple in large airways
 - complex at bifurcations & in expiration
- 2. diffusion
- 3. pendelluft

Extracorporeal Membrane Oxygenation ECMO

- the overall average mortality from ARDS ~ 50-70%
- hypoxia is rarely the cause, usually due to MODS or septicaemia
- this implies that current ventilation modes either,
 - 1. are adequate and other factors need to be addressed
 - 2. prevent more rapid lung recovery and allowing more time for extrapulmonary complications to develop
- in ARDS to main problem is hypoxia due to increased shunting
- the small areas of near normal lung have to do the "work" of the whole lung

• this requires the rapy with a high F_1O_2 , high PEEP, and high P_{1P} , with their introgenic complications

• Extracorporeal Lung Assist (ECLA) Terminology

- a. ECMO
- b. EC-CO₂-R
- c. $PE-CO_2-R$

• it is necessary to define,

- 1. the type of bypass VV probably better than AV
- 2. bypass flow:CO ratio \sim 20-30% of CO adequate for EC-CO₂-R
- 3. lung ventilatory mode
- clinical studies of EC-CO₂-R include a total of 115 patients in 8 trials
- there were a total of 57, ~ 50% survivors
- improvement was usually rapid, within the first 48 hours
- the average duration of the rapy was $\sim 7~{\rm days}$
- when conventional ventilation \rightarrow total static lung compliance £25 ml/cmH₂O
 - \rightarrow survival ~ 0
- this may improve to ~ 50% with EC-CO₂-R
- subsequent studies have shown no improvement in survival cf. conventional ventilation

• Complications of ECMO

- 1. anti-coagulation and bleeding $\sim 1000 \text{ ml/d}$
- 2. complement activation
- 3. cost manpower & equipment

Potential Advantages

- a. avoids lung hypoxia, maintains a high lung O₂ supply
 b. avoids high airway pressures ↓ barotrauma
 ↓ surfactant loss
 c. reduction in PA pressure ↓ HPV
 d. correction of V/Q ratios all areas equally oxygenated
 avoids regional alkalosis
- e. ? anticoagulation reduction of intrapulmonary thrombosis
- f. ? reduced incidence of septicaemia

TRACHEOSTOMY

Indications

- 1. prolonged intubation > 7-10 days
 - > 2-3/24 in professional singer
- 2. early for condition where extended airway management highly likely
- 3. upper airway obstruction
 - i. failed intubation
 - ii. elective for threatened impossible intubation
 - iii. transport of critically ill patient
 - iv. postsurgical where re-intubation is likely impossible
 - · laryngectomy, radical neck procedures
 - maxillofacial procedures with jaw wiring
 - v. traumatic upper airway disruption
 - laryngeal fracture, tracheal disruption

Advantages

- 1. reduced dead space
- 2. improved patient tolerance \rightarrow less sedation required
- 3. removal of secretions
- 4. reduced incidence of laryngeal injury

• Complications

- 1. procedural haemorrhage
 - misplacement
 - hypoxia
 - pneumothorax / pneumomediastinum
- 2. decannulation, disconnection
- 3. colonization, infection
- 4. with tube cuff herniation
 - obstruction
 - displacement
- 5. long term ulceration, erosion
 - fistula
 - tracheomalacia
 - granulomata, stenosis
 - haemorrhage

Clinical Studies

- <u>El Naggar</u> 1976
- 56 patients with an early tracheostomy (day 3)
- showed an increase in *colonisation* rate but no increase in infections
- increased frequency of airway lesions but all resolved in time
- · laryngeal trauma from ETT was progressive after day 11
 - \rightarrow therefore recommended tracheostomy at *day 10*

■ *Stauffer* 1981

- large study with 150 patients suggested ETT safer than tracheostomy $\leq 3/52$
- · however, a non-randomised study with bias, as the tracheostomy group,
 - a. were sicker
 - b. were intubated longer
 - c. tracheostomised later
 - d. different surgeons
 - e. high complication rate
 - i.infection36%ii.haemorrhage36%iii.wrong incision8% !!
 - iv. cardiac arrest 4%
 - f. stenosis criterion was too strict, only 10% narrowing, therefore,
 - i. tracheostomy group $\sim 65\%$
 - ii. ETT group $\sim 20\%$
- Dunham 1984
- total of 74 trauma patients managed with either,
 - a. ETT for 14 days, or
 - b. tracheostomised on day 3
 - \rightarrow *no difference* in laryngotracheal trauma, sepsis, or morbidity

■ Whited 1984

- total of 200 patients with ETT,
 - a. duration < 5 days $\sim 6\%$ transient injury
 - 6-10 days ~ 5% reversible laryngeal stenosis
 - c. > 11 days ~ 12% extensive laryngeal stenosis
- conclusions,

b.

- 1. tracheostomy has many potential therapeutic advantages
- 2. laryngeal injury after 6-10 days becomes significant
- 3. tracheal stenosis is more easily treated than laryngeal stenosis
- 4. the high incidence of infectious and laryngeal complications in part relates to the preceding prolonged ETT
- 5. maintain on ETT for 7-10 days then tracheostomy if not contraindicated

■ <u>Berlauk 1986</u>

- factors affecting laryngotracheal injury,
 - 1. duration of intubation
 - 2. cuff shape and pressure
 - 3. tissue compatibility of tube & cuff
- areas of damage from ETT,
 - 1. posteromedial portion of true cords
 - 2. posteromedial surface of the arytenoid cartilages
 - 3. posterolateral surface of cricoid cartilage
 - 4. mucosa of $4-7^{\text{th}}$ tracheal cartilages
 - 5. anterior wall of the trachea
- pathology of injury,
 - a. ulceration, perforation
 - b. ischaemia necrosis
 - c. mucosal hypertrophy & granuloma formation
 - d. adhesions, fibrosis, stenosis

■ *Kopp* 1987

- intubation injuries related to,
 - 1. duration
 - 2. hypotension
 - 3. severity of underlying disease
- no correlation found with hypoxia or steroids
- complications and overall incidence,

0	glottic oedema	- 100%
a.	giottic oedenia	- 100%
b.	glottic granuloma	- 96%
c.	superficial ulceration of the arytenoids	- 81%
d.	mucosal ulceration of the cricoid	- 75%
e.	dilatation of the posterior commissure	- 60%
f.	deep mucosal ulceration of the arytenoids	- 37%
g.	cartilage ulceration of the arytenoids	- 24%
h.	cartilage ulceration of the cricoid	- 12%
i.	glottic maceration	- 6%
j.	glottic synechia	- 3%
k.	fracture of the arytenoids	- 3%

- higher incidence than previous studies
- severity of injury increased significantly after day 3
 - *NB:* concluded, "conversion to tracheostomy should be considered between day 4 & 7 of intubation"

• incidence of *hoarse voice*,

a.	on extubation	~ 100%
b.	at 1 week	~ 45%
c.	at 1 month	~ 16%
d.	permanent	~ 1.5%

• Tracheostomy: Haemorrhage

- tracheo-arterial fistula usually involves the,
 - a. *innominate artery* ~ 70%
 - b. common carotid artery $\sim 4\%$

• most common site is at the cuff, :: may be decreased by high volume/low pressure cuffs

• fistulas related to the stoma are more common if performed below the 4 th tracheal cartilage

· not yet reported as a complication of percutaneous tracheostomy

• overinflation of the balloon will tamponade bleeding in 80% of cases, ... first step

Stenosis Summary

a.	tracheostomy			
	i.	strict criteria	~ 98%	
	ii.	\geq 30% stenosis	~ 36%	("30% in 30%")
	iii.	\geq 70% stenosis	~ 11%	(symptomatic)
b.	ETT	\geq 3 weeks	~ 19% ≤ 0.5%	symptomatic

NB: but: less tracheal, more laryngeal injury, which is more difficult to treat

■ Jones et al. Ann-Surg. 1989

• 5-year burn center experience with tracheostomies \rightarrow 99 tracheostomies (n=3246)

• indications of prolonged respiratory failure or acute loss of airway

• sputum *colonization* was universal, however rates of *pulmonary sepsis* & *mortality* were *not* significantly increased

• 28 patients developed late upper airway sequelae,

- a. tracheal stenosis TS
- b. tracheoesophageal fistula TEF
- c. tracheoarterial fistula TAF

• duration of intubation correlated only with development of TAF

• TEF patients were significantly older and more likely to have evidence of tracheal necrosis at the time of tracheostomy

• the pathogenesis of upper airway sequelae in these patients

- \rightarrow divergent responses to inhalation injury, infection, and intubation
- *NB*: use of tracheostomies in burned patients with inhalation injuries is now reserved for *specific indications*, rather than as prophylactic airway management

Mortality

- a. tracheostomy
 - i. elective ~ 0.4-3%
 - ii. emergency ~ 6-15%
- b. ETT > 3 weeks < 1%

Tube Characteristics			
Туре	Red Rubber	PVC, Silastic	
Tracheal Loading Force ¹	1000 g	200-500 g 100-250 g after 24 hrs (moulding)	
Cuff Pressure	~ 120 mmHg	$\leq 20 \text{ cmH}_2\text{O}$	
¹ force exerted in deformation of the tube to the anatomy of the upper airway			

PULMONARY BAROTRAUMA

Def'n: the side effects of high airway pressures during IPPV

 \rightarrow air outside the alveolar space

now probably inappropriate, trend toward "volutrauma"

• traditional risk factors during IPPV,

- 1. large tidal volume
- 2. high mean and peak inspiratory pressures $> 50 \text{ cmH}_2\text{O}$
- 3. high levels of PEEP
- 4. volume cycled ventilators
- 5. short expiratory time especially with increased resistance
- 6. low lung compliance *CAL, ARDS, ?asthma

Clinical Features

- a. interstitial emphysema
 - small parenchymal cysts
 - linear air streaks radiating toward the hilum
 - perivascular haloes
 - intraseptal air
 - pneumatoceles
 - subpleural air
- b. pneumothorax
 - i. simple
 - ii. loculated anterior, subpulmonic
 - iii. tension
- c. mediastinal emphysema
- d. subcutaneous emphysema
- e. pneumatoperitoneum
- f. deterioration in lung function 2° surfactant inhibition

Peak Airways Pressure and Ventilator Associated Lung Injury

Manning Chest 1994

- 2 forms of VALI,
 - 1. barotrauma
 - i. pulmonary interstitial emphysema
 - ii. pneumothroax
 - iii. pneumomediastinum
 - iv. subcutaneous emphysema
 - 2. acute lung injury
 - · less well described, acute injury associated with IPPV
 - *NB*: growing evidence that *lung volume*, or more accurately *lung overdistension*, is the primary determinant of VALI

Airway Pressure vs Lung Volume

- P_{aw} usually measured as ventilator generated pressure
- pressure acting to distend alveoli \rightarrow *transmural pressure* $P_{alv} P_{pl}$
- therefore, 2 factors influence difference between P_{aw} and P_{tm} ,
 - 1. non-zeroflow states $\rightarrow \delta(P_{aw} P_{alv}) \propto Q.R_{aw}$
 - 2. alteration of P_{pl} with P_{aw} / lung volume
 - i. pulmonary compliance
 - ii. inspiratory / expiratory muscle activity
 - iii. thoracic cage / abdominal compliance

Barotrauma

- multiple studies document correlation between peak $\boldsymbol{P}_{\!\scriptscriptstyle a\!w}$ and barotrauma

• Petersen & Baier, CCM 1983, prospective study of 171 patients,

1.	$P_{\rm pAW} \ > 70$	\rightarrow	10/23	43%
2.	$P_{pAW} \sim 60-70$	\rightarrow	4/53	8%
3.	$P_{\rm pAW} < 60$	\rightarrow	0/95	0%

• however, conclusion that P_{pAW} causes barotrauma is tenuous,

- 1. correlation of P_{pAW} & barotrauma not always this strong
 - Leatherman, ARRD '89, 42 asthmatic patients, no barotrauma despite,
 - P_{pAW}'s as high as **110 cmH₂O**
 - mean $P_{AW} \sim 68 \text{ cmH}_2\text{O}$
- 2. barotrauma well documented at low levels of P_{pAW}
 - Rohlfing, Rad. '76, 6/38 patients with BT had $P_{DAW} < 25$
- 3. ventilatory methods aimed at reducing P_{pAW} of little benefit
 - Mathru, CCM '83, CMV vs IMV
 - \rightarrow lower incidence with IMV despite higher P_{pAW}
 - Clevenger, Arc. Surg. '90, converted IPPV to HFJV for "Salvage"
 - $\rightarrow \quad \downarrow \text{ mean P}_{AW} \text{ from 92 to 41 cmH}_2\text{O},$
 - \uparrow BT from 0/15 to 7/15 within 21 hrs of conversion
 - Tharratt, Chest '88, converted 31 pts with ARDS to PCIRV
 - $\Rightarrow \quad \downarrow \text{ mean } P_{AW} \text{ by } 20 \text{ cmH}_2\text{O}, \\ \uparrow \text{ BT from } 0/31 \text{ to } 8/31$
- 4. incidence of BT also associated with V_{I}
 - Bone, ARRD '75 / '76, 2 studies looking at BT and V $_{\rm T}$ in ARDS
 - i. 50 patients \rightarrow mean V_T ~ 22 ml/kg with BT (40%) mean V_T ~ 17 ml/kg without BT ii. 106 pts \rightarrow mean V_T ~ 11 ml/kg with BT (3.8%)
- 5. "large increases in P_{pAW} are often associated with large increases in V_L , but in most studies to date, no assessment of V_L changes was made which would allow one to distinguish between the effects of high P_{pAW} and those of lung overdistension", *Manning*
 - Williams, ARRD '92, prospective study
 22 asthmatics → risk factors for BT & CVS instability,
 "only variable predictive of BT was *end-inspiratory lung volume*, a measure of dynamic pulmonary hyperinflation"
 - two animal studies looking at BT with / without thoracoabdominal binding :

 $unbound \ group \rightarrow$ lower mean tracheal pressure higher incidence of BT

Acute Lung Injury

studies looking at ventilator induced ALI limited to animals (obviously)
various study end-points,

- 1. macroscopic lung appearance
- 2. histologic lung appearance
- 3. alveolar permeability
- 4. microvascular permeability
- *NB*: studies separating P_{pAW} and V_L , ie bound versus unbound animals, support the concept that V_L and *not* P_{pAW} is associated with ALI

Patient Management

• Low Thoraco-Abdominal Compliance

+ P_{pl} should increase in proportion to mean P_{AW} , \ minimal increased risk of BT

• however, situations of predominately thoracic or abdominal compliance changes may result in *regional overdistension*

• High Airways Resistance

- potential problem, as $P_{_{\rm pAW}}$ may not correlate with hyperinflation

• Tuxen & Lane, ARRD '87, in severe asthmatics requiring mechanical ventilation,

- 1. $\downarrow V_{T} \rightarrow \downarrow both P_{pAW}$ and hyperinflation
- 2. \downarrow PIFR (V_T const) $\rightarrow \downarrow P_{pAW}$ but \uparrow hyperinflation
- *NB*: "management should focus on providing the minimum V_T and V_M consistent with acceptable (but not necessarily normal) gas exchange, and on using a sufficiently *high inspiratory flow rate* to allow adequate time for exhalation"

• ARDS

• Maunder, JAMA '86, ARDS affects the lung in a "patchy" fashion,

 \rightarrow areas of diseased and areas of *near-normal* lung

• thus, V_T will tend to be preferentially distributed to the areas of "normal" lung

• no specific ventilatory guidelines to ensure the absence of regional hyperinflation

• on the basis that static *transpulmonary pressure* ~ 35-40 cmH₂O inflates normal lung to VC,

suggested peak $\mathbf{P}_{alv} < 35-40 \text{ cmH}_2\text{O}$

however,

- 1. Marini, CCM '92 $\rightarrow P_{pAW}$ may not correlate with peak P_{alv}
- 2. Egan, J.App.Phys \rightarrow "normal" P_{pAW} tolerated by whole lung inflation may result in BT with regional inflation

- theoretical approach would be to scale V_{T} in proportion to lung compliance

- 1. \downarrow normal lung $\rightarrow \downarrow$ compliance $\rightarrow \downarrow V_{T}$ requirement
- 2. monitor P_{plat} & adjust V_T , but ?? at what level

Questions

- 1. what influence does PIFR, or more accurately $dV_L dt$, have upon BT?
- 2. is patient-ventilator asynchrony a risk factor for BT?
- 3. what are the relative roles of mean versus peak $V_{\rm L}$ on VALI?
- 4. what is the best approach for ventilation of ARDS patients?
- 5. is there a difference between PCV and SIMV, providing both focus on avoidance of lung overdistension, with respect to VALI?
- 6. does repetitive opening/closing of units result in higher BT?
 - ie. should we ensure V_{T} occurs above inflexion point

Amato, Et Al AJRCCM 1995

• overdistention and cyclic reopening of collapsed alveoli implicated in the lung damage found in animals submitted to artificial ventilation

• 28 patients with early ARDS were randomly assigned to

1.	new approach (15)	- end-expiratory pressures > lower inflection point of the PV curve - $V_T < 6 \text{ ml/kg}, P_{pAW} < 40 \text{ cm H}_2\text{O}$, permissive hypercapnia
2.	conventional (13)	- volume-cycled ventilation, $V_T \sim 12 \text{ ml/kg}$ - minimum PEEP guided by F_1O_2 and hemodynamics - 'normal' PaCO2 levels

• NA exhibiting better,

- 1. evolution of the PaO₂/ F_1O_2 ratio (p < 0.0001)
- 2. compliance (p = 0.0018)
- 3. shorter periods under $F_1O_2 > 50\%$ (p = 0.001)
- 4. lower F_1O_2 at the day of death (p = 0.0002)

NB: but *no significant* improvement in survival (5/15 vs 7/13, p = 0.45)

concluded that "the NA ventilatory strategy can markedly improve the lung function in patients with ARDS, increasing the chances of early weaning and lung recovery during mechanical ventilation"

ACUTE RESPIRATORY DISTRESS SYNDROME

Definition

• Ashbaugh *et al.* (Lancet 1967) described a condition in adults which was similar to the respiratory distress syndrome of infants (1 of the 12 patients was 11 yrs old)

• the term ARDS was coined by Petty & Ashbaugh in 1971

• previously no agreed diagnostic criteria, therefore difficulty in comparing studies of incidence, mortality and treatment efficacy

- actually represents a subset of *acute lung injury*
- the essential features include,
 - a. *acute* respiratory failure, usually requiring mechanical ventilation
 - b. *severe hypoxaemia* with a high P_{A-aO2} gradient
 - c. *bilateral* diffuse infiltration on CXR
 - d. stiff lungs with $C_T \le 50 \text{ ml/cmH}_2\text{O}$
 - e. pulmonary oedema should *not* be cardiogenic in origin, the PAOP should not be elevated, definitions $PAOP \le 12-18 \text{ mmHg}$
 - f. presence of a known *predisposing condition* sepsis, trauma aspiration
 - *NB*: Lloyd, Newman and Brigham (1984) objected to this as it precluded the diagnosis in patients with pre-existing conditions which raised LAP

American-European Consensus Conference

Def'n: acute lung injury is a *syndrome* of inflammation and increased permeability that is associated with a constellation of clinical, radiologic, and physiologic abnormalities that cannot be explained by, but may coexist with, left atrial or pulmonary capillary hypertension:

1	•	timing	\rightarrow	acute onset
2	2.	oxygenation	\rightarrow	$PaO_2 / F_IO_2 \leq 300 \text{ mmHg}$
				<i>irrespective</i> of PEEP
3	3.	CXR	\rightarrow	bilateral infiltrates on frontal CXR
4	ŀ.	PAOP	\rightarrow	£ 18 mmHg

- *Def'n: acute respiratory distress syndrome*, is a subset of ALI, meeting the above criteria, where,
 - 1. oxygenation \rightarrow PaO₂ / F₁O₂ \leq 200 mmHg
- *NB*: ALI/ARDS are a *continuum* and are not specific disease entities, therefore, any cut-off limit for definition purposes is strictly *arbitrary*

• studies of ARDS subgroups show that of those with PaO $_2/F_1O_2 \le 200$, **98%** progress within 1 to 7 days to a ratio < 150 mmHg

• thus, the higher figure allows earlier 'diagnosis' for study purposes, however care must be taken to exclude other causes

• mechanical ventilation was *not* considered a requirement for definition, as when this is instituted is very institution/clinician dependent

• chronic lung diseases such as interstitial pulmonary fibrosis, sarcoidosis etc. would meet the criteria except for *chronicity*, and are thus excluded from the diagnosis

• CXR infiltrates should be *bilateral*, consistent with pulmonary oedema and importantly may sometimes be very mild

• PAOP measurement is not considered essential for diagnosis, but is clearly useful

• diffuse pulmonary *infection*, if meeting the above criterea, *is* included in the diagnosis

• however, this was not agreed upon by all members at the consensus

Diagnostic Criteria Petty

NB: included for historical comparison

1.	clinical setting				
	i.	catastrophic event -	pulmonary or non-pulmonary		
	ii.		chronic respiratory disease LV dysfunction		
	iii.	1 2	RR > 20 bpm laboured breathing		
2. CXR * c		* diffu	se / bilateral pulmonary infiltrates		
	i.	interstitial - early			
	ii.	alveolar - late			
3.	physiology				
	i.	$P_{aO2} \leq 50 \text{ mmHg}$	* with a $F_1O_2 \ge 0.6$		
	ii.	$C_{T} \leq 50 \text{ ml/cmH}_2\text{O}$	* usually ~ 20-30 ml/cmH ₂ O		
	iii.	Q_s/Q_T increased [§]			
	iv.	V_D/V_T increased§	§ increased V/Q anomaly		
4.	patho	ology			
	i.	heavy lungs -	usually $\geq 1000 \text{ g}$		
	ii.	congestive atelectasis			

iii. hyaline membranes & fibrosis

Murray ARRD 1988

Lung Injury Score			
• CXR Score:	alveolar	none	0
	consolidation	1 quadrant	1
		2 quadrants	2
		3 quadrants	3
		4 quadrants	4
• Hypoxaemia Score:	PaO ₂ /F ₁ O ₂	≥ 300	0
		225-299	1
		175-224	2
		100-174	3
		< 100	4
• PEEP Score:	PEEP	≤ 5 cmH ₂ O	0
		$6-8 \text{ cmH}_2\text{O}$	1
		9-11 cmH ₂ O	2
		12-14 cmH ₂ O	3
		$\geq 15 \text{ cmH}_2\text{O}$	4
Compliance Score:	C _{RS}	$\geq 80 \text{ ml/cmH}_2\text{O}$	0
		60-79 ml/cmH ₂ O	1
		40-59 ml/cmH ₂ O	2
		$20-39 \text{ ml/cmH}_2\text{O}$	3
		$\leq 19 \text{ ml/cmH}_2\text{O}$	4
No Lung Injury ¹			0
Mild to Moderate Lung Injury			0.1-2.5
Severe Lung Injury (ARDS) > 2.5			
Final Score = aggregate sum / number of components used			

Pathophysiology

• useful to consider 2 distinct pathways,

- 1. *direct* insult to lung cells
- 2. *indirect* effects of systemic inflammatory response
- despite effort, no consensus could be reached on the order of events leading to ALI
- many believe the pathogenesis is different for various precipitating causes
 - *NB*: "current knowledge is neither sufficient to allow an intelligent conclusion about the precise **sequence** of events, nor sufficient to allow determination of which of these putative mechanisms are more **important**" Consensus Report, ICM 1994

Risk Factors

Direct injury ¹	Indirect injury
 apiration syndromes acid aspiration gastric aspiration near-drowning infections bacterial, viral, PCP pulmonary contusion embolic syndromes amniotic fluid fat rarely air radiation pneumonitis drug toxicity bleomycin, salicylates, opioids paraquat, O₂ toxic gas / vapour inhalation NO₂, NH₃, SO₂, Cl₂ industrial solvents 	 severe SIRS / sepsis major non-thoracic trauma ISS, APACHE II, TISS clinical description shock / prolonged hypotension

modified from Nunn 3rd Ed., LIGW & Consensus Report, ICM 1994

• Pepe's group found the highest single risk factor was *sepsis syndrome*, with 38% of patients in this group developing ARDS

- 1. risk factor \rightarrow ~ 25%
- 2. risk factors $\rightarrow ~ \sim 42\%$
- 3. risk factors $\rightarrow ~ 85\%$ risk of developing ARDS

• Fowler's group found the highest incidence in *aspiration* (35.6%) followed by DIC (22.2%) and pneumonia (11.9%)

• the *major* predisposing factors are now agreed to be,

- 1. severe sepsis particularly gram (-)'ve
- 2. aspiration of gastric contents
- 3. multiple trauma particularly with pulmonary contusion
- 4. massive transfusion
- 5. DIC
- *NB*: ICM 1994, highest incidence appears to be *septic shock* ~ 25-42%

• it is extremely difficult, if not impossible to separate the toxic effects of a high F_1O_2 from the pathological conditions requiring their use

• however, it is *unlikely* that O₂ plays a significant role in pathogenesis

• there is considerable difference in the reported incidence, probably reflecting the different diagnostic criteria in different studies

- T.Oh: the true incidence is unknown and may only be ~ 7% of "at risk" patients
- there is, however, good agreement on the overall *mortality*, which is as high as 50%
- this tends to be higher in cases which follow septicaemia, being reported as
 - a. Fein *et al.* (1983) ~ 81%
 - b. Fowler *et al.* (1983) ~ 78%

• multiple papers stating that mortality has remained relatively unchanged over the last 20 yrs

• Milberg et al. JAMA 1995

• 918 patients in 5 ICU's between 1983-1993, over 18 years age

- 1. outcome measure \rightarrow 30 day hospital mortality
- 2. major causes
 - i. *sepsis syndrome* ~ 37% ii. trauma ~ 25%
- 3. crude mortality rates, adjusted for age, ARDS risk, sex were *unchanged*
- 4. however, significant decrease in mortality in,
 - i. sepsis related ARDS $*67\% \rightarrow 40\%$
 - ii. patients < 60 years of age

Infiltrative Phase

- earliest histological lesion is interstitial & alveolar *oedema* ~ 24-96 hrs post-injury
- this is characterized by damage to the integrity of the blood-gas barrier,
- both endothelial cells and alveolar type I cells \rightarrow *not visible* by light microscopy

• EM shows extensive damage to *type I alveolar epithelial cells*, which may be totally destroyed

• the BM is usually preserved and the epithelial cells form a continuous layer, with cell junctions seemingly intact

• endothelial permeability is nevertheless increased

• interstitial oedema is found predominantly on the "service" side of the capillary, sparing the "active" side

• this pattern is similar to that observed with cardiogenic oedema

- pulmonary *lymph drainage* is capable of increasing ~ 8x without formation of oedema
- protein containing fluid leaks into the alveoli, together with rbc's and leukocytes bound in an amorphous material containing fibrous strands \rightarrow triggers replication of *alveolar type II cells*

• this exudate may form sheets lining alveoli \rightarrow *hyaline membrane*

• impaired *surfactant* production results from either alveolar epithelial injury or secondarily from the effects of therapy $(IPPV / O_2)$

• intravascular coagulation is common at this stage

• in patients with septicaemia, capillaries may be completely plugged with leukocytes and the underlying endothelium damaged

Proliferation Phase

• cellular proliferation starts within 3-7 days of injury

• there is thickening of the endothelium, epithelium and interstitial space

• there is less oedema, but the spaces are filled with rbc's and inflammatory cells

• type I epithelial cells are destroyed and replaced by *type II epithelial cells* which proliferate but *do not* differentiate immediately to type I cells

• they remain cuboidal and ~ 10 times the thickness of normal type I cells

• this appears to be a non-specific response, as it also occurs in oxygen toxicity

· characterized clinically by worsening hypoxaemia and development of pulmonary hypertension

• pulmonary hypertension results from,

- a. vascular microthrombi
- b. platelet aggregation & release of vasoactive mediators
- c. impaired endothelial synthesis of *nitric oxide*

• *fibrosis* commences after 7-10 days and ultimately fibrocytes predominate

• extensive fibrosis is seen in resolving cases

• within the alveoli, the protein rich exudate may organise to produce the characteristic 'hyaline membrane', which effectively destroys alveoli

• Mechanisms of Causation

• due to the diverse aetiology several mechanisms of causation, at least in the early stages

• in all cases, initiation seems to occur following damage to the *alveolar/capillary membrane* with transudation often increased by pulmonary venoconstriction

- thereafter, the condition is accelerated by a number of positive feedback mechanisms
- the initial insult may be either direct or indirect (see table above)

• much of the interest is in the *indirect causes*, which may be mediated either by cellular or humoral elements

• cell types capable of damaging the membrane include,

- a. neutrophils
- b. basophils
- c. macrophages
- d. platelets through arachidonic acid derivatives
- humoral agents include,
 - a. bacterial endotoxin
 - b. O_2 free radicals
 - c. proteases
 - d. thrombin, fibrin and FDP's
 - e. histamine, bradykinin, and serotonin
 - f. platelet activating factor (PAF)
 - g. arachidonic acid metabolites

- various chemotactic agents, especially C_{5a} , play a major role in the direction of formed elements onto the pulmonary endothelium

• Malik, Selig and Burhop (1985) drew attention to the fact that many of the humoral agents are capable of producing *pulmonary venoconstriction*

• this facilitates transudation caused from increased permeability

• Seeger *et al.* noted that a number of proteins, including albumin but particularly *fibrin monomer*, antagonize the effects of surfactant

• T.Oh: two possible mechanisms of causation,

- 1. C' activation
- 2. fibrinolysis and platelet activation
- NB: however, both suffer from sparse clinical evidence,C' has nopredictive value and is non-specificFDP-D 'antigen' identified in patients with ARDS and may be a marker of mediator injury

• <u>Neutrophil Mediated Injury</u>

• the postulated sequence begins with activation of C $_{5a}$, which results in *margination* of neutrophils on vascular endothelium

• this is known to be activated in *sepsis* and during *cardiopulmonary bypass*

• significant margination is seen in many cases of ARDS

• however, margination can occur without significant lung injury, as occurs during haemodialysis with a cellophane membrane

• the postulate is that the neutrophils are somehow *primed* prior to margination

• this may occur with *endotoxin*, which results in firm adherence of neutrophils to the endothelium

• C_{5a} results in temporary adherence but more importantly triggers inappropriate release of

lysosomal contents to the cell exterior, cf. into phagocytic vesicles

• four groups of substances released in this way may potentially damage the endothelium;

1.	O ₂ derived free radicals	\rightarrow	lipid peroxidation inactivate α_1 -antitrypsin
2.	proteolytic enzymes (esp. <i>elastase</i>)	\rightarrow	direct endothelial damage monocyte/macrophage chemotaxis (elastin fragments)
3.	arachidonic acid metabolites	\rightarrow	vasoconstriction increased permeability neutrophil chemotaxis
4.	platelet activating factors	\rightarrow	intravascular coagulation direct tissue damage

• the role of neutrophils has been studied in depleted animals with conflicting results

• ARDS does seem less severe in *neutropaenic patients*, however it still may develop

• while they possess the capability for tissue damage, it seems unlikely they are the sole agent

Macrophages & Basophils

• these have been studied to a far lesser extent

• they contain a similar array of potentially tissue destructive factors and are already present within the alveoli

· there numbers are greatly increased in patients with ARDS

Platelets

• these are also present in large numbers in the capillaries of patients with ARDS

• aggregation at that site is associated with an increase in capillary hydrostatic pressure, possibly due to a release of arachidonic acid metabolites

• they may also play a role in the normal integrity of the capillary endothelium (Malik, Selig & Burhop, 1985)

Mediators

a.	a. prostaglandins		- TXA ₂ - PGI ₂
b.	b. <i>leukotrienes</i>		 chemotaxis vasoconstriction bronchoconstriction
c.	lymp	phokines	
	i.	IL-1 & TNF	 widespread immune stimulation activation of inflammatory response septic syndrome, fever vasodilatation hyperdynamic circulation systemic catabolism, hepatic anabolism acute phase response
	ii.	IL-1 & 2	- T-cell stimulation/activation
	iii.	IL-3 & CSF's	- marrow & specific colony stimulation
	iv.	IL-4 & 6	- B-cell stimulation
	v.	interferons	 antiviral activity T & NK cell stimulation
		L-1, or <i>endogeno</i> ubsequent heat pro	<i>us pyrogen,</i> acts on the pre-optic area of the hypothalamus with oduction
d.	com	plement	 chemotaxis vasodilatation increased capillary permeability
e.	othe	rs	

i.

- endotoxin ii. kallikrien / kinin system
- iii. histamine
- serotonin iv.
- FDP's v.

Lung Mechanics

- lung *compliance* C_L is reduced (< 40 ml/cmH₂O) and is adequately explained by histology
- there is impaired production of *surfactant* (Fein *et al.* 1982)
- Petty (1979) using BAL showed abnormally aggregated and inactive surfactant
- FRC is reduced below CC by collapse, tissue proliferation and increased elastic recoil

• alveolar/capillary permeability is increased as demonstrated by studies of transit times with inert tracer molecules

· the concept of "non-cardiogenic" capillary leak is oversimplified, possibilities being,

- a. C' activation
- b. fibrinolysis and platelet activation
- Dankzer *et al.* (1979) found a *bimodal* distribution of *perfusion*

 \rightarrow one range of near normal V/Q ratios, the other to areas of near zero V/Q

- this was sufficient to explain the P_{A-aO2} gradient without the need to evoke changes in the diffusing capacity DC_{O2}

• physiological shunt Q_s is usually so large (~ 40%) that a near normal P_{aO2} cannot be achieved even with a $F_1O_2 = 1.0$

• the increase in V_D , which may exceed 70%, would require a large V_M to preserve normocapnia

• it may be argued that attempting normocapnia in these patients is inappropriate management

• gaseous exchange is further impaired, in that VO_2 is usually increased, despite the patient being paralysed and artificially ventilated (Sibbald & Dredger, 1983)

• Changes in Respiratory Mechanics (Start in Phase 1)

- a. \downarrow total pulmonary compliance
- b. \downarrow FRC
- c. \uparrow airways resistance
- d. \uparrow work of breathing
- e. \uparrow respiratory rate & decreased V_T

<u>Changes in Haemodynamics</u> (Sibbald, 1983)

a. $\uparrow P_{_{pAW}}$ - $\uparrow RV$ afterload

- \uparrow RVEDV & RVEDP
- $-\downarrow RVEF \propto 1/(mean P_{AW})$
- \downarrow RV contractility
- b. normal LV function early
- c. \uparrow PAOP, *without* \uparrow LVEDV

 \rightarrow ? ventricular interdependence / ? \downarrow LV compliance

d. LV dysfunction in later stages

Principals of Management

$NB: \rightarrow$ treatment of *primary cause*, other management is essentially supportive

• no specific therapeutic measure has been shown to significantly reduce the development / progression of the disease

• there are four main objectives of management (Nunn)

- 1. maintenance of an adequate P_{aO2}
- 2. minimize pulmonary transudation
- 3. maintenance of an adequate circulation
- 4. prevent complications, particularly sepsis

■ <u>*T.E. Oh*</u>

1.	venti	ilation	PEEP, CPAP, PCV, IRVpermissive hypercapnoea, "open-lung" models
2.	fluid	management	
3.	card	iac support	
4.	nutri	tion	
5.	phys	iotherapy	
6.	other	r therapies	
	i.	antibiotics	* only by M,C&S, not prophylactic
	ii.	steroids	- late fibroproliferative phase, in absence of infection
	iii.	heparinisation	- not useful for ARDS
	iv.	ECMO	
	v.	ultrafiltration	 patients unresponsive to diuretics with H₂O retention ? clearance of mediators of sepsis, medium MW

Concensus Conference ICM 1994

• several therapeutic methods are so universally accepted that, although not formally tested, may be considered as standard,

- 1. suplemental O₂
- 2. PEEP / CPAP
- 3. mechanical ventilation
- 4. avoidance of fluid overload
- 5. delivery of care in an ICU setting

Ventilation

• ventilation should be adjusted to maintain adequacy of oxygenation and to reduce peak and mean airway pressure

- PEEP is almost universally required to maintain an adequate P_{aO2}
- it is of no prophylactic benefit but *does* improve survival
- benefits of PEEP are,
 - a. reduction in F_1O_2
 - b. improved DO_2
 - c. increased compliance
 - d. reduction in atelectasis
- hazards of PEEP include,
 - a. *increase* in total lung water
 - b. inactivation / destruction of surfactant
 - c. may produce a fall in CO and DO_2
- normocapnia becomes a lower priority as *barotrauma* becomes more likely
- · HFJV & HFPPV provide no advantage over traditional ventilation
- they do result in a decrease in mean P_{IP} , but there is no improvement in mortality
- ECMO has shown no proven benefit, mortality remains the same
- Morris et al. (AJRCCM '94) "Salt Lake City Trial", comparing,
 - 1. computer driven models of ventilation with SIMV
 - 2. PCIRV & EC-CO₂R
 - *NB:* maintaining similar mean $P_{AW} \rightarrow no benefit$ in mortality

• Lessard *et al.* (Anaesth. '94) showed *no benefit* in terms of barotrauma, oxygenation, or survival with the use of PCIRV versus conventional ventilation when efforts to keep total PEEP and *mean airway pressure* the same were made

• the level of *optimal PEEP* is described using various end-points,

- 1. maximal DO_2
- 2. lowest Q_s < 15%
- 3. $P_{aO2} > 60 \text{ mmHg}$ * with lowest $F_1O_2 \ge 30\%$
- 4. maximal improvement in C_L
 - i. dynamic V/P curves
 - maximal volume recuitment for given P_{AW} *above inflexion point
 - ii. static V/P curves
 - inflexion point with recruitment

Pharmacotherapy

• fluid balance should be adjusted to lessen the formation of oedema

• Fein et al. recommend values of PAOP ~ 5-10 mmHg

• administration of NSA-C / 5% *does not* reduce the formation of oedema

• some early work suggested the administration of massive doses of *steroids* may halt the development of the disease, Sibbald *et al.* 1981

• subsequent work has shown *no benefit*, or an increased incidence of sepsis and a higher mortality, thus the administration of steroids is not recommended for routine cases

• Meduri *et al.* (Chest '94) showed steroids may be of benefit for the subgroup of *late proliferative ARDS* providing underlying infection was meticulously ruled-out,

- 1. blood cultures, CUD urine specimen
- 2. BAL + quantitative culture, or PSB
- 3. no other septic foci lines, GIT

• other pharmacotherapy includes,

1. endotoxin Ab's - anti-LPS Ab	
---------------------------------	--

- 2. free radical scavengers antioxidants, SOD, catalase, NAC
- 3. cyclo-oxygenase inhibitors Indomethacin, Ibuprofen
- 4. thromboxane inhibition ketoconazole
- 5. cytokine inhibition anti-TNF
- 6. surfactant replacement
- 7. PGE_1
- *NB*: these are only of prophylactic benefit in animal studies,
 none has been shown to improve outcome in human studies,
 Ibuprofen improves early *haemodynamic stability* but not mortality

• Outcome

- a. mortality ~ 50-70%
 - unchanged over last decade
 - ? small decrease depending upon criteria for diagnosis
- b. poor prognosis elderly
 - severe disease, uncontrolled 1° cause
 - high PVR, RV dysfunction
 - impaired DO_2
- c. associated problems

i.

- nosocomial pneumonia ~ 70%
- ii. high incidence of sepsis syndrome
- iii. MODS

Fluid Management in ARDS / Pulmonary oedema

Simmons et al., ARRD Apr-1987

- effect of fluid balance on survival in ARDS
- 213 patients in a prospective data collection study \rightarrow 113 met criteria for ARDS
- multiple variables up to 14 days after intubation \rightarrow CO, PAOP, MAP, I-O, Σ I-O, δ Wt
- significant differences in $\Sigma I\text{-}O$ and δWt between survivors and nonsurvivors on almost every day
 - \rightarrow survivors lost weight and significantly lower Σ I-O cf. nonsurvivors
- logistic regression to determine if δWt and $\Sigma I\text{-}O$ could predict survival,
 - \downarrow wt. $\geq 3 \text{ kg} \rightarrow 67\%$ survival
 - \uparrow wt. \geq 3 kg \rightarrow 0% survival day 14
- similar results obtained using comparably low and high values for Σ I-O

NB: this *does not* establish a cause and effect relationship, likely means only that "sicker" patients needed more fluid resuscitation & developed "leakier" capillaries

• Humphrey et al., Chest. May-1990

· looked at survival and ICU length of stay of 40 ARDS patients

• analyzed to determine if a management strategy of lowering the PAOP was associated with an increased survival or a decreased ICU length of stay

• patients were divided into two groups:

1.	group 1	- reduction of PAOP $\geq 25\%$
2.	group 2	- reduction of PAOP $\leq 25\%$

• survival to hospital discharge

1.	group 1	- 12/16	75%
2.	group 2	- 7/24	29%

• difference remained statistically significant stratifying patients by age & APACHE II

NB: concluded that, "analysis supported the notion that treatment of low pressure pulmonary edema with reduction of PAOP is associated with an increased survival"

similarly, this *does not* imply a causal relationship for therapy, patients in whom greater reductions in PAOP can be achieved are likely less severe and more likely to survive anyway

• Eisenberg et al. ARRD Sep-1987

• prospective evaluation of *extravascular lung water* (EVLW) instead of pulmonary artery wedge pressure measurements to guide the hemodynamic management of 48 critically ill patients

• randomized \rightarrow protocol management, PM

 \rightarrow routine management, RM groups

- RM group \rightarrow EVLW measurements blinded
- · groups similar for age, gender, and severity of illness
- of patients with initially high EVLW \rightarrow EVLW decreased \rightarrow PM ~ 18 ± 5% \rightarrow RM ~ 4 ± 8% (p < 0.05)
- difference was *greater* in patients with CCF
- following the protocol, no adverse effects on oxygenation

- renal function

- mortality \rightarrow
 - 1. not statistically different for entire groups
 - 2. significantly better (p < 0.05) for PM patients with initially high EVLW and normal PAOP (predominantly sepsis or ARDS patients)
- mortality for both groups of patients,

1.	initial EVLW	> 14 ml/kg	\rightarrow 13/15	87%	
2.	initial EVLW	< 14 ml/kg	\rightarrow 13/32	41%	(p < 0.05)

NB: concluded that, "management based on a protocol using EVLW measurements is safe, may hasten the resolution of pulmonary edema, and may lead to improved outcome in some critically ill patients"

Mitchell, Schuller, et al. ARRD 1992

• randomised prospective trial to assess effect of management emphasising diuresis & fluid restriction on,

- 1. development or resolution of EVLW
- 2. mechanical ventilation hours
- 3. ICU duration
- 101 patients requiring PAC insertion,
 - 1. 52 patients \rightarrow EVLW management
 - 2. 49 patients \rightarrow PAOP management
- 89 patients with pulmonary oedema = EVLW > 7 ml/kg (ideal BW)
- no significant differences in baseline disease status (APACHE II, OSF), minor age difference

	PAOP Group	EVLW Group	
$EVLW_t : EVLW_{t=0}^{-1}$	No change	\downarrow t > 24 hrs (p < 0.05)	
Cumulative I-O ²	2239 ± 3695 ml median = 1600 ml	$\begin{array}{rrr} 142 \ \pm \ 3632 & \mbox{ml} \\ median \ = \ \ 754 & \mbox{ml} \end{array}$	
Median ICU Days ³	16 days	7 days $(p = 0.05)$	
Median MV	22 days 9 days (p = 0.047)		
↑Creatinine ⁴ ↑BUN	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Mortality ⁵ 47% 35% (p = 0.21)			
¹ only for the 89 patients with initial EVLW > 7 ml/kg			
 No difference in - the number of patients requiring vasopressors/inotropes the duration of use of vasopressors/inotropes 			
³ <i>No difference</i> in MV or ICU duration for the subset of patients with CCF / volume overload			
⁴ Small but statistically significant increase in plasma <i>creatinine & BUN</i> in EVLW group			
⁵ ICU plus within 48 hours of discharge if related to ICU admission pathology			

Schuller, Mitchell et al. Chest 1991

• aim to evaluate fluid balance and changes in *extravascular lung water* (EVLW) on survival in the ICU and short-term outcome in patients with pulmonary edema

- retrospective analysis of data, sorting by survival and "treatment received"
- taken from a randomized controlled trial of fluid restriction (Mitchell et al., ARRD 1991)
- 89 patients requiring PA catheterization with high EVLW > 7 ml/kg,
 - 1. survival
 - survivors had no significant fluid gain or change in EVLW but decreased wedge pressure and body weight, cf. nonsurvivors
 - 2. fluid balance
 - < 1000 ml fluid gain at 36 hrs → survival ~ 74 %
 > 1000 ml fluid gain at 36 hrs → survival ~ 50 % (p < 0.05)
 3. median ventilation days ICU days hospital days → ~ 50% for < 1000 ml fluid gain
 - *NB:* accounting for differences in the severity of illness, fluid balance was an *independent predictor* of survival (p < 0.05)
 - *NB*: "These data support the concept that positive fluid balance *per se* is at least partially responsible for poor outcome in patients with pulmonary edema and defend the strategy of attempting to achieve a negative fluid balance if tolerated hemodynamically."

ASPIRATION SYNDROMES

- there is a spectrum of presentations,
 - acute massive aspiration a.

chronic aspiration

- acid aspiration pneumonitis i.
- ii. non-acid aspiration
 - particulate
 - non-particulate
- sub-acute aspiration

 - bronchopneumonia
 - bronchiectasis
 - lung abscess
 - ch. interstitial fibrosis
 - atypical mycobacterial fibrosis
 - late onset "asthma"

Acute Acid Aspiration

b.

c.

- 1. acute pulmonary oedema
- 2. ARDS
- 3. acute "asthma"
- 4. "atypical pneumonia"
- 5. acute bronchopneumonia
- often previously healthy person & rapid in onset, frequently preventable
- frequently *non-infected* acid aspirate
- antacids often useful

Chronic Micro-Aspiration

- 1. nosocomial pneumonia
- 2. recurrent bronchopneumonia
- 3. chronic "asthma"
- frequently in hospitalised patients and insidious in onset
- · multiple risk factors and difficult to prevent
- the aspirate is frequently infected
- *antacids* may actually predispose \rightarrow GIT colonisation
- ?? recent studies would not support his concept

- - food, FB, non-acid vomitus

- Mendelsonn's syndrome

- blood, water, near drowning
- microaspiration
 - nosocomial pneumonia
 - nosocomial pneumonia

Risk Factors

a.	altered <i>conscious state</i>	 trauma coma ETOH, drugs (CNS depressants) CVA epilepsy hypotension
b.	impaired <i>airway reflexes</i>	 drugs (CNS, NMJ) intubation / extubation tracheostomy CVA motor neurone disease, MS, GBS, CIP elderly
с.	regurgitation	 pregnancy hiatus hernia obesity bowel obstruction NG tube oesophageal disease LOS dysfunction

Nature of Aspirate

- 1. gastric acid
- 2. particulate
- 3. infected fluid
- 4. blood
- 5. fresh vs. salt water

Infected Aspiration

- · differences for micro vs. macro-aspiration
- frequent colonization of the upper airways of hospitalized and critically-ill patients,

a. pre-hospitalized aspiration

\rightarrow	predominantly anaerobes	- Bacteroides m. & f.
		- Fusobacterium
		- Peptostreptococcus
&	some aerobes	- Pneumococcus
		- Micrococcus

R_x Penicillin & Metronidazole

b. *hospitalized patient + antacids*

\rightarrow	predominantly gram (-)'s	- E. coli
		- Klebsiella
		- Proteus
		- Pseudomonas
& s	ome gram (+)'s	- Staphlococcus
S	ome fungi	- Candida

 $\begin{array}{c} R_{x} & \quad \mbox{Flucloxacillin} \& \mbox{ Gentamicin, or} \\ & \quad \mbox{Cefotaxime} + \mbox{Flucloxacillin} \pm \mbox{Metronidazole} \end{array}$

Treatment

- 1. prevention - sucralfate, antacids - topical antibiotics - cricoid pressure 2. protection of airway - ETT 3. tracheobronchial toilet - suction, lavage - flexible/rigid bronchoscopy 4. oxygen & ventilatory support 5. chest physiotherapy 6. bronchodilator therapy 7. antibiotics - no proven benefit or harm - most would treat as above 8. steroids - no proven benefit or harm - may increase 2° infections
- 9. systemic support for ARDS, sepsis syndrome etc.

ACUTE ASTHMA

Def'n: a disease characterized by wheezing, dyspnoea and cough, resulting from *airways hyperreactivity*, and variable degrees of *reversible airways obstruction* (ATS, 1987)

• current emphasis is on airway *inflammation* in pathogenesis, in conjunction with smooth muscle mediated bronchoconstriction and intraluminal mucus

• a subgroup suffer sudden, unexpected increases in airflow obstruction, due mainly to bronchospasm, termed variously as,

- a. *sudden asphyxic asthma* Wasserfallen, ARRD 1990
- b. hyperacute asthma ? Tuxen

• characterized by,

- 1. minimal baseline airflow obstruction, but marked hyperreactivity
- 2. innocuous or unrecognized stimulus
- 3. very rapid severe onset, often fatal within 1 hr
- 4. relatively rapid resolution
- 5. comprise ~ **75%** of ventilated asthmatics

• this contrasts acute severe asthma, characterized by,

- 1. persistent significant airflow obstruction \rightarrow FEV₁ < 50% pred.
- 2. relatively asymptomatic, with *underperception* of disease
- 3. behaviour modification & denial
- 4. attacks result from small deteriorations in function \rightarrow 'apparent' sudden severe symptoms
- 5. slow resolution, with large chronic component
- 6. comprise $\sim 25\%$ of ventilated asthmatics
- studies of patients dying from SAA, cf. patients with chronic asthma, show,
 - a. \uparrow *neutrophils* / \downarrow eosinophils in airways submucosa
 - b. less intraluminal mucus
- Kikuchi, et al., NEJM 1994, found patients with a history of near-fatal asthma have,
 - a. a blunted hypoxic ventilatory response, and
 - b. diminished dyspnoea during inspiratory resistive loading, cf. other asthmatics
 - *NB*: diminished *patient perception* increases the risk of future life-threatening or fatal asthma

Assessment of Severity

NB: no single clinical measurement has been shown to reliably predict outcome

M	Ild / Moderate ¹		Indications for IPPV		
•	loudness of wheeze ²		• conscious state = <i>most useful</i>		
•	forced expiratory time		 inability to speak 		
•	respiratory rate	> 30	• pulsus paradoxus ³ > 15 mmHg		
•	HR	> 130 bpm	 respiratory fatigue 		
•	use of accessory muscle	s ³	• $P_{aCO2} \ge$ normal, or <i>rising</i> ⁴		
•	PEFR	< 30% pred.	• failure to respond to therapy		
•	FEV _{1.0}	< 30% pred.			
1	¹ generally <i>not</i> useful in severe failure				
2	poor correlation with degree of airflow limitation, Shim. et al., Arch.Int.Med.1983				
3	may actually decrease with the onset of severe respiratory failure				
4	<i>hypercapnoea</i> usually only occurs with a $\text{FEV}_1 < 25\%$, but alone doesn't mandate IPPV; <i>absence</i> of hypercapnoea <i>does not</i> exclude severe obstruction & impending arrest				

ICU Admission

- 1. patients requiring IPPV
- 2. severe airflow obstruction
 - i. accessory mm., exhaustion, diaphoresis
 - ii. p.paradox > 12 mmHg
 - iii. PEFR < 25%
- 3. poor response to initial therapy / deteriorate despite therapy
- 4. altered mental status
- 5. cardiac toxicity / complication

• Assessment During Ventilation

- a. expiratory time
- b. pulsus paradoxus
- c. autoPEEP
 - i. static end-expiratory occlusion pressure
 - ii. dynamic $-\delta P_{IP}$ prior to onset of airflow
- d. alteration in P_{aCO2}
- e. pressure differential
 - i. end-inspiratory occlusion P P_{IP}
 - ii. peak-to-plateau gradient $\sim 0.5-0.75$ s inspiratory pause
 - $\delta P / PIFR \rightarrow resistance$
 - but, with severe airflow obstruction 0.75s is inadequate for equilibration
- f. end-expiratory trapped gas volume
 - = volume expired after prolonged expiration (≥ 1 ')
- g. ECG RAD, RVH & 'strain', acute TR
- h. CXR limited use, see over

Indications for CXR

- 1. any asthmatic post-intubation
- 2. signs / symptoms of *barotrauma*
- 3. clinical findings suggestive of *pneumonia* localizing signs on chest examination
- 4. when the diagnosis is uncertain \rightarrow *exclusion*
- NB: Zieverink, Rad. 1982, 528 CXR's in 122 asthmatics
 - \rightarrow abnormalities in ~2.2%

Factors to Exclude

- a. pneumothorax
- b. FB

e.

- c. upper airway obstruction
- d. LVF & severe emphysema
 - pulmonary emboli \pm lower limb doppler, lung perfusion scan

 \pm echocardiogram

Investigations

- a. FBE, MBA
- b. serial AGA's
- c. CXR
- d. ECG

e.	microbiology	tracheal aspirate for MC&Sblood cultures if febrile
f.	paired serology	- atypical pneumonia

- g. PFT's during recovery serial PEFR
 - FEV₁/FVC

• CVS Effects of Severe Asthma

1.	pulmonary hypertension- HP	V, 2° mediator release - acute ↑ RV afterload ±↓LV preload ∝ interdependence
2.	impaired venous return	
3.	↑ LV afterload	- SNS outflow
4.	2° effects from	- hypoxia, hypercarbia & acidosis
5.	2° effects from drugs	- β-agonists, aminophylline

• Mechanical Abnormality

- \rightarrow increased *airways resistance*
- a. all airways involved but to differing degrees
- b. regional variation in *time constants*
- c. hyperinflation and obstruction
- d. rapid shallow respiration
- e. *twork* of breathing

Pathology

- a. smooth muscle contraction
- b. inflammatory infiltrate & mucosal oedema
- c. mucus plugging & inspissation of secretions
- d. segmental/lobar obstruction or collapse
- e. barotrauma

Mediators

- a. histamine
- b. leukotrienes * LT-D₄
- c. cholinergic nervous system
- d. neuropeptides from NANC nervous supply
- e. PG's
- f. IgE
- g. PAF

• Complications

- a. hypoxia, hypotension myocardial, cerebral hypoxic damage
- b. respiratory
 - i. barotrauma / volutrauma pneumothorax, pneumomediastinum
 - pneumopericardium, subcutaneous emphysema
 - ii. mucus plugging, airway obstruction, atelectasis
 - iii. infection
 - iv. respiratory arrest

c. biochemical disturbances

- i. hypokalaemia, hypophosphataemia, hypomagnesaemia
- ii. hyperglycaemia
 - lactic acidosis hypoxia / hypotension
 - * β-agonists, aminophylline
- d. drug related

iii.

- i. theophylline toxicity
- ii. neuropathy / myopathy ? neuromuscular blockade & steroids

Long-Term Beta-2-Agonists

- 1. heavy use (> 1 cannister/month) is a marker of severe asthma
- 2. heavy or increased use warrants additional therapy with steroids
- 3. use may make asthma *worse*
- 4. patients currently using β_2 -agonists should slowly withdraw non-essential doses & use as rescue medication during "breakthrough" asthma
- NB: position statement, American Academy of Allergy & Immunology, 1993

Treatment

Medical Treatment

- a. O_2 therapy
- b. inhaled β_2 -agonists continuous nebulized salbutamol
 - in non-intubated patients MDI's + spacing devices are equally effective as nebulizers
 - ~ 3% of radioactive aerosol delivered by small volume nebulizer reaches the lungs in mechanically ventilated patients (MacIntyre, CCM 1985)
- c. IV β_2 -agonists
 - *no* proven advantage for IV cf. inhaled route

- selective agents cf. adrenaline

- result in hypokalaemia & tachyarrhythmias
- increase the VO₂, P_{aCO2} and lactic acidosis
- \therefore use in younger patients (preferrably < 40) not responding to inhaled R_x
- d. aminophylline ~ 6 mg/kg/30 mins IV
 - $\sim 0.5 \text{ mg/kg/hr maintenance}$
 - inferior to β_2 -agonists as monotherapy
 - various studies have demonstrated addition of theophylline *does not* confer therapeutic benfit and increases tremor, N&V, arrhythmias, etc.
 - other studies show opposite, AJRCCM '95
 "inadequate evidence to support or reject the use of theophylline in this setting"
 - \therefore use in patients with poor or incomplete response to β_2 -agonists/steroids
 - NB: \downarrow clearance \propto CCF, liver failure, macrolides, ciprofloxacin
- e. ipratropium
 - conflicting evidence but probably an additive effect, not first line agent
- f. steroids
 - not useful via the nebulized route in the acute attack
 - early IV administration useful, significant difference at 12 hours
 - · reduce the need/duration of hospitalisation & number of relapses
 - "failure to treat with steroids contributes to asthma deaths" AJRCCM '95
- g. others
 - i. MgSO₄ infusion
 - benefit has been described in patients with *normal* plasma Mg^{++} levels
 - $\sim 50\%$ of patients with SA have low plasma levels
 - the 2 largest PRCT's *failed* to show any benefit
 - v "available data **do not** support the use of magnesium in SA" AJRCCM '95
 - ii. nitric oxide
 - iii. heliox
 - iv. ECMO

• Effects of Steroids

- 1. anti-inflammatory
- 2. potentiate the effects of β -agonists
- 3. receptor upgrading
- 4. stabilisation of lysosomal membranes
- 5. reduce capillary permeability
- 6. inhibit histamine release

Indications for Antbiotics

- 1. fever & sputum containing polymorphs/bacteria
- 2. clinical findings of pneumonia
- 3. signs & symptoms of acute sinusitis

NB: majority are viral & there is no role for routine use

Bronchioalveolar Lavage

- autopsy studies show marked mucus impaction of both large and small airways
- no benefit in SA has been demonstrated for chest physiotherapy, mucolytics or expectorants
- BAL using either saline or NAC may be useful in some patients
- in intubated patients, potential risk of an acute increase in V_{EI} due to increased resistance

NB: "should not be considered a part of routine management of ventilated asthmatics"

• CPAP Ventilation

- a. potential advantages
 - i. \downarrow work of breathing
 - ii. \downarrow inspiratory muscle load & \uparrow muscle efficiency
 - iii. \downarrow need for sedation / anaesthesia / intubation
 - iv. $? \downarrow$ incidence of nosocomial pneumonia
 - otitis & sinusitis
- b. potential disadvantages
 - i. gastric distension & risk of aspiration
 - ii. less control over ventilatory pattern
 - iii. exacerbation of gas-trapping & overexpansion
 - iv. pressure necrosis

NB: "further studies involving large numbers of patients are needed"

Paralysis

- 1. potential advantages
 - i. $\downarrow VO_2 \& CO_2$ production
 - ii. \downarrow lactate production
 - iii. *may* decrease risks of barotrauma *theoretical, not proven
 - iv. \downarrow expiratory muscle activity may \downarrow airways resistance
- 2. potential disadvantages
 - i. difficulty assessing mental status / risks of awareness
 - ii. \uparrow risk of DVT
 - iii. disuse muscle atrophy
 - iv. ? causative role in *myopathy* in acute asthmatics with *steroids*
 - other possible factors include hypokalaemia, hypophosphataemia & high dose beta-agonists
 - the contention that the steroid molecule of vecuronium/pancuronium would potentiate this effect is *not supported* Fleugel, AJRCCM 1994
- *NB:* concensus view, "until further data available, NMJ blockade should be reserved for patients unable to be ventilated with sedation alone"

Ventilatory Parameters

\rightarrow	low V_T low rate high flow rate high F_1O_2	\leq 10 ml/k \leq 10 bpm \geq 80 l/min \geq 0.5		
a.	$\mathbf{F}_{\mathbf{I}}\mathbf{O}_2 \rightarrow \text{adequate}$	e to prevent hy	poxia	
b.	$V_{T} \rightarrow limits per$	ak P _{AW}	\leq 50 cmH ₂ O	(*not necessarily)
c.	<i>rate</i> \rightarrow allows f	ull expiration	- ie. minimal auto-PER	EP
d.	pulse paradox		≤ 30 mmHg	
e.	• has <i>not</i> been show	wn to correlate	£10 mmHg y accurate in <i>paralysed</i> e with complications e hyperinflation due to n	-
f.	end-inspiratory volu	me	< 20 ml/kg	
	-		ma, hypotension dated & doesn't measure	
g.		mined than V _E pectively valid		2 /

• Risks of Permissive Hypercapnia

- 1. cerebral vasodilatation
- 2. cerebral oedema
- 3. decreased myocardial contactility
- 4. systemic vasodilation & hyperdynamic circulation
- 5. pulmonary vasoconstriction
- *NB:* most of these are not significant for otherwise healthy patients, hypoventilation is well tolerated with $P_{aCO2} < 90 \text{ mmHg}$ (Darioli, ARRD 1984)

• virtually all studies of permissive hypercapnia in SA report near-zero mortality rates, significantly less than studies where 'normal' AGA values are achieved, though there is no large RCT

Prevention of Further Episodes

- 1. education disease and drug administration
- 2. monitoring using a peak flow meter
- 3. regular anti-inflammatory therapy
 - use of a spacing device & mouth washing post-inhalation
- 4. rescue use of β -agonists
- 5. early presentation for medical assessment with deterioration

• Causes of Death

NB: a history of near-fatal asthma requiring mechanical ventilation is the *single best predictor* of subsequent asthma death

- 1. cerebral hypoxia
- 2. barotrauma
- 3. tension pneumothorax

ATYPICAL PNEUMONIA SYNDROME

• Common Causes

1.	viral pneumonia	- influenza A&B, parainfluenza- RSV, CMV, varicella
2	1	5 0/

- 2. *Mycoplasma pneumoniae* ~ 5% community acquired
- 3. *Legionella pneumophilia* ~ 3% community acquired
 - probably underdiagnosed to a significant degree
- 4. Chlamydia psittaci pneumoniae
- 5. *Coxiella burnetti* * Q fever
- 6. atypical mycobacteria

• Other Causes

- 1. infective
 - i. atypical presentation of bacterial pneumonia
 - ii. pulmonary TB
 - iii. opportunistic infections in immunocompromised
- 2. non-infective
 - i. thromboembolic disease
 - ii. collagen vascular disorders
 - iii. malignancies
- 3. aspiration pneumonitis

Slowly Resolving Pneumonia

a.	orgo	anism causes	 antibiotic resistance viral, fungal, parasitic superinfection 	*ESBL producers
b.	ther	rapeutic causes	- inappropriate agent / dos	age
c.	hosi	t causes		
	i.	lung disease	 bronchiectasis, empyema bronchial obstruction chronic aspiration underlying malignancy interstitial & other lung d 	
	ii.	other host diseases	 immunocompromised LVF malignancy, HIV 	

NOSOCOMIAL PNEUMONIA

- from McLaws, MJA 1988, looking at general hospital populations
 - \rightarrow nosocomial infections occur in 6-7% of patients
- Chastre, , 15-35% of these are pneumonia with a mortality rate of 50-70%
- most are endogenous gram negative bacteria, many are polymicrobial
- a high proportion occur in ICU patients

• Daschner, ICM 1982, ICU patients

- \rightarrow the overall *incidence* of nosocomial infections in ICU patients ~ 12-20%
- 1. UTI ~ 40%
- 2. septicaemia ~ 20%
- 3. pneumonia ~ 16%
- NB: nosocomial infections in patients with ARDS ~ 70%

Aetiology

a.	gram negative bacilli	~ 70%	- E. coli- Pseudomonas- Enterobacter- Klebsiella
b.	gram positive cocci	~ 15-25%	- Staphlococci - Enterococcus
c.	fungal	~ 5%	- Candida

Mortality

a.	gram negatives		~ 50-56% overall
	i.	Pseudomonas	~ 70%
	ii.	Klebsiella Serratia Enterobacter	~ 40%
	iii.	E. coli	~ 30%
b.	gran	n positives	~ 5-25%
c.	virus	es	~ 7%

Risk Factors		
Host Factors	Therapeutic Factors	
 age newborn elderly > 60 multiple trauma severe 1° disease neutropaenia immunosuppression 	 ICU or SCN systemic antibiotics invasive catheters large transfusion need for haemodialysis corticosteroids 	

• Meduri Chest 1990

- a. diagnosis of *nosocomial pneumonia* in an intubated patient is difficult
- b. *tracheal aspirate* in ventilated patients is often inaccurate & misleading
- c. *colonisation* rate > 60%
- d. risk factors for colonisation and infection are similar
- e. other conditions can simulate pneumonia and may go untreated
- f. recognition of a specific pathogen is important for effective treatment
- g. a large number of patients *do not* have pneumonia
- h. inappropriate antibiotics
 - i. \uparrow colonisation risk \rightarrow superinfection
 - ii. \uparrow resistant bacterial strains
 - iii. potential side effects
 - iv. cost
- i. many diagnostic techniques histology = "gold standard"

Technique	Sensitivity	Specificity
Clinical	64%	80%
Tracheal Aspirate	80-95%	40-60%
LRS	95+%	40%
Bronchio-Alveolar Lavage	75-100%	30-75%
Protected Sputum Brushings	40-100%	40-100%
* these figures are from different studies, animal a	nd patient, with different diagnostic cri	iteria for pneumonia

Andrews Chest 1981

• histology at PM versus *clinical findings* \rightarrow

sensitivity ~ 64% specificity ~ 80%

- 1. fever
- 2. leukocytosis
- 3. purulent tracheal aspirate
- 4. new pulmonary infiltrate on CXR
- *NB*: ARDS patients with a new infiltrate frequently *do* have pneumonia, non-ARDS patients with a new infiltrate frequently *do not* have pneumonia

Fagon & Chastre ARRD 1989

- · looking for rate of development of nosocomial pneumonia in intubated ICU patients
- diagnosed with PSB with semiquantitative culture \rightarrow sequential incidence,

a.	day 10	~ 6.5%		
b.	day 20	~ 19%		
c.	day 30	~ 28%	\rightarrow	overall incidence ~ 9%

• 40% of these were *polymicrobial*

- for the NCP group mortality was 71% cf. 29% in the non-pneumonia group
- the use of antibiotics selects out resistant Pseudomonas and MRSA
- Salata ARRD 1987
- 51 intubated ICU patients

• effectiveness of *tracheal aspirate* to distinguish colonisation from infective pneumonia

	Nosocomial pneumonia	Colonisation
PMN's	> 1 ⁺ > 10/hpf > 30,000/µ1	$< 2^+$
Bacteria	> 1 ⁺ > 1-10/oil field	< 2+
CFU	> 100,000	< 100,000
ICF organisms	> 1-5% of PMNs	< 1%
Elastin Fibres	+'ve 52% gram(-)	+'ve 9%
Squamous cells	< 10/hpf	> 10/hpf

Johanson ARRD 1982

• ventilated animal study of diagnostic tools

Investigation	Sensitivity	Specificity
ТА	80%	60%
BAL	74%	?30%
PSB	40%	?60%
needle Bx	50%	?50%

Investigation	Sensitivity	Specificity
LRS ¹	100%	40%
PSB ¹	80%	100%
PSB ²	70%	100%
PSB ³	100%	60%
¹ Richard, ICM 1988, suction samples (LRS) versus PSB (< 10 ³ CFU)		
² Higuchi, ARRD 1982, primate model of acute lung injury \pm pneumonia		
³ Chastre, ARRD 1984	, PSB versus immediate post-	mortem histology

• Kirkpatrick, ARRD 1988, 8 "normal" subjects studied with BAL & PSB looking at the sterility of the samples, ie. contamination of the specimen

- 1. PSB = 7/8 but < 10^4 CFU
- 2. BAL = 1/8

· Gassorgues, ICM 1989, BAL vs PM in 13 intubated patients

 \rightarrow BAL 100% sensitive but 75% specific

Chastre & Fagon AJM 1988

• BAL vs. PSB in 21 intubated ICU patients,

- a. "both useful and complimentary" in diagnosis
- b. BAL \rightarrow +'ve gram stain with *intracellular bacteria* > 25% PMN's rapid and useful • WCC and semi-quantitative cultures (> 10⁴ CFU) less useful
- c. PSB $\rightarrow > 10^3$ CFU useful in diagnosis but results delayed 48 hrs
- d. PSB gives higher false negatives ie. *lower sensitivity*
 - supported by below

Papazian AJRCCM 1995

• prospective post-mortem study of diagnostic tool efficacy in diagnosis of VAP

histology & culture performed within 30 min of death in 38 patients ventilated > 72 hrs

a. histology (+) - $18/38$ patients ~ 47%

_	Threshold ¹	Sensitivity %	Specificity %
CPIS	> 6	72	85
mini-BAL	$> 10^3$ cfu/ml	67	80
BAL	$> 10^4$ cfu/ml	58	95
PSB	$> 10^3$ cfu/ml	42	95
BBS	$> 10^4$ cfu/ml	83	80
¹ Figures for <i>definite VAP</i> ,	ie histology & culture pos	itive	

• conclusions,

- 1. as BBS is more sensitive & non-invasive, ∴ preferrable to PSB
- 2. due to *low sensitivity*, results of a negative PSB should be viewed with caution
- 3. overall diagnostic *accuracy* was greatest for BBS/BAL at 81%

• CPIS, Pugin et al., ARRD 1991

(Clinical Pulmonary Infection Score)

- 1. clinical temp., quantity & character of tracheal asp.
- 2. biological WCC, P_{a02}/F_1O_2 ratio
- 3. radiographic CXR
- 4. microbiological

Bonten et al. AJRCCM 1995

• evidence for a causal relationship between *gastric colonization* and VAP based on studies relating colonisation to species causing pneumonia Torres *et al.*, ARRD 1993

- 1. VAP diagnosed by *clinical criteria* *poor sensitivity/specificity
- 2. no chronological relationship established
- 3. gastric pH values determined only *once daily* by indicator slide test
- 4. no studies used double-blind PRCT study
- PRCT of 141 patients, of whom 112 had continuous gastric pH monitoring
 - a. group 1 58 antacids, (Al/Mg-OH), 30 ml q4h
 - b. group 2 54 sucralfate 1g q4h

NB: no significant differences in median pH values

- stratifying patients by colonization,
 - a. median pH values were higher in patients with *gastric* bacterial colonization
 - b. *no difference* seen for oropharyngeal or tracheal colonization

• ventilator associated pneumonia,

- a. diagnosed by BAL (> 10^4 CFU) / PSB (> 10^3 CFU)
- b. occurred in ~ 22% \rightarrow same in both groups
- c. polymicrobial in 19/31 episodes \rightarrow 51 isolates
 - i. prior tracheal isolation ~ 96%
 - ii. prior oropharyngeal isolation $\sim 75\%$
 - iii. prior gastric isolation ~ 31%
- *NB:* in *one case* the organism resulting in VAP initially colonized the stomach, in five cases, colonization occurred *simultaneously*

• this is supported by Inglis *et al.*, Lancet 1993, who showed *chronological* colonization from stomach to trachea in only 6/100 ventilated patients

• enteral feeding,

- a. did not alter gastric acidity
- b. *increased* gastric colonization with *Enterobacteriaceae*
- c. no change in oropharyngeal or tracheal colonization
- d. confounding factor of \uparrow *gastric volume* controlled
- *NB: gastric acidity* influenced gastric colonization, but *not* colonization of the upper respiratory tract or the incidence of VAP

ICU Pneumonias

- 1. early onset ≤ 4 days
- 2. nosocomial, or late onset
- the *incidence* of ICU acquired pneumonia ~ 21%
- and ~ 54% of these occur within the first 4 days
- risk factors include,
 - a. impaired airway reflexes
 - b. severity of underlying pathology
 - c. duration in ICU

• Early Onset Pneumonia

- a. occurs within 4 days
- b. is very common
- c. is unrelated to age
 - type of illness
 - immune suppression
- d. frequently oropharyngeal pathogens
- e. mainly in intubated patients
- f. little affected by antibiotic prophylaxis

Late Onset Pneumonia

- a. usually gram (-)'ve pathogen
- b. frequently impaired airway reflexes
- c. should (?) be influenced by antibiotic prophylaxis

Haemoptysis

a.	airways	- trauma - tumour - infection - FB
b.	lung	 trauma tumour, 1° or 2° infection, inflammation/vasculitis, infarction
c.	CVS	LVF, MSpulmonary emboli, infarctionpulmonary AVM

d. *coagulopathy*

Def'n: massive haemoptysis, defined arbitrarily as blood loss,

- 1. between 200-600 ml expectorated per 24 hours, or
- 2. resulting in acute *airway obstruction*, or
- 3. resulting in acute *hypotension*

• more than 90% of cases are due to *chronic infection*, as inflammation leads to profuse vascularisation of the high pressure bronchial circulation

- the most common causes are,
 - 1. TB
 - 2. bronchiectasis / pulmonary abscess
 - 3. bronchial neoplasms

• resections for haemoptysis > 600 ml/24 hrs carry a high *mortality rate* ~ 15-20%

• this is better than conservative management, which averages up to 75%

• surgery is probably *indicated* in those patients who,

- a. require multiple transfusion
- b. show progressive deterioration of pulmonary function
- c. continue to bleed despite adequate medical management
- surgery is probably *contra-indicated* in those patients who,
 - a. have inoperable bronchial carcinoma
 - b. fail to have their bleeding site localised
 - c. have severe bilateral pulmonary disease
 - d. have severe debilitating systemic disease

• most patients should have a *rigid bronchoscopy*, due to the greater ease of ventilation and suctioning

- upper lobe bleeding may require the use of a flexible scope
- moderate bleeding may be controlled through the bronchoscope

• prevention of soiling of the innocent lung may be achieved by the use of a bronchial blocker, such as a balloon-tipped Fogarty catheter, or DLT intubation

• if the patient is deemed inoperable, then bronchial *embolisation* may be attempted

• Anaesthesic Principals

- 1. preoxygenation and ventilation with $100\% O_2$
- 2. several large bore IV canulae should be inserted
- 3. the patient should be cross-matched + baseline FBE
- 4. the patients coagulation profile should be checked
- 5. antibiotics should be commenced preoperatively
- 6. adequate suctioning should be available
- 7. *on induction* the bleeding lung should be *dependent*, and anti-aspiration measures should be employed
- 8. alternatively, in the patient with massive haemoptysis, an awake, semi-upright intubation may be required
- 9. separation of the two lungs, DLT - SLT + bronchial blocker
- 10. IPPV + PEEP with regular intermittent suctioning
- *NB*: after the airway is secured and the lungs *separated*, the bleeding lung should be in the *non-dependent* position

• patients are frequently *hypovolaemic*, therefore induction should follow adequate volume replacement and should be achieved with either a small dose of STP or ketamine, or alternatively use narcotics

• if a SLT is already in place, consideration should be given to,

- a. replacing it with a DLT
- b. the addition of a bronchial blocker
- c. endobronchial intubation

DIFFUSE INFILTRATIVE LUNG DISEASE

Aetiology

- idiopathic a.
- b. infective
- circulatory c.
- d. inflammatory / autoimmune
- e. neoplastic
- f. industrial / occupational diseases
- drug induced, radiation, O2 toxicity iatrogenic g.
- metabolic h.
- i. congenital
- j. physical

Differential Diagnosis

infective pneumonias a.

٠

٠

٠

i. community acquired typical

uncommon

-	- Streptococcal
	- Sucplococcar

- Haemophilus
- atypical - influenza, parainfluenza
 - mycoplasma, Legionella, Chlamydia
 - other viruses
 - Coxiella
 - TB
 - fungi
 - Pneumocystis
 - Brucella
 - Leptospirosis
 - Syphilis
 - MRSA
- ii. hospital acquired
- staphylococcal, MRSA
- anaerobes

- gram (-)'ves

- fungi
- $\pm \text{DIC}$ b. septicaemia

c.	<i>оссиј</i> і. іі. ііі.	<i>pational diseases</i> pneumoconioses zoonoses chemical pneumonitis	- asbestosis, silicosis, berylosis, coal workers disease
d.	neop	lasms	 bronchogenic carcinoma alveolar cell carcinoma lymphomas, leukaemias metastatic carcinomas, lymphangitic carcinomatosis
e.	cong	enital	- cystic fibrosis - α ₁ -antitrypsin deficiency
f.	meta	bolic	- uraemia - hypercalcaemia - haemosiderosis
g.	physi	ical	 irradiation heat, thermal oxygen toxicity blast injury
h.	circu	latory	 LVF mitral stenosis thromboembolic disease bacterial endocarditis
i.	imm	unological	
	i.	hypersensitivityallergic alveolitis<i>drugs</i>	- farmer's lung, bird fancier's lung
	ii.	autoimmune	 SLE, RA, scleroderma, polyarteritis nodosa Wegener's granulomatosis dermatomyositis/polymyositis Goodpasture's synd.
j.	drug	\$	
	i.	cytotoxic agents	adriamycin, bleomycin, busulphan, cyclophosphamidehydroxyurea, methotrexate, mitomycin
	ii.	non-cytotoxics	 amiodarone, acetylsalicylic acid, chlorpropamide carbamazepine, hydralazine, penicillamine phenytoin, lignocaine, methadone, heroine
	iii.	toxins	- paraquat
k.	idiop	athic	
		iopathic pulmonary fibro	
		milial pulmonary fibrosi	S
	• sa	rcoidosis	

- alveolar proteinosis
- amyloid

Causes of Infective Pneumonias

a.	viruses	 - influenza A & B, parainfluenza - CMV, RSV, varicella - rhinoviruses, adenoviruses, enteroviruses
b.	bacteria	
	i. gram (+)'ve cocci	 Staphlococci* *aerobic Streptococci* Micrococci - anaerobic
	ii. gram (-)'ve cocci	- Branhamella, Acinetobacter
	iii. gram (+)'ve rods	- Bacillus, Lactobacillus - Clostridia - Nocardia
	iv. gram (-)'ve rods	 Haemophilus Klebsiella Legionella E. coli Enterobacter, Proteus, Serratia Pasteurella, Yersinia, Citrobacter Salmonella, Shigella
	• anaerobes	BacteroidesFusobacteriumPseudomonas
	 obligate anaerobes 	- Bordetella - Brucella
	v. acid fast bacilli	- Mycobacterium tuberculosis, M. kansii
c.	cell wall deficient bact	•
d.	fungi yeasts dimorphic	 Aspergillus niger, Aspergillus fumigatus Candida albicans, Cryptococcus Histoplasma Coccidioides Sporotrichium Blastomyces
e.	protozoa	 Pneumocystis (rRNA ? <i>fungal phylogeny</i>) Toxoplasma Entamoeba Strongyloides, Ascaris lumbricoides Toxocara carnis (visceral larva migrans) Echinococcus (hydatid disease) Schistosomiasis (blood fluke) Paragonomiasis (lung fluke)

Environmental Factors

a.	minerals	 silicon, asbestos beryllium coal, bauxite diatomaceous earth, talc iron, barium, silver, tin manganese, vanadium
b.	fumes	 nitrogen dioxide chlorine, bromine ammonia phosgene, sulphur dioxide acetylene, kerosene, carbon tetrachloride, hydrogen fluoride hydrochloric, nitric, picric acids
c.	antigens	 Farmer's lung pigeon fanciers lung humidifiers, air-conditioners maple bark, wood pulp, oak mushroom, malt, sugar cane furrier's detergents, vineyard sprayers fish, cheese, wheat weevil
d.	drugs	 hydrallazine busulphan, bleomycin, methotrexate nitrofurantoin, sulphas methysergide <i>amiodarone</i>
e.	poisons	- paraquat - petroleum derivatives

Investigation Stage 1

- a. *history*
 - i. age, family history
 - ii. drugs, smoking, allergies
 - iii. occupation, pets / animals, hobbies, environment
 - iv. personal contacts, friends / relatives
 - v. overseas travel
 - vi. nature, severity and time course of symptoms
 - vii. past medical history esp. CVS / RS

b. examination

- i. upper & lower respiratory tracts
 - amount & type of sputum
 - presence/severity of respiratory failure
- ii. cardiac bruits/failure
- iii. vital signs
- iv. liver/spleen size, lymph nodes
- v. fundi
- vi. skin manifestations purpura, erythema

Investigation Stage 2

- a. FBE, ESR
- b. blood film
 - i. RBC's: anaemia, haemolysis, agglutination
 - ii. WBC's: left shift, eosinophilia, blasts
- c. U,C&E's, LFTs
- d. blood cultures

e. sputum - M, C & S - cytology - AFB micro and culture f. urine - M, C & S

- sediment examination for active changes - haematuria
- g. CXR
- h. ECG
- i. Echo

Investigation Specialized

1. *blood*

1.	blood					
	i. pa	aired serology				
	•	• viruses, Legionella, Q fever, Chlamydia, Mycoplasma and fungi/parasites				
	ii. co	cold agglutinins				
	iii. H	TLVIII / HIV Ab titr	e			
	iv. a	utoantibodies	- RF,	, SLE,	, cANCA, G	oodpastures, ENA
	v. co	oagulation profile	- INI	R, AP	TT, FDP's, f	ibrinogen
	vi. p	rotein electrophoresis			complexes, r	•
			- α ₁ -	antitry	psin deficie	ncy
2.	sputum	tum				
i. Ziehl-Neilson stain & culture for AFB's						
	ii. ir	nmunofluorescence m	icroscopy	-	gionella luenza	
	iii. si	ilver stain		- Pne	eumocystis	
	•	• * 3% saline induced sputum				
	iv. w	vet preparation		-	$\begin{array}{ll} \text{rasites} & \rightarrow \\ \text{usts} & \rightarrow \end{array}$	ova, cysts, larvae hyphae
3.	nasoph	aryngeal washings	- viruses	5		
4.	-	ıx skin test				
5.						
5.	virai cu	viral cultures		 throat swabs faecal and sputum samples		
6.	faecal s	specimens (x3-6)	- micro - culture		protozoan bacterial, v	•
7.	PA catheter		- exclude / confirm LVF			
8.	echocardiogram		 SBE → low sensitivity, ∴ use TOE atrial myxoma LV function, valvular competence 			
9.	ultrasound		 liver / spleen / kidneys fluid collections, abscesses tumours 			
10.			 abscess, tumour lymphadenopathy, mediastinal masses CT directed biopsy			
	• fine-	-cut CT chest	- moderate	abilit	y to differen	tiate pathology

11. bronchoscopy

i.	brushings	- MC&S - cytology - differential WCC
ii.	washings	- as above
iii.	bronchiolar lavage	- MC&S - effector cell type & count
iv.	biopsy	 tumours asthma transbronchial lung biopsy

12. open lung biopsy, if

- i. diagnosis remains unclear after the above
- ii. the condition deteriorates despite empirical treatment
- iii. prior to a trial of immunosuppressives or steroids
- iv. no other (more accessible) organ is involved in the disease
- \rightarrow - MC&S - M&C for AFB's - histopathology & frozen section - silver stain for Pneumocystis - immunoflorescence for Legionella 13. pleural fluid - MC&S - cytology - biochemistry, pH, LDH, protein 14. renal biopsy - autoimmune diseases - Goodpasture's 15. bone marrow biopsy - metastatic carcinoma - myeloma leukaemia, lymphoma - TB culture

Interstitial Pneumonitis

a.	idiopathic interstitial pneumonitis		
b.	familial pulmonary fibrosis		
c.	autoimmune diseases	 rheumatoid arthritis, SLE Wegener's granulomatosis, Goodpastures syndrome scleroderma, polyarteritis nodosa, dermatomyositis 	
d.	sarcoidosis		
e.	alveolar proteinosis		
f.	congenital	 - cystic fibrosis - α₁-antitrypsin deficiency 	
g.	pneumoconioses	 silicon, asbestos beryllium, coal, bauxite diatomaceous earth, talc iron, tin, barium, silver, manganese, vanadium 	
h.	chemical pneumonitis	 nitrogen dioxide, chlorine, bromine phosgene, ammonia, sulphur dioxide acetylene, kerosene, carbon tetrachloride, hydrogen fluoride hydrochloric acid, nitric, picric acids 	
i.	extrinsic allergic alveol	 itis - farmer's lung, bird fanciers lung maple bark, wood pulp, oak mushroom, malt, sugar-cane furrier's, detergents, vineyard sprayers humidifiers, airconditioners, etc. 	
j.	drug-induced intrinsic allergic alveoli	 hydrallazine, methotrexate busulphan, bleomycin, nitrofurantoin methysergide, amiodarone sulphur derivatives 	
k.	amyloidosis		

Interstitial Pneumonitis *Common Causes

- 1. infective pneumonia
- 2. atypical pneumonia
- 3. malignancy
- 4. lymphangitis carcinomatosis
- 5. chronic LVF

■ Upper Lobe [®] SCHART

- 1. S silicosis (progressive massive fibrosis) - sarcoidosis
- 2. C coal workers pneumoconiosis
- 3. H histiocytosis X
- 4. A ankylosing spondylitis, aspergillosis
- 5. R radiation
- 6. T TB
- Lower Lobe ® RASIO
 - 1. R rheumatoid arthritis
 - 2. A asbestosis
 - 3. S scleroderma
 - 4. I idiopathic
 - 5. O other
 - busulphan, bleomycin, amiodarone, methotrexate

FAT EMBOLISM SYNDROME

Aetiology

a.	pelvic, or long bone fractures	~ 100% have emboli ~ 5% develop FES (LIGW ~ 1-2%)
b.	orthopaedic surgical procedures	~ 60% have emboli - FES rare
c.	hyperlipidaemic states	 pancreatitis diabetes mellitus lipid infusions hepatic failure or trauma SLE nephrotic syndrome
d.	adipose trauma	 crush injury bends liposuction lymphography
e.	others	 external cardiac massage poisoning sickle cell crisis extracorporeal circulation

NB: for (c-e) the majority of these, the finding is usually a post-mortem one, they *rarely* result in clinically significant FES

Massive Fat Embolism

• distinct from FES, with the clinical picture being that for any massive embolic syndrome

- this may be exaggerated by *platelet aggregation* and granule release
- lethal dose of fat for an average adult estimated at ~ 50-70 ml
- cf. the volume of fat contained in the femur ~ 70-100 ml

Def'n: clinical syndrome of pulmonary & systemic embolic features, associated with a predisposing cause for bone marrow/fat emboli

Clinical Features

NB: 1 major and 3 minor criteria are as sensitive & specific as any laboratory test

major features a.

- i. petechial rash - chest, neck, palate, retina ~ 25-50%
 - this is the only feature *pathognomic* of FES
 - usually appears on 2nd-3rd days and lasts 2-3 days ٠
- respiratory dysfunction ii.
 - arterial hypoxaemia & bilateral CXR infiltrates
- iii. CNS dysfunction
 - drowsiness, confusion, convulsions, coma •
 - * unrelated to head injury or other cause

minor features b.

i. tachycardia

ii.	pyrexia	- 38°-39°C ~ 60%
iii.	FBE	sudden fall in [Hb]sudden thrombocytopaenia
		- high ESR
iv.	fundi	- fat emboli, petechial haemorrhages
v.	urine	- anuria, oliguria - fat globules
vi.	sputum	- fat globules

Laboratory Investigations

- 1. arterial hypoxaemia
- 2. - blood, urine or sputum fat globules * nonspecific and may occur in other conditions
- 3. haemolytic anaemia
- 4. thrombocytopaenia
- 5. hypocalcaemia
- 6. elevated serum lipase

Management

- heparin, aspirin, glucose, steroids & aprotinin do not alter incidence or mortality
- therapy is largely supportive once established
- all long bone fractures should be immobilized early

CHRONIC AIRFLOW LIMITATION

Def'n:	Asthma:	\geq 15% δ FEV ₁ with	bronchodilatorsmethacholine, histamine challenge	
	Chronic bron	ichitis:		
		morning cough with sputum production for > 3 months of the year for 2 successive years, in the absence of any underlying disease which may account for these symptoms		
	Emphysema:	<i>c</i> abnormal, permanent enlargement of the airways distal to the <i>terminal bronchiole</i> , with destruction of their walls and without obvious fibrosis (ATS), or		
		diminished gas transfer	interface (area), $\downarrow DL_{CO}$	

Smoking

- 1. produces both chronic bronchitis & emphysema, but little reversible airways disease
- 2. impaired ciliary function & sputum clearance
- 3. immunoparesis
- 4. \uparrow frequency of upper & lower respiratory tract infections
- 5. ↑ COHb chronic tissue hypoxia - polycythaemia
- 6. nicotine hypertension, \uparrow SAP & DAP, \uparrow PVR
- 7. accelerated atherosclerosis
- 8. \uparrow platelet adhesiveness
- 9. major risk factor for ischaemic heart disease
- 10. increased peripheral vascular disease
- 11. increased bronchogenic carcinoma > 10 pkt/years (1 pkt/yr = 20/d)

• Exacerbation of CAL

a. *respiratory*

- infection bacterial, viral, fungal
- aspiration
- bronchospasm
- pneumothorax
- trauma, surgery
- neoplasm
- air pollutants

b. cardiac

- AMI
- LVF, pulmonary oedema
- pulmonary emboli
- arrhythmia

c. drugs

- sedatives, opioids
- anaesthetics
- muscle relaxants

d. *metabolic*

- fever
- sepsis
- pancreatitis
- hyperthyroidism

e. *electrolytes*

- low K⁺, Mg⁺⁺, PO₄⁼
- metabolic alkalosis

f. other

- malnutrition
- high CHO intake
- depression of hypoxic drive

Acute Respiratory Failure		Complications
a.	hypoxaemia	organ ischaemia / infarctionmental confusion, agitation
b.	pulmonary	 infection aspiration barotrauma fibrosis pulmonary emboli
с.	cardiovascular	 hypertension, tachycardia, arrhythmias late hypotension, bradycardia, QRS prolongation, EMD altered organ perfusion
d.	CNS	 anxiety, distress acute psychosis obtundation, coma ↑ ICP
e.	renal	acute renal failuresalt & water retention
f.	GIT	 pneumoperitoneum ileus, gastric dilatation acalculous cholecystitis mucosal atrophy (TPN)
g.	nutritional	malnutritionmuscle wasting
h.	microbiology	 nosocomial pneumonia bacteraemia, septicaemia
i.	technical	

- i. IV access
- ii. mask CPAP
- iii. intubation
- iv. mechanical ventilation
- v. PA catheter problems
- j. drug side effects
 - i. steroids
 - ii. antibiotics
 - iii. aminophylline
 - iv. β-agonists

BRONCHIAL CARCINOMA

Clinical Presentation

1. pulmonary

- i. bronchial obstruction
- collapse
- pneumonia, abscess, empyema
- emphysema
- ii. pleural effusion
- iii. bleeding / haemoptysis
- iv. SVC obstruction
- v. Horner's syndrome
- vi. brachial plexus or T_1 lesion
- vii. recurrent laryngeal nerve or phrenic nerve palsy
- viii. incidental lesion on CXR

2. metastatic disease

- i. bone pain, pathological fracture, hypercalcaemia
- ii. hilar and cervical lymphadenopathy
- iii. cerebral
- iv. adrenal

3. *paraneoplastic*

- i. cachexia
- ii. anaemia of chronic disease
- iii. hypertrophic osteoarthropathy
- iv. neuropathy
- v. myopathy
- vi. skin lesions

- finger clubbing
- arthritis, periosteal new bone
- carcinomatous myopathies
- Eaton-Lambert syndrome
- pigmentation, erythema
- scleroderma, acanthosis nigrans
- herpes zoster, herpes simplex

vii. endocrine

- ectopic ADH \rightarrow
- ectopic PTH \rightarrow
- ectopic TSH \rightarrow
- ectopic ACTH \rightarrow
- carcinoid syndrome
- gynaecomastia

viii. haematological

SIADH

- hypercalcaemia
- thyrotoxicosis
- Cushing's syndrome
- aplastic anaemia
- thrombophlebitis
- DVT's

• CXR

- a. changes usually antedate symptoms by ~ 7 months
- b. *symptoms* \rightarrow abnormal CXR ~ 98%
- c. further, the changes are suggestive of tumor in $\sim 80\%$
- d. ~ 70% are centrally located
- e. at presentation, average size is ~ 3-4 cm
- f. other important diagnostic features include,
 - i. tracheal deviation/obstruction
 - ii. mediastinal mass SCV, PA, main bronchi
 - iii. pleural effusions
 - iv. cardiac enlargement
 - v. bullous cyst rupture, compression
 - vi. air-fluid levels ? abscess, soiling
 - vii. parenchymal changes V/Q inequality

Inoperability of Bronchial Carcinoma

- 1. distant metastases brain, liver, adrenals & bone
- 2. malignant pleural effusion
- 3. recurrent laryngeal nerve involvement
- 4. phrenic nerve involvement
- 5. regional lymph nodes within 2 cm of the hilum
- 6. high paratracheal, or contralateral hilar spread
- 7. SVC syndrome
- 8. PA involvement
- 9. cardiac tamponade
- 10. bilateral disease
- *NB*: operability also depends upon *cell type*, unilateral or pleural spread may be operable with less invasive cell types

Pneumonectomy Assessment			
Test Type PFT		Risk Limits for <i>Pneumonectomy</i>	
Whole-Lung Tests	AGB's	• <i>hypercapnia</i> on room air	
	Spirometry	 FEV₁/FVC £ 50% FVC £ 2.01 MBC ≤ 50% 	
	Lung volumes	• RV/TLC \geq 50%	
Single Lung Tests	Split function tests (R&L)	 predicted FEV₁ ≤ 0.851 PBF > 70% diseased lung 	
Simulated Pneumonectomy	Balloon occlusion R/L PA	• mean PAP \geq 40 mmHg • PaCO ₂ \geq 60 mmHg • PaO ₂ \leq 45 mmHg	

COR PULMONALE

- *Def'n: RV enlargement* 2° to thoracic, lung or pulmonary vascular disease, in the *absence* of congenital, or left sided heart disease;
 *RV failure *is not* required for the diagnosis
 - *right heart failure* is defined as a chronic increase in the RV end-diastolic transmural pressure gradient, that is not expected from an increase in pulmonary blood flow (HPIM, 12th Ed)

Aetiology

- 1. pulmonary *vascular* disease
 - primary pulmonary hypertension
 - chronic multiple emboli
 - pulmonary vasculitis
- 2. chronic *parenchymal* lung disease
 - CAL
 - diffuse interstitial lung diseases
- 3. lung *pump* failure
 - kyphoscoliosis
 - neuromuscular diseases
 - morbid obesity
- 4. *central drive* failure
 - obstructive sleep apnoea syndrome
 - chronic mountain sickness

Pathogenesis

NB: may be either - acute or chronic

- episodic or progressive

- a. acute \rightarrow RV dilatation
- b. chronic \rightarrow RV hypertrophy, later dilatation
- initially PAH occurs only during exercise or during stress
- this is accompanied by episodic RV dilatation with normal RVEDP and RV output
- later, persistent PAH leads to RV hypertrophy \pm dilatation
- this is associated with sustained high RVEDP's and RVF, initially during exercise but later at rest

• Mechanisms

- a. loss of vascular bed
- b. irreversible pulmonary vasoconstriction
 - i. chronic *hypoxia*
 - ii. chronic acidosis pH < 7.2
 - iii. chronic hypercapnia

• Exacerbating Factors

- 1. progression of 1° lung disease
- 2. intercurrent respiratory infection
- 3. pulmonary emboli
- 4. cardiac decompensation arrhythmias - RV ischaemia
- 5. sedative & analgesic drugs

6.	\uparrow work of breathing	resistance (bronchospasm)compliance
7.	hypercatabolic states	- surgery, trauma - endocrine
8.	surgery	pulmonary resectionupper abdominal/thoracic

Signs

a.	stigmata of chronic lung disease	 nicotine stains dyspnoea, tachypnoea central cyanosis clubbing, skin changes asterixis
b.	RV hypertrophy	 RV thrust ± palpable P₂ loud P₂ & wide split S₂ RV-S₄ TI recurrent SVT, MAT
c.	RV failure	 high JVP peripheral oedema ascites, hepatomegaly

Symptoms

- a. those of chronic bronchitis / emphysema
- b. dyspnoea
- c. tiredness, fatigue, decreased exercise tolerance
- d. peripheral oedema
- e. palpitations AF
- f. daytime somnolence OSAS

Investigations

a.	FBE, ESR	- polycythaemia, anaemia chronic disease
		- \uparrow WCC, left shift

- b. EC&U, LFT's, AGA
- c. ECG P pulmonale
 - RVH (qv), RAD, RBBB
 - sinus tachycardia, AF, MAT
 - RVH on ECG is *rare* except in primary pulmonary hypertension
 - · 'q'-waves in II, III, aVF may simulate AMI due to vertically placed heart

d.	CXR	 lung disease with large PA's peripheral field <i>oligaemia</i> usually no LVF or cardiomegaly
e.	PFT's	- obstructive restrictive components ± reversibility
f.	Echo	- dilated RV ± TI
g.	V/Q Scan	- to exclude chronic PE

• Complications

- 1. acute respiratory failure
- 2. recurrent respiratory infections
- 3. chronic hypoxia
- 4. polycythaemia
- 5. right heart failure
- 6. arrhythmias
- 7. sudden death $(1^{\circ} PAH)$
- 8. cirrhosis

Treatment

- a. treat primary lung disease & cease *smoking*
- b. optimise remaining lung function
 - i. lose weight
 - ii. bronchodilators
 - iii. steroids
 - iv. diuretics
 - v. antibiotics
 - vi. physiotherapy
- c. prompt treatment of chest infections
- d. prevent pulmonary emboli
- e. respiratory stimulants (aminophylline)
- f. improve cardiac function
 - i. digoxin
 - ii. antiarrhythmics
 - iii. diuretics
- g. pulmonary vasodilators
 - i. nitric oxide ~ 10-40 ppm
 - ii. $PGI_2 \sim 5-35 \text{ ng/kg/min}$
 - expensive pulmonary & systemic vasodilator
 - PA catheter required for monitoring
 - noradrenaline $1 \mu g/min$ can be used to overcome the systemic vasodilation
 - side effects include systemic vasodilatation, hypotension and nausea
 - some units are now using this via the *inhaled* route
 - iii. adenosine ~ 50-500 μ g/kg/min
 - iv. GTN
 - v. ACEI
 - vi. β_2 -agonists isoprenaline

? dopexamine

- vii. Ca⁺⁺ entry blockers
- h. heart/lung *transplantation*

OBESITY HYPOVENTILATION SYNDROME

Clinical Features

- 1. marked obesity
- 2. hypersomnolescence especially daytime
- 3. periodic breathing
- 4. central *and* obstructive apnoea
- 5. pulmonary hypertension
- 6. cor pulmonale $\pm RF$ failure

Diagnostic Investigations

- 1. hypercapnoea
- 2. hypoxia especially night-time / sleep studies
- 3. polycythaemia
- 4. depressed ventilatory response to $CO_2 \& O_2$

Rochester 1974

• common mechanical and circulatory factors in *morbid obesity*,

a.	lung volumes	$\begin{array}{l}\downarrow \text{FRC}\\\downarrow \text{VC}\end{array}$	
b.	lung function	 ↓ MBC (MVV) ↓ lung and chest wall compliance ↓ respiratory muscle efficiency 	~ 30%
c.	\uparrow V/Q mismatch	- V to apices - Q to bases	
d.	\uparrow cardiac output	~ 100-400%	

- e. \uparrow pulmonary and systemic blood volume
- f. pulmonary hypertension
- NB: these changes are proportional to the degree of obesity

Leech 1987

- multiple regression analysis of factors associated with *hypercarbia* and *sleep apnoea*, (p < 0.05)
 - a. obesity height/weight ratio
 - b. \downarrow FVC & FEV₁ absolute volume changes, cf. predicted
 - c. daytime hypoxia $P_{a02} < 70 \text{ mmHg}$
 - d. *severity* of desaturation during sleep apnoeic periods

• factors with poor, or *no association*,

- a. age
- b. FEV₁/FVC *ratio* ie. airflow obstruction
- c. the number of sleep induced respiratory events
- d. the P_{A-aO2} gradient

• the syndrome is *multifactorial*,

- 1. chronic hypoxia
- 2. \uparrow work of breathing
- 3. altered O_2 / CO_2 drives

Aetiology

• suggested factors include,

- a. \uparrow weight \rightarrow \uparrow mechanical load
- b. obstructive airways disease *not supported by Leech above
- c. impaired respiratory mechanics & muscle function
- d. central sleep-apnoea
- e. $\uparrow V/Q$ mismatch, shunt and dead space
- f. impaired respiratory control mechanisms, ie. O_2/CO_2 drive

Parameter	Simple Obesity	OHS	
Total compliance	slight fall	30% fall	
Lung compliance	25% fall	40% fall	
V/Q, Shunt	increased mismatch	large mismatch < 40% <i>shunt</i>	
Work of breathing	30% increase	300% increase	
VO ₂ cost of breathing	\uparrow VO ₂ ~ \uparrow work	$\uparrow\uparrow VO_2 >> \uparrow work$	
Diaphragm response to $\uparrow P_{aCO2}$	increases	300-400% <i>decrease</i>	
Effects of weight-loss on the following variables			
P _{aCO2}	no change	decreases	
VC	increase	marked increase	
MBC	increase	increase	
Apnoeic periods	decrease	marked decrease	
Level of desaturation	improved	markedly improved	

Sampson, Grassimo 1983

• during quiet breathing there is little difference in the following parameters,

- a. V_{T} , VC, TLC, FRC, RV, ERV, FEV₁/FVC, and RR
- b. ABG's
- c. mouth occlusion pressure
- d. age, sex, weight

however, during hypercapnoeic rebreathing,

Parameter	Normal	Obese	OHS
Rebreathing (1/min/mmHg-CO ₂)	3.5	1.83	1.06
Mouth occlusion pressure (cmH ₂ O/mmHg-CO ₂)	0.5-0.6	0.91	0.29
Diaphragmatic EMG $(\delta\%/mmHg-CO_2)$	25%	23.8%	13.9%
CO ₂ -Response	normal or	increased	blunted

• Obesity Hypoventilation Syndrome

• lung volumes are similar in OHS/SO, ... it is unlikely that OHS relates solely to *muscle weakness*

• the *slope* of the CO₂-ventilation curve is altered, not shifted in a parallel fashion

• muscle diseases show a different pattern, with the diaphragmatic EMG showing the same pressure gradient

• the disease therefore, in summary, is

- a. multifactorial
- b. related to
 - i. mechanical load
 - ii. sleep apnoea
 - iii. chronic hypoxia
 - iv. altered central respiratory drive
 - v. ? enhanced buffering of metabolic alkalosis
- **NB:** represent a sub-group of obese patients,

with probable pre-existing impaired central response to CO_2 and O_2 , in whom the added load of obesity results in chronic respiratory failure, ie.

"non-fighters, unable to prevent CO₂ retention"

PNEUMOTHORAX

NB: tension pneumothorax, from any cause but especially,

- 1. chest trauma
- 2. barotrauma during mechanical ventilation
- 3. obstructed pleural drains

Aetiology

- a. trauma
- b. surgery

 c. lung diseases - asthma - infections - emphysema - pulmonary infarction - bullous disease d. iatrogenic - CVC cannulation - tracheostomy - U-S/CT guided drainage/biopsy - bronchoscopy - thoracentesis e. barotrauma - artificial ventilation - diving - aviation, training f. idiopathic 	D.	surgery	
 tracheostomy U-S/CT guided drainage/biopsy bronchoscopy thoracentesis e. barotrauma artificial ventilation diving aviation, training 	с.	lung diseases	 infections emphysema pulmonary infarction
- diving - aviation, training	d.	iatrogenic	tracheostomyU-S/CT guided drainage/biopsybronchoscopy
f. idiopathic	e.	barotrauma	- diving
	f.	idiopathic	

PLEURAL EFFUSION

Def'n: an *exudate* is pleural fluid having *one or more* of the following

- 1. fluid:serum protein ratio > 0.5 * protein > 30 g/l
- 2. fluid:serum LDH ratio > 0.6
- 3. absolute fluid LDH > 2/3 normal serum upper limit
 - > 200 U/l

Transudative

- 1. CCF
- 2. cirrhosis, ascites
- 3. renal failure, nephrotic syndrome
- 4. hypoproteinaemia
- 5. peritoneal dialysis
- 6. myxoedema
- 7. Meig's syndrome + ascites & ovarian fibroma

Exudative

- 1. infectious
- 2. inflammatory collagen vascular disorders
- 3. neoplastic
- 4. pulmonary infarction
- traumatic haemo/chylo-thorax
 drugs nitrofurantoin, methysergi
 - . drugs nitrofurantoin, methysergide
- 7. GIT subphrenic abscess
 - oesophageal rupture
 pancreatitis
- 8. uraemia
- 9. post-AMI
- 10. other asbestosis, DXRT

Management

- 1. full history and examination
- 2. treat obvious cause
- 3. thoracentesis \pm pleural biopsy if suspected exudate

	Transudate	Exudate
Appearance	clear	clear, cloudy, or bloody
 LDH absolute¹ fluid:plasma 	< 200 U/l < 0.6	> 200 U/l > 0.6
Proteinabsolutefluid:plasma	< 30 g/l < 0.5	> 30 g/l > 0.5
рН	> 7.2	< 7.2
Glucose	> 2.2 mmol/l	< 2.2 mmol/l
WCC (PMN's)	< 1,000 / ml	> 1,000 / ml
¹ LIGW states $\langle or \rangle$ 1000 IU ??		

• Other Tests

a.	microbiology	- M,C&S - stain & culture for AFB's
b.	cytology	- malignancy
c.	"blood picture"	
	i. eosinophilia	\rightarrow ? drug induced
	ii. RBC's > 100,000	 traumatic tap, trauma malignancy pulmonary emboli, infarction
d.	amylase > 50-60 IU	 → - oesophageal rupture - pancreatitis - rarely in malignancy
e.	chylous	- high TG / low cholesterol ± high amylase
f.	ANA	+ low C' & low glucose \rightarrow collagen vascular disorder

NB: despite full evaluation, no cause will be found in ~ 25% of patients

CHYLOTHORAX

• the thoracic duct starts as an extension of the cysterna chyli in the upper abdomen

• enters through the aortic hiatus and ascends extrapleurally between the aorta and azygous vein

 \cdot at the level of $T_{\scriptscriptstyle 5},$ crosses to the left border of the oesophagous, ascending behind the aortic arch and subclavian artery

• it enters the venous system at the junction of the internal jugular and subclavian veins

• between 40-60% have anomalies of the course

- Aetiology
 - a. congenital
 - b. traumatic
 - c. surgical

- any thoracic procedure

*especially lymphoma

- rarely dissection of the neck
- d. infiltration or extrinsic compression
- e. thrombosis of the left subclavian vein

Biochemical Characteristics

a.	sterile, "milky" fluid	- alkaline, pH ~ - SG ~ 1012-10		8
b.	amylase (+)'ve	- pancreatic enz	ymes	present
c.	contents:	total fat total protein albumin globulin glucose lymphocytes erythrocytes	~ ~ ~ ~ ~ ~ ~	4-60 g/l 20-60 g/l 12-41 g/l 11-30 g/l 3-11 mmol/l 400-6,000/µl 50-600/µl
		U&E's	~	plasma

■ <u>Treatment</u>

- a. chest drain
- b. low fat diet
- c. TPN
- d. indications for surgical correction,
 - i. drainage $\geq 1500 \text{ ml/d}$
 - ii. failed conservative R_X after 14 days
 - iii. metabolic complications

PHRENIC NERVE PALSY

Unilateral

- a. idiopathic
- b. congenital
- c. mediastinal mass tumour, lymph nodes
 - thyroid, thymus
 - aortic dissection
- d. trauma cervical
- surgical, post-CABG
- e. local anaesthetics interpleural, interscalene - stellate ganglion

f. features

- i. asymptomatic
- ii. small fall in VC
- iii. elevated hemidiaphragm on CXR
- iv. no movement on *double-exposure CXR*

Bilateral

- a. cervical cord damage
- b. motor neurone disease
- c. polyneuropathies
- d. poliomyelitis
- e. mediastinal tumour
- f. congenital
- g. "cryoanaesthesia" of phrenic nerves during open-heart surgery
- h. features
 - i. paradoxical respiration
 - ii. respiratory failure
 - iii. large decrease in VC
 - iv. failure to wean from IPPV after CABG

Pulmonary Function Testing

• reasons for performing PFT's include,

- 1. identification of the *type* of lung disease obstructive vs. restrictive
- 2. quantification of the *extent* of lung disease
- 3. determination of the *response* to therapy
- 4. monitoring the rate of *progression*

the value of PFT's is most clearly demonstrated in those undergoing *pulmonary resection*for other surgery, there is little evidence of benefit as a routine screening technique, in the absence of clinical symptoms

• patients who may be considered for PFT's include,

- 1. patients with chronic pulmonary disease / symptoms
- 2. heavy smokers with a history of chronic productive cough
- 3. patients with chest wall or spinal deformities
- 4. morbidy obese patients
- 5. elderly > 70 years
- 6. patients for thoracic surgery
- 7. patients for major upper abdominal surgery
- *NB*: the objective of testing is to predict the likelihood of postoperative complications, *no single test* is the best predictor of complications

• Hall et al. (Chest 1991) showed,

- 1. single best predictive factor was the ASA classification
- 2. followed by *site of incision* upper vs. lower abdominal
- 3. *age, smoking & obesity* also ranked highly
- *NB:* ASA grading may have in part been based on PFT's, but *clinical assessment* remains the best predictor

• a single spirometric study can provide FVC, FEV₁/FVC, FEF_{25-75%}, PEFR and VC

• "normal" limits are obtained from a sample population (Morris 1971) and the lower limit taken as

1.64 x SEE (SD of the regression line) below the same weight & height on the regression line

• this range should by definition include ~ 95% of the population

- the widely used practice of taking 80% of the predicted value should be avoided
- · abnormalities on spirometry correlate with the incidence of postoperative complications

• however, the incidence and severity of postoperative complications *do not* correlate with the severity of the preoperative lung dysfunction

• Clinical Spirometry

- 1. vital capacity
 - effort independent, performed without concern for rapidity of exhalation
 - decreases may be associated with restrictive lung disease, following excision, or from extrapulmonary factors, ie. chest wall disease

2. forced vital capacity

FVC

VC

- during forced exhalation FVC < VC with significant dynamic airways closure
- principally disorders with increased airway resistance, or destruction of supporting architecture

3. forced expiratory volume, 1 second FEV₁

- usually expressed as a percentage of FVC, where $FEV_1/FVC > 80\%$
- largest observed FEV₁ and FVC from 3 readings are used, even if different curves
- · reduced mainly by increased airways resistance, usually normal in restrictive defects
- 4. forced expiratory flow, 200-1200 FEF₂₀₀₋₁₂₀₀ maximal expiratory flow rate MEFR
 - · peak flow can be measured by drawing a tangent to the steepest part of the curve
 - more commonly the average flow over 1000 ml, after the initial 200 ml of exhalation is used
 - this is slightly lower than the true peak flow, normal values > 500 l/min
 - values < 200 l/min are associated with impaired cough & postoperative sputum retention, atelectasis and infection
 - markedly impaired by obstruction of larger airways & responsive to bronchodilator therapy
 - results are extremely effort dependent
- 5. forced midexpiratory flow, 25-75% FEF_{25-75%} maximal midexpiratory flow rate MMFR
 - less effort dependent than PEFR, as avoids the initial highly effort dependent part of the expiratory curve
 - however, still affected by patient effort and submaximal inspiration
 - values in healthy young men ~ 4.5-5.0 l/s (300 l/min)
 - abnormal values < 2 l/sec (120 l/min)
 - initially thought to be more sensitive in detecting small airways disease cf. FEV₁, but this has *not* been supported

Maximum Breathing Capacity MBC

- patient is instructed to breath as hard & fast as possible for 12 seconds
- extrapolated to 1 minute, expressed as l/min, normal ~ 150-175 l/min
- predominantly affected by increased resistance & correlates well with FEV_1 (MBC ~ $FEV_1 \times 35$)
- 80% of MBC can be maintained for ~ 15 minutes
- · affected by patient cooperation & effort

Respiratory Muscle Strength

1.	P _{Imax}	\sim -125 cmH ₂ O $<$ -25 cmH ₂ O reflects inability to take an adequate inspiration
2.	$\mathbf{P}_{\mathrm{Emax}}$	~ $200 \text{ cmH}_2\text{O}$ < $40 \text{ cmH}_2\text{O}$ reflects inability to cough

Airway Resistance

• using a body plethysmograph, panting against a closed then open shutter,

- 1. shutter closed \rightarrow Boyle's law & lung volume
- 3. *specific* airway resistance and conductance are calculated for the given lung volume
- *NB*: a mouthpiece is used to remove the effects of the upper airway, panting is used to keep the larynx dilated
- in ventilated patients, may use peak to plateau δP / instantaneous flow at $P_{_{pAW}}$
- bi-exponential decay from $\mathbf{P}_{_{\text{pAW}}}$ to plateau,
 - 1. first phase due to airways resistance
 - 2. second phase due to "stress relaxation"

Alveolar-Arterial Oxygen Gradient

- normal gradient on room air ~ 8 mmHg
 - \rightarrow increasing with age ~ 25 mmHg at 70 yrs
- · increased commonly in smokers & mild early chronic bronchitis

• Frequency Dependent Compliance

Def'n: abnormal where $C_{Dyn} < 80\%$ of C_{Stat}

· decreases early with small airways obstruction

• both measurements require insertion of an oesophageal balloon, with flow measured by a pneumotachograph,

- 1. $C_{\text{Stat.}}$ inspiratory slope of a static pressure volume curve at tidal volume
- 2. $C_{\text{Dyn}} \delta V / \delta P_{\text{IP}}$

Flow Volume Loops

· differentiation of intrathoracic / extrathoracic obstruction

• the entire inspiratory, plus the immediate expiratory portions of the curve are highly *effort dependent*

- ratio of expiratory flow:inspiratory flow at 50% TLC ~ 1.0
- upper airway obstruction inspiratory flow is reduced disproportionately & EF:IF $_{50\%} > 1.0$
- · other patterns described on flow-volume loops,
 - 1. fixed obstruction
 - no significant change in airway diameter during inspiration/expiration
 - EF:IF_{50%} ~ 1.0, with both curves showing a flattened plateau

2. variable obstruction

- i. extrathoracic vocal cord paralysis - chronic neuromuscular disorders - marked pharyngeal muscle weak
 - marked pharyngeal muscle weakness
 - obstructive sleep apnoea syndrome
 - · accompanied by inspiratory stridor & flow resistance
 - $EF:IF_{50\%} > 2.0$
- ii. intrathoracic tracheal & bronchial tumours
 - tracheomalacia
 - vascular rings, thoracic aortic aneurysm
 - accompanied by expiratory airway compression & \uparrow flow resistance
 - inspiration may be normal, with $\text{EF:IF}_{50\%} < 1.0$

NB: differentiation is most accurate in the *absence* of diffuse airways disease

Multiple-Breath Nitrogen Washout

- normal lung behaves as a single compartment, with a single exponential washout curve for N_2

- there is a direct correlation between abnormal N₂ washout and frequency dependent compliance
- uneven distribution of *time constants* is believed to be the basis of both
- curve analysis is tedious, requiring computer analysis

Single-Breath Nitrogen Washout

• originally described by Fowler in 1949, but adapted to,

- 1. full inspiration from RV to TLC with 100% O_2
- 2. expired N_2 concentration measured
- 3. line of best-fit drawn through the alveolar plateau
- 4. increase in $[N_2]/l$ quantified $\rightarrow \delta N_2 \%$ per litre
 - i. normal ~ 2% / 1
 - ii. smokers ~ 10% / 1

iii. abnormal in ~ 50% of asymptomatic smokers,

- therefore *sensitive* index of early lung dysfunction
- *poor specificity* due to large number of asymptomatics who do not progress to CAL

• the original technique by Fowler involved only 1000 ml O_2 from FRC and due to preferential ventilation of the bases resulted in a steeper plateau

• Forced Expiratory Flow Rates

• difficulty defining abnormal flows at low lung volumes

• during expiration early flow resistance is in the *large airways*, where flow is predominantly turbulent

• comparative curves using He/O_2 show increased flow in the early expiratory phase

• as expiration continues, the site of resistance moves proximally toward the alveoli, where flow is predominanly laminar, and unaffected by altered gas density (He)

• therefore, at some point, the volume of isoflow, the two curves rejoin

• with small airways disease, flow becomes less density dependent and the difference between maximum flow rates decreases, and the V_{isoV} increases

- normal values for $V_{isoV} \sim 10-15\%$ of VC
- values > 25% are abnormal