PHYSIOLOGY

• lie opposite the L_1 - L_2 vertebral bodies, right being ~ 1 cm lower

a.	length	~ 11.5-12.5 cm
b.	nephrons	~ 1.3 x 10 ⁶ ~ 15% being <i>long-looped</i>
c.	renal blood flow	~ 1.25 l/min ~ 25% of resting CO
d.	GFR	~ 125 ml/min or 180 l/day ~ 20% of ERPF (625 ml/min)
	• GFR estimated by <i>c</i>	reatinine clearance
	• <i>inulin</i> would be ide	eal, however requires infusion to steady state & cumbersome
e.	renal VO ₂	~ 18 ml/min ~ 7% of basal VO ₂ \rightarrow global ERO ₂ < 10%
f.	hydrostatic pressure	

- i. glomerular capillary ~ 45 mmHg
- ii. glomerular oncotic ~ 25-35 mmHg
- iii. Bowman's capsule ~ 10 mmHg
- filtration pressure equilibrium is reached ~ 2/3 along the glomerular capillary

Renal - Physiology				
Na ⁺ excretion	normal minimum	~ 100-200 ~ 5-10	mmol/d mmol/d	
K ⁺ excretion	normal minimum	~ 30-100 ~ 20	mmol/d mmol/d	
osmolar load	osmolar load		mosm/kg/d mosm/d	
urine osmolarity	urine osmolarity		mosm/l	
obligate urine volume		~ 0.3-0.5 ~ 500	ml/kg/hr ml/d	
urine SG		~ 1003-1030)	
pН		~ 4.5-8.0	mean ~ 6	
urea		~ 5-10	mmol/kg/d	
protein		< 0.7	g/l	
WBC's		< 3/µ1 300	00/ml < 1/HPF	
RBC's		$< 1/\mu l 100$	00/ml < 1/HPF	

• Creatinine

• creatine is an amino acid, derived from,

- 1. exogenous ingestion small amount
- 2. synthesis in the liver from glycine & arginine ? ornithine

• creatine is taken-up by *skeletal muscle* ~ 150 mg / 100 g muscle

• regularly turned-over, nonenzymatically, between,

 $CPK \iff$ creatine \iff creatinine

- *creatinine* is an anhydride, cyclised degradation product of creatine
- daily production / excretion is relatively constant ~ 8-25 mmol/d (15-20 mg/day)
- this rate of production varies ~ 10% for a given individual, largely \propto skeletal muscle mass
- muscle content is low ~ 0.3 mmol/l, due to rapid diffusion out of the sarcolemma
- serum levels rise when the GFR is reduced by ~ 50%,

 δ [creatinine](%) ~ 1 / δ GFR(%)

- ie., plasma creatinine \rightarrow ~ doubles for each 50% reduction in nephron mass
- normal serum level ~ 0.06-0.11 mmol/l (see table following)
- this is elevated to a greater extent in renal or post-renal failure, than in pre-renal failure
- levels fall in pregnancy due to dilution & \uparrow GFR
- the normal *urea:creatinine ratio* ~ 70-150:1
- varies 10-25% in normal adults, decreasing with age,

 $Cl_{CR} \approx 133 - (0.64 \text{ x Age}) \quad (ml/min/1.73m^2)$

- serum creatinine is a *poor reflection* of GFR because,
 - a. excretion is by filtration and tubular *secretion*
 - b. with a fall in GFR tubular secretion increases
 - V_{dSS} increases
 - c. production varies with muscle mass
 - age
 - catabolic state
 - muscle damage (myositis, rhabdomyolysis, myopathies)
 - d. false increase with non-creatinine chromogens (Jaffe colour absorption)
 - ketones *acetoacetate*
 - cephalosporins
 - flucytosine
 - e. creatinine excretion impaired by cimetidine, cotrimoxazole

Neonate	Adult
10-20 ml/min/m² 0.7-0.8 ml/min/m² 1-2 ml/min/m² 50 ml/min/m²	60-80 ml/min/m² 75-185 ml/min/1.73m² (95%CI 70kg \rightarrow 1.7m²)
450-600 mosmol/l	1400 mosmol/l
 maternal at birth¹ infant ~ 18-35 μmol/1 child ~ 30-60 μmol/1 youth ~ 45-90 μmol/1 	 male ~ 55-120 μmol/l female ~ 45-95 μmol/l
7.35	7.4
20 mmol/l	25 mmol/l
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

■ <u>Urea</u>

- clearance varies with GFR \rightarrow reabsorption ~ 40-60%
- handled by simple diffusion, both secreted & reabsorbed in different regions of nephron

Distal Nephron

- basolateral Na/K-ATPase is mineralocorticoid sensitive
- responsible for reabsorption of ~ 5% of filtered $Na^{\scriptscriptstyle +}$
- in absence of *aldosterone* ~ 50% of distal Na^+ is reabsorbed
 - \rightarrow maximal Na⁺ excretion ~ 750 mmol/d (~ 1500 mmol/d enters DT)

• Atrial Natriuretic Hormone

- 152 AA preprohormone \rightarrow 126 AA prohormone (atriopeptigen)
 - \rightarrow 19-28 AA bilogically active peptides

• the predominant circulating hormone is the 28 AA atriopeptin

• specific *ANH receptors* located in vascular, renal and adrenal tissue \rightarrow \uparrow cGMP

· does not inhibit NaK-ATPase & effects are not inhibited by NSAIDs (ie. not PG mediated)

- effects at physiological levels,
 - 1. *natriuresis* & modest kaluresis
 - 2. \downarrow MAP \propto vasodilatation
 - 3. inhibition of renal salt/H₂O retaining systems
 - i. \downarrow renal renin release
 - ii. \downarrow aldosterone synthesis & release
 - iii. \downarrow ADH release

- in health, plasma levels respond to Na^+ intake

• in disease, *increased* ANP levels are found in,

- 1. hypervolaemic disorders
 - i. hyperaldosteronism
 - ii. CCF
 - iii. CRF
- 2. essential hypertension
- 3. pre-eclampsia
- 4. SIADH urinary $[Na^+] > 20 \text{ mmol/l}$
- 5. hyperthyroidism
- 6. cirrhosis with onset of HRS, levels decline modestly
- 7. PAT

Prostaglandins

- major proportion is PGE₂ synthesised in the *medulla*
- inhibition by NSAIDs does little to GFR/RBF in normal individuals
- in hypovolaemic states, *PG inhibitors* \rightarrow
 - 1. increased incidence of ARF
 - 2. papillary necrosis & CRF
 - 3. hyporeninaemic hypoaldosteronism \rightarrow hyperkalaemic RTA (type IV)
 - 4. acute interstitial nephritis & nephrotic syndrome

DIURETICS

- except for the osmotic agents they are all extensively *protein bound*
- except for *spironolactone*, they are secreted by the pars recta PT and act from *within* the lumen

Indications

1.	all agents \rightarrow oedemator	es states - CCF - nephrotic syndrome - ascites - cerebral oedema
2.	diluting segment agents	 hypertension diabetes insipidus RTA hypercalcuria
3.	loop agents	 renal failure hyponatraemia hypercalcaemia, hyperkalaemia, hypermagnesaemia bromide or iodide intoxication
4.	carbonic anhydrase agents	- metabolic alkalosis - glaucoma - high altitude disease
5.	potassium sparing agents	- hyperaldosteronism, 1° or 2°
6.	osmotic agents	cerebral oedemarenal tubular toxins

Benzothiazides

- synthesised as an extension of studies into carbonic anhydrase inhibitors
- inhibit *chloride* transport in the *cortical portion* of the thick ascending limb of the loop of Henle
- only ~ 10% of the filtered load of Na⁺ is handled by this segment, \therefore ceiling effect
 - \rightarrow parallel dose-response curves, having equivalent maximal *chloruretic* effects
- with the closely related *phthalimidine derivates* (chlorthalidone) used mainly for *hypertension*
- although termed diuretics, their main action in *chronic therapy* appears to be *vasodilatation*
- this is maximal at the *lower* dose range, and in this regard they are superior to loop agents

• Mechanism of Renal Action

- 1. increase excretion of *chloride & sodium*
- 2. accompanying loss of *free water*
 - in patients with diabetes insipidus, they *decrease* urinary water excretion
 - ie. fluid leaving the early DT is not as dilute
- 3. acute increases in *potassium* excretion
- 4. variable potency as carbonic anhydrase inhibitors clinically insignificant
- 5. *GFR* may be reduced direct vasodilatation of renal vasculature
- 6. enhanced reabsorption of *urate* in PT & decreased active secretion
- 7. decreased excretion of *calcium* direct action on DT
 - + volume contraction with \uparrow PT reabsorption
- 8. decreased excretion of *magnesium*

Antihypertensive Action

• given *acutely* in moderately large doses they result in decreased,

- 1. plasma volume & cardiac output
- 2. GFR & renal blood flow
- 3. mean arterial pressure

• *chronically*, the doses required for antihypertensive efficacy is far less than that required for saluresis, kaluresis and loss of free water

- the urinary filtration fraction, renal vascular resistance and plasma renin activity rise modestly
- some of the initial reduction in plasma volume is recovered, with a mean reduction of $\sim 5\%$
- CO & GFR return to pretreatment values
- potentiate the antihypertensive action of agents acting via other mechanisms

• antihypertensive effect in any given patient is unpredictable, however they are unlikely to be effective alone in severe hypertension

• the exact mechanism of their antihypertensive action is *unclear* & effects are probably multiple

• as plasma renin, noradrenaline and aldosterone all rise as compensatory mechanisms, therefore reduction in these is not involved

• *saluresis* appears to be the critical factor, as infusion of saline but not dextran, returns BP to pretreatment values

Clinical Toxicity

1. biochemical *side-effects*

- i. hypokalaemia \pm contraction alkalosis
- ii. metabolic alkalosis
- iii. azotaemia
- iv. hyperglycaemia $-\downarrow$ insulin secretion & \downarrow glycogenesis - \uparrow glycogenolysis
- v. hyperuricaemia
- vi. hypercalcaemia & hypophosphataemia rarely with hyperparathyroidism
- vii. hyperlipidaemia
- 2. purpura, dermatitis, photosensitivity reactions erythema multiforme
- 3. depression of the formed elements of blood thrombocytopaenia
- 4. interstitial nephritis
- 5. necrotizing vasculitis
- 6. cholestatic hepatitis
- 7. pancreatitis

High-Ceiling / Loop Diuretics

- three commonly used agents, frusemide, bumetanide and ethacrynic acid
- these are structurally quite distinct and *do not* form a chemical class, only a pharmacological one

■ Mechanism of Action

• inhibit *chloride* reabsorption in both *medullary* and *cortical portions* of the thick ascending limb of the LOH $\rightarrow \sim 15\% + 10\%$ of total Na⁺ reabsorption

• when GFR is reduced by > 50% the thiazides lose most of their diuretic & antihypertensive action, and a loop agent will be more efficacious

- the site of action is at the *luminal membrane*, to inhibit the Na⁺-K⁺-2Cl⁻ *cotransport* mechanism
- frusemide & bumetanide are both *sulphonamides*

- 1. \downarrow PAOP possibly via production of *prostacycline*
- 2. \downarrow pulmonary oedema
- 3. enhanced interstitial \rightarrow intravascular fluid movement
 - tends to maintain intravascular volume during diuresis

Clinical Toxicity

- two important generalisations,
 - 1. abnormalities of fluid & electrolyte balance are most common
 - i. hypokalaemia
 - ii. metabolic alkalosis
 - 1 excretion of *ammonia* and *titratable acid*
 - iii. hyponatraemia
 - iv. hypocalcaemia, hypomagnesaemia
 - \uparrow excretion of both Ca⁺⁺ and Mg⁺⁺ in proportion to the naturesis
 - 2. side-effects unrelated to the primary action of these agents are rare
 - i. hyperuricaemia usually biochemical, clinical gout rare
 - ii. GIT disturbances with or without ulceration
 - iii. depression of the formed elements of blood
 - iv. skin rashes bullous, urticarial
 - v. paraesthesias
 - vi. liver dysfunction
 - vii. allergic interstitial nephritis reversible renal failure
 - viii. mild carbohydrate intolerance frusemide only
 - ix. *deafness* ethacrynic acid >> frusemide >> bumetanide
 - synergistic with aminoglycosides

Spironolactone

- a 17-spirolactone steroid which is a competitive antagonist of mineralocorticoids (aldosterone)
- the receptor is a cytoplasmic protein which appears to exist in two allosteric forms
- spironolactone (\pm its metabolite *canrenone*) bind to this protein, therefore
 - 1. prevent it from assuming the active conformation
 - 2. are effective only in the presence of endogenous or exogenous aldosterone
 - 3. may be overcome by increasing concentrations of mineralocorticoid
- the *urinary Na⁺:K⁺ ratio* serves as a direct index of aldosterone activity
- only ~ 5% of filtered Na⁺ is handled in the DT, \therefore maximal diuresis is small
- often used to offset the kaluric/magnesuric effects of loop agents
- spironolactone also increases *calcium* excretion via a direct effect on tubular transport

• at very high concentrations, it also inhibits the biosynthesis of aldosterone, and may therefore have a direct diuretic action, however this is not observed clinically

Clinical Toxicity

- a. principal toxic effects relate to hyperkalaemia
- b. gynaecomastia due to androgen-like activity
- c. minor GIT symptoms

Clinical Uses & Dosage

- a. hypertension
- b. refractory oedema usually in conjunction with another diuretic
 - especially states of secondary hyperaldosteronism
- c. diagnosis & management of primary hyperaldosterone states

• oral tablets as 25, 50 and 100 mg

- average daily doses ~ 100 mg/d in adults, and 3.3 mg/kg for children

• Other Potassium Sparing Agents

• *amiloride* and *triamterene* appear to have identical mechanisms of action

- interfere with transport in the late segments of the nephron,
 - a. modest natriuresis mainly accompanied by chloride
 - b. under normal conditions, there is little change in potassium excretion
 - c. when potassium excretion is high,
 - i. increased dietary intake
 - ii. concomitant use of a potassium wasting diuretic
 - iii. excessive mineralocorticoid activity

these agents result in a marked *decrease* in potassium excretion

- **NB:** their action is similar to that of spironolactone, however,
 - i. they *are not* antagonists of aldosterone
 - ii. their principal effect appears to be to inhibit the luminal electrogenic entry of *sodium* in the distal tubule \rightarrow decreased electrochemical gradient
 - iii. they also inhibit distal secretion of hydrogen ion
 - \rightarrow resulting in alkalinisation of the urine

• Carbonic Anhydrase Inhibitors Acetazolamide

- major effects in the proximal tubule, at the luminal brush border
- the reduction in pulmonary CO₂ excretion is transient & clinically unimportant
- diuretic action is weak due to compensation by later tubular segments
- increases urinary excretion of Na⁺, K⁺ and HCO₃ without altering chloride
- produce a clinical type II RTA

• Osmotic Agents Mannitol

- non-absorbable, non-metabolised carbohydrate with MW ~ 182

• in controlled studies, prevention of ARF, or reduction in duration or mortality of ARF has *not* been demonstrated, except possibly post-transplantation

majority of action is due to inhibition of NaCl & H₂O reabsorption in the *ascending LOH*side effects,

side effects,

a.

- initial ECF overload exacerbation of CCF
- b. hypotension late volume depletion - vasodilatation 2° hyperosmolality
- c. factitious hyponatraemia
 - not truely "factitious", actually hyperosmolar hyponatraemia
- d. hyperosmolality
- e. acute renal failure

Anuria

• Common

- a. "apparent" anuria 2° to dehydration
- b. blocked catheter
- 3. bladder neck obstruction benign / malignant
- 4. trauma urethral - bladder
- 5. acute renal disease in patient with one functioning kidney

• Uncommon

1.	urethral obstruction	bladder calculusstricture
2.	bilateral ureteric obstruction	 calculi papillary necrosis retroperitoneal fibrosis retroperitoneal tumour surgical misadventure
3.	bilateral vascular obstruction	renal artery thrombosisrenal vein thrombosisaortic dissection
4.	acute renal failure	 parenchymal diseases * usually oliguria, not anuria
5.	congenital GUS anomalies	

Diagnosis

a.	histor	ry	pain, haematuria, urinary symptomssurgerydrugs
b.	exam	ination	 palpate bladder & kidneys prostate fluid status lower limb ischaemia place flush replace catheter
c.	inves	tigations	
	i.	FBE	 - infection, WCC - haemolysis, anaemia, thrombocytopaenia - eosinophilia - ESR
	ii.	electrolytes	 - urea, creatinine - Na⁺, K⁺, HCO₃⁻ - LFT's, LDH
	iii.	AXR plain	kidney position/sizecalcification aorta/renalbladder shadow
	iv.	abdominal U/S	hydronephrosiskidney size & morphology
	v.	perfusion scan	

Oliguria

Def'n:	urine	e output	< 0.3	3-0.5 ml/kg/	hr	< 400 < 16	ml/d ml/hr
	Knai	us, OSF	\rightarrow	ARF			
	1.	urine ou	itput	≤479	ml/2	4 hr or ≤	158 ml/8 hr
	2.	urea		≥36	mmo	01/1	
	3.	creatinii	ne	≥270	μmo	1/1	

• Common Causes

- 1. hypovolaemia, dehydration
- 2. hypotension
- 3. sepsis
- 4. acute tubular necrosis
- 5. mechanical catheter problems

Aetiology

- hypotension 1. prerenal - dehydration, hypovolaemia - cardiac failure - sepsis
- 2. postrenal - obstruction, calculi
 - fibrosis
 - trauma, urethral damage
 - abdominal hypertension

3. intrinsic renal disease

- i. congenital - APKD, medullary sponge kidney
- ii. ATN - haemorrhage
 - sepsis, shock
 - nephrotoxins
 - burns
 - pancreatitis
- iii. glomerulonephritis
- hepatorenal syndrome iv.
- vascular events - emboli v.
 - thrombosis
 - fibrosis
- raised intra-abdominal pressure 4.

Investigation

a.	history	CRF, preceding renal functiontrauma, surgery
b.	examination	volume status, perfusioncardiac output, sepsiscatheter flush
c.	uninalysis	M,C&SSG, protein, Hbsediment microscopy, casts
d.	plasma / urine electroly	rtes and osmolality
0	specific investigations	plain AYP

- plain AXR e. specific investigations
 - renal U/S
 - IVP
 - renal biopsy
 - CT scan
 - technetium DPTA scan

Polyuria

Def'n:	urine output	> 5000	ml/d
		> 200	ml/hr
		> 500	ml/hr in severe cases

• mild polyuria, < 200 ml/hr, is common and usually *benign*

 \rightarrow seen in the recovery phase of many illnesses or postoperatively

• severe polyuria is less common and usually implies DI or polyuric renal failure

• Common Causes

1.	Ϋ́Ε	-	excessive oral fluids, Na ⁺ intake reabsorption of 3 rd space losses return of bowel function supine posture
2.	↑ R	-	notropes heophylline relief of raised intra-abdominal pressure, post-obstruction
3.	↓ tu	bular reabsorpt	on
	i.	acute renal fa	lure - polyuric renal failure (Cr > 0.2) - recovery phase of ATN
	ii.	diuretics	
	iii.	osmotic agent	s - mannitol, hyperglycaemia

- iv. hypothermia
- v. diabetes insipidus central | nephrogenic
 - hypokalaemia, hypercalcaemia

Management

а	ι.	history	- fluid intake
			- PH _x renal disease
			- surgery, trauma
			- drugs, etc.
t).	examination	- fluid status
			- mental state, etc.
			,
C		uninalysis	- M,C&S, SG, glucose
Ċ	1.	plasma/urine	- Na^+ , K^+ and osmolality
e	.	plasma biochemistry	- glucose, Ca ⁺⁺ , K ⁺ , HPO ₄ ⁼ - urea and creatinine
f		specific investigations	- CXR, fluid status- ADH assay (DDAVP challenge)

• Classification

a. water / saline excess

- i. IV fluids
- ii. reabsorption of 3rd space losses
- iii. hypothalamic thirst disorder
- iv. psychogenic polydipsia
- v. drug induced polydipsia anticholinergics
 - thioridazine, chlorpromazine

b. osmotic diuresis

- i. hyperglycaemia
- ii. uraemia
- iii. drugs mannitol
 - hypertonic dextrose, dextrans
 - IV contrast media

c. central DI

i.	idiopathic ~ 30%	
ii.	traumatic ~ 30%	- CHI
		- surgery
iii.	neoplastic	- 1° & 2° , especially breast & lung
iv.	vascular lesions	- post-partum necrosis
		- aneurysm
		- hyperviscosity syndrome
v.	chronic inflammatory	- TB, sarcoidosis

vi. hypoxic brain damage

d. nephrogenic DI

		0	
i.		congenital and familial	
ii	•	hypercalcaemic	- hyperparathyroidism, nephrocalcinosis
ii	i.	hypokalaemic	diuretic abuseConn's syndrome, ? Bartter's
iv	ν.	renal failure	 post-obstructive pyelonephritis ATN recovery transplantation polycystic disease
v	•	drugs	 diuretics lithium, demeclocycline methoxyflurane, F⁻
v	i.	systemic disease	- amyloid - sickle cell disease - myeloma

ACUTE RENAL FAILURE

Def'n: any reduction in renal *excretory function* sufficient to result in retention of nitrogenous waste:

1.	biochemistry	 urea > 20 mmol/l creatinine > 0.2 mmol/l U/P creatinine < 20 "filtration failure"
2.	persistent GFR	< 15-20 ml/min < 10-15 ml/min/m ²
3. 4.	urinary indices urine output	 Na⁺ & osmolality → tubular dysfunction < 0.3-0.5 ml/kg/hr * but "oliguria" ≠ ARF

• Causes of Acute Renal Failure

LIGW states, 'prerenal' and 'postrenal' failure should be considered as respective *azotaemia syndromes*, and not included in the causes of ARF, as they do not indicate intrinsic renal disease
however, prolonged pre/post-renal disease will result in structural renal damage

- a. prolonged impairment of *renal blood flow*
 - i. hypovolaemia, dehydration
 - ii. hypotension
 - iii. cardiac failure
 - iv. renovascular disease
 - v. intra-abdominal hypertension
 - vi. hepatorenal disease

b. *intrinsic renal disease*

- i. glomerulonephritis
- ii. nephrotoxic tubular disease ATN
- iii. ischaemic tubular disease ? ATN
- iv. interstitial nephritis
- v. infection bacteria, TB
- vi. infiltration
- vii. trauma

c. *obstructive renal disease*

- i. calculi, prostatic, stricture
- ii. trauma, surgical, retroperitoneal fibrosis

d. alternative classification

- i. filtration failure
- ii. tubular dysfunction
- iii. oliguric or non-oliguric

Risk Factors

1.	acute disease states	 sepsis, SIRS jaundice, liver dysfunction raised intra-abdominal pressure renal trauma, soft tissue trauma transfusion reaction, DIC anaphylaxis, anaphylactoid reactions muscle injury, thermal burn, electrocution
2.	chronic disease states	 advancing age diabetes mellitus renal disease hyperuricaemia vascular disease
3.	physiologic changes	 advancing age tachycardia, hypotension ↑ CVP, ↓ RVPP high or low CO, SVR abnormal O₂ extraction ratio oliguria, polyuria, osmolar diuresis abnormal urine indices ± fluid balance, oedema high or low protein intake
4.	chronic drug therapy	- NSAID's, diuretics, cyclosporin, ABx
5.	acute drug therapy	
	i. <i>ATN</i>	 aminoglycosides, amphotericin, cephalosporins diuretics, radiocontrast agents, rifampicin lithium, cisplatin, mithramycin
	ii. <i>interstitial nephritis</i>	 penicillins, cephalosporins, sulphonamides, rifampicin frusemide, thiazides, triamterene aspirin, NSAID's cimetidine, captopril
6.	procedures	 aortic, renal cross-clamping transfusion surgery (CNS, thoracic, major abdominal/orthopaedic)
7.	impaired RBF	 hypotension, malignant hypertension renal artery occlusion hepatorenal failure endotoxaemia renal vein thrombosis renal venous hypertension (CVP, IABP, abdo surgery)

- HUS, TTP, PAN, DIC

h. toxic causes

- i. drugs
 - aminoglycosides, amphotericin, allopurinol, cephalosporins, chemotherapeutic agents, hydrallazine, EDTA, lithium, mannitol, methoxyflurane, paracetamol, penicillamine, probenecid, procainamide, propylthiouracil, radiocontrast media, rifampicin, sulphonamides, thiazides, vit. D
- ii. toxins
 - CCl₄, ethylene glycol, heroin, HgCl₂, heavy metals, methanol, organophosphates, toluene, uranyl nitrate

i. *metabolic causes*

- i. electrolytes hyper- Ca^{++} , hypo- K^{+}
 - hyperphosphataemia
- ii. metabolites hyperuricaemia
 - pigments (bilirubin, myoglobin, Hb)
 - iii. high plasma oncotic pressure

j. post-renal

- urethral/bladder neck obstruction
- bilateral ureteral obstruction
- stones, clot, tumour
- papillary necrosis
- retroperitoneal fibrosis
- surgical ligation
- bladder rupture, urethral trauma
- renal pelvic trauma

Acute Tubular Necrosis

- the most common cause of ARF in ICU (~ 70%), most are *multifactorial*
- the associated *mortality* ~ 30-60%
- those at *high risk* (50-70%) are those associated with,
 - 1. oliguria
 - 2. trauma, postoperative
 - 3. sepsis
 - 4. underlying poor medical condition
 - 5. elderly
- those at *lower risk* are associated with,
 - 1. polyuria \rightarrow mortality ~ 26%, cf. 50% in oliguric ARF
 - 2. nephrotoxic
 - 3. obstetric

Aetiology

- a. factors which interfere with *renal blood flow*
 - i. cardiogenic shock ischaemia, arrhythmia, myopathy
 - ii. hypovolaemia, hypotension, dehydration
 - iii. SIRS, severe sepsis, pancreatitis, burns
 - iv. severe pre-eclampsia, eclampsia
 - v. severe renovascular disease
 - vi. scleorderma, malignant hypertension, DIC, TTP, rhabdomyolysis, haemolysis
 - vii. hepatorenal syndrome
 - viii. intra-abdominal hypertension
 - ix. mechanical ventilation
 - x. prolonged aortic cross-clamping

b. *nephrotoxic agents*

- i. endogenous myoglobin, haemoglobin, severe hypercalcaemia, urate
- ii. exogenous
 - antibiotics aminoglycosides, cephalosporins, sulphonamides
 - amphotericin, rifampicin
 - cytotoxics cyclosporin, cisplatin, methotrexate, mithramycin
 - radiocontrast media
 - other drugs: ACE inhibitors, allopurinol, hydrallazine, EDTA, lithium, mannitol, methoxyflurane, paracetamol, penicillamine, probenecid, procainamide, propylthiouracil, thiazides, vit. D
 - toxins: CCl₄, ethylene glycol, heroin, HgCl₂, heavy metals, methanol, organophosphates, toluene, uranyl nitrate

Initiation Phase ATN

Ischaemia

- OFR being secondary to afferent afteriorar c
 - 1. sympathetic stimulation
 - 2. intra-renal renin-angiotensin activation
 - *tubuloglomerular feedback* prevents large losses of Na⁺ which would otherwise occur with failure of reabsorption ("acute renal success")
 - however, frusemide which inhibits TGF does not protect against ATN
 - interruption of the renin-angiotensin axis does not protect against ATN
 - 3. inhibition of renal synthesis of PGE_2
 - 4. \downarrow ANH
 - 5. ↑ ADH
 - 6. \uparrow adenosine *vasoconstrictor in renal vasculature
 - 7. \uparrow endothelin

Nephrotoxins

• prerenal hypoperfusion markedly increases susceptibility to ATN from nephrotoxic agents

• presumably due to increased tubular concentration (::tubular cell []'n) & transit time

• protection from toxic agents is afforded by saline loading (\pm mannitol) which increase proximal tubular flow, cf. frusemide which only increases distal flow

• studies with radiocontrast agents show *no benefit* from mannitol, and in the presence of background disease (IDDM) actually enhances toxicity

Maintenance Phase ATN

• GFR commonly < 5%

• RBF is usually ~ 25-50% of normal

• factors acting to maintain filtration failure,

- 1. tubular *obstruction*
 - micropuncture studies have often (not always) shown increased pressure
- 2. tubular *backleak*
 - probably only a minor role in overall reduction in GFR
- 3. *vasodilatation* of the efferent arteriole minor
- 4. decreased glomerular membrane *permeability* unlikely, no structural defect

Mechanism of Oliguria

- a. glomerulo-tubular balance
- b. decreased glomerular permeability
- c. intratubular obstruction
- d. interstitial oedema
- e. cortical ischaemia

Drugs

- 1. aminoglycosides
 - peak levels correlate with bactericidal activity
 - *trough levels* correlate more closely with clinical toxicity
 - toxicity less with single daily doses, greater with infusions, due to *saturable uptake* mechanism for aminoglycosides
- 2. amphotericin B
 - toxicity increases with a *cumulative dose* > 2-3g
 - average dose 0.5 mg/kg/d for 70 kg \rightarrow 70 days
 - initial disorder is *distal tubular* dysfunction with,
 - i. nephrogenic DI
 - ii. distal RTA
 - iii. magnesium & potassium wasting
 - similar pattern seen with *cisplatin*
- 3. NSAIDs
 - · interfere with renal PG synthesis and increase incidence of ATN in hypoperfusion
- 4. radiocontrast media
 - potentiate ARF with hypoperfusion, shock states & sepsis
 - appear to be little difference between older agents & newer non-ionic, low osmolality contrast media

Uric Acid Nephropathy

• three types of renal lesion,

- 1. interstitial parenchymal urate deposition & CRF
- 2. nephrolithiasis
- 3. ATN
 - especially if plasma level rises acutely
 - eg. tumour lysis syndrome, treatment of haematological malignancy

• ATN Risk Factors

b.

a.	preoperative
----	--------------

i.	patient factors	- age > 50
		- PH_x renal disease, hypertension
		- diabetes
		- drugs (as above)
ii.	delayed resuscitation	- prolonged dehydration
		- hypoxia, hypovolaemia, hypotension
iii.	disease factors	- biliary tract sepsis, jaundice
		- other sepsis
		- major trauma
intra	operative	

- i. prolonged hypovolaemia, hypotension
- ii. anaesthesia GA > LA
 - mechanical ventilation
- iii. surgery site and duration
 - major intra-abdominal, vascular
 - cardiothoracic
 - major trauma

c. *postoperative*

- i. prolonged hypovolaemia, hypotension, haemorrhage
- ii. intra-abdominal hypertension ³ 30 mmHg
- iii. pancreatitis
- iv. sepsis
- v. mechanical ventilation
- vi. drugs as above

d. non-surgical ATN

- i. dehydration, hypovolaemia, hypotension
- ii. aminoglycoside excess
- iii. pigmenturia rhabdomyolysis, haemolysis
- iv. hepatic failure

Histological Lesion

a. *nephrotoxic lesion*

- tubular epithelial necrosis with *BM sparing*
- epithelial regeneration takes days
- frequently non-oliguric

b. ischaemic lesion \rightarrow tubulorrhexis

- loss of tubular epithelium and BM
- epithelial regeneration takes weeks
- found in most cases of ATN

Complications of ARF/ATN

f.	cardiovascular	 CCF, hypervolaemia hypertension, 25% after 2 weeks arrhythmias, pericarditis, effusion
g.	GIT	 anorexia, nausea, vomiting, ileus haemorrhage ~ 10-30%, usually mild
h.	neurological	 lethargy, somnolence, confusion asterixis, myoclonic twitches, seizures increased sensitivity to anaesthetic agents

• Causes of Pulmonary Infiltrates in ARF

- a. LVF / CCF
- b. bacterial pneumonia
- c. atypical pneumonia viral, mycoplasma, Legionaire's disease, etc.
- d. septicaemia
- e. ARDS

f.	autoimmune diseases	- Goodpasture's
		- SLE, polyarteritis nodosa, systemic sclerosis
		- Wegener's granulomatosis

g. disseminated TB

• recent paper stating cANCA +'ve patients more common cause of renal dysfunction & pulmonary haemorrhage cf. Goodpasture's syndrome (Niles, AIM 1996)

• Causes of Acidosis in ARF

- a. early
 - i. *tubular dysfunction*, reduced H⁺ secretion
 - ii. hyperchloraemic metabolic acidosis
 - iii. normal anion gap
- b. later
 - i. glomerular dysfunction
 - ii. accumulation of organic acids $(HSO_4^{=}, HPO_4^{=})$
 - iii. high anion gap acidosis
 - iv. rarely \rightarrow AG > 23 / HCO₃ < 12 mmol/l
- c. other causes
 - ARF 2° low cardiac output \rightarrow lactic acidosis
 - respiratory failure \rightarrow respiratory acidosis
 - starvation in RF \rightarrow ketoacidosis
 - · rhabdomyolysis, accumulation of organic acids, hyperkalaemia & high AG acidosis
- *NB*: non-volatile acid production ~ 1 mmol/kg/day HCO₃⁻ falls 1-2 mmol/l/day in ARF

Investigations

Biochemistry

Urinary Indices of Renal Failure					
Parameter	Pre-renal ARF	ATN			
urine osmolality	> 500	< 350	mosm/l		
U/P osmolality	> 1.8	~ 0.8-1.2			
urine SG	> 1.020	~ 1.010-	-1.015		
urine [Na ⁺]	< 20	> 40	mosm/l		
urine [Cl ⁻]	< 20	> 20	mosm/l		
U/P urea	> 8	≤ 3	rarely ≤ 8		
U/P creatinine	> 40	< 20			
RFI	< 1	> 1			
FE _{Na}	< 1	>1			

Def'n: RFI = renal failure index		= renal failure index	= urine [Na ⁺] / [U/P creatinine]	
FE _P	Na	= % fractional excretion Na ⁺	= [U/P Na ⁺].100 / [U/P creatinine]	

• Abnormal Urea/Creatinine Ratio

Def'i	n: no	ormal U:C ratio	~ 100:1 (R: 70-150) > 200:1 is indicative of <i>pre-renal</i> disease
1.	high	ratio	
	i.	↑ urea	 dehydration, hypovolaemia GIT bleeding catabolic states, sepsis hyperalimentation drugs: tetracyclines, steroids
	ii.	\downarrow creatinine	- elderly, low muscle mass
2.	low	ratio	
	i.	↓ urea	liver failure, protein malnutritionhepatorenal syndrome
	ii.	↑ creatinine	 rhabdomyolysis acute muscular diseases ketones, cephalosporins (factitious)

Urinary Sediment

1.	1. cast types		
	i.	hyaline casts	 fever, diuretics, exercise renal diseases
	ii.	red cell casts	- glomerulonephritis
	iii.	white cell casts	- pyelonephritis
	iv.	waxy casts	- chronic renal disease
2.	clini	cal syndromes	
	i.	ATN	 granular, cellular & pigmented casts epithelial cells
	ii.	GN	- RBC's, RC-casts, proteinuria, lipid
	iii.	pyelonephritis	- WBC's, WC-casts, proteinuria
	iv.	interstitial nephritis	- WBC's, WC-casts, cellular casts

- interstitial nephritis - WBC's, WC-casts, cellular casts
 - eosinophils, epithelial cells, protein and lipid

Imaging

- 1. ultrasound
 - 93-98% sensitivity for detection of renal tract obstruction
 - also assesses renal size, cortex/medullary morphology
- 2. CT scan
- 3. IV pyelogram
- 4. radio-isotope perfusion scan
- 5. renal angiogram
- **NB:** 2-5 may effectively assess renal perfusion, vascular supply

Renal Biopsy

- 1. glomerulonephritis
- 2. vasculitis
- 3. SLE
- 4. Goodpasture's syndrome
- 5. TTP
- 6. interstitial nephritis
- 7. oliguria lasting > 8 weeks

Renal Failure - Frusemide

Beneficial Effects

- a. \uparrow tubular and urine flow
- b. \uparrow Na⁺ and osmolar clearance
- c. \downarrow tubular O₂ demand
- d. *decreases GFR* \propto tubuloglomerular feedback (TGF) $\rightarrow \quad \downarrow O_2$ demand
- e. ?? conversion of oliguric to non-oliguric renal failure

• Deleterious Effects

- a. hypovolaemia
- b. hypokalaemia, hyponatraemia
- c. direct *nephrotoxicity* idiosyncratic *interstitial nephritis*

d.	ototoxicity	>4 mg/min, or	$(250 \text{ mg} \rightarrow 60 \text{ mins})$
		$> 80-100 \ \mu g/ml$	

- e. additive toxicity with other drugs, esp. aminoglycosides
- f. *decreased GFR* TGF (\uparrow Na⁺ excretion $\rightarrow \downarrow$ GFR)

• beneficial uses in *non-renal failure*,

- a. fluid overload states absolute & relative (CCF)
- b. cerebral oedema
- c. hyperkalaemia
- d. hypercalcaemia ? this is no longer recommended
- e. ?? renal protection $\downarrow O_2$ demand

• problems with most frusemide studies,

- a. diagnosis of ARF unclear
 - especially distinction of ATN from pre-renal ARF
- b. different risk groups
 - obstetric & medical have better prognosis than surgical and post-traumatic
- c. uncontrolled, or retrospective controls
- d. variability in drug dosages
- e. small numbers

Brown, Ogg, Cameron Clin. Nephrol. 1981

- randomised controlled trial of high dose frusemide, 1 ± 3 g/day
- predominantly surgical and post-traumatic renal failure, ie. high risk
- continuous frusemide infusion,
 - 1. non-oliguric converted to *polyuric* renal failure ~ 80% or polyuria maintained ~ 100%
 - 2. *no difference* in,
 - i. the number of dialysis runs required \rightarrow 7 vs 6
 - ii. mortality
 - iii. biochemical renal recovery
 - 3. 2 patients suffered *ototoxicity*

• Klienknecht et al. Nephron 1976

- randomised controlled trail, high dose frusemide, 1.5-6 mg/kg q4h
- 50% surgical or traumatic, 22% obstetric
- no difference in the number of dialysis runs required, nor the oliguric period

Lucas et al. Surgery 1977

NB: "frusemide does not protect against renal failure"

• frusemide 0.5 mg/kg given to 45 post-traumatic (incipient) renal failure patients after *volume loading*,

- 1. resulted in an increase in Na⁺ and osmolar clearance
- 2. *no change* in,
 - i. GFR
 - ii. RBF
 - iii. intrarenal distribution of blood flow
- 3. 10% developed *hypotension* 2-10 hrs following administration

• questions ??

- 1. adequacy of the volume loading used
- 2. would results have been the same if volume status was maintained

Renal Failure - Prophylaxis & Protection

Methods

1. physiological

- i. blood volume
- ii. cardiac output \rightarrow RBF/GFR
- iii. O_2 delivery
- iv. sodium excretion
- v. nutrition

2. physical

- i. detection / management of intra-abdominal hypertension
- ii. detection / management of post-renal obstruction
- iii. limitation of aortic clamp times
- iv. avoidance of embolisation
- v. minimise direct trauma

3. pharmacological

- i. avoid nephrotoxins antibiotics, pigments, contrast dyes, etc.
- ii. avoid inhibitors of autoregulation NSAID's
- iii. diuretics
- iv. renodilators
- v. other agents free radical scavengers
 - Ca⁺⁺-channel blockers, etc.
- 4. *dialytic therapies*
- 5. *monitoring* ?? improvement in outcome

Physiological Defence

1.	defence of blood volume	 - IV fluids (Na⁺ containing[§]) - euvolaemia or mild hypervolaemia
2.	maintenance of $CO \pm MAP$	 IV fluids R_x of arrhythmias inotropes
3.	high sodium excretion [§]	- \downarrow tubular reabsorption $\rightarrow \downarrow$ renal VO ₂ - theoretical, <i>volume</i> more important
4.	maintain DO ₂ - normal [Hb], S_pO_2 and avoidance of hypercarbia/acidosis
5.	nutrition ? probable	benefit in <i>outcome</i> , not absolute

Diuretics

1. *mannitol*

- found to be protective in many animal studies
- both for ischaemic (NA & renal artery clamping) and nehprotoxic models
 - few human studies, most uncontrolled
 - \rightarrow reversal of oliguria but *not* renal function
- proposed mechanisms of action,
- i. osmotic diuresis
- ii. "anti-sludging" tubular cytoprotection
- iii. ↑ renal vasodilatory PG synthesis
- iv. free-radical scavenger
- LIGW states, *no controlled trials*,
 - .: "not recommended as a renal protective agent"
- Conger, AJKD 1996, "possible benefit post-transplantation, no proven benefit in any other scenario, possibly detrimental in radiocontrast studies"

2. frusemide

- animal studies variable \rightarrow some benefit in *ischaemic*,
 - but not in nephrotoxic injury
- conflicting results for prophylactic use in surgical patients
- effects are negligible once *volume* is aggressively controlled
- no overall benefit in established oliguric renal failure
- theoretical benefit in *critical ischaemic lesion* ($\downarrow O_2$ -demand)

NB: Brown, Ogg & Cameron (Clin. Nephrology, 1980)

- i. non-oliguric converted to polyuric renal failure ~ 80% polyuric renal failure maintained ~ 100%
- ii. no difference in the number of *dialysis runs* required (7 vs 6)
- iii. no difference in *mortality*
- iv. no difference in biochemical *renal recovery*
- however, in this study, the controls received 1g of frusemide over 4 hrs
- there were only 50 patients total, ~ 25 in each group

• if we accept that non-oliguric renal failure has a better prognosis than oliguric renal failure, then why didn't conversion to the former improve prognosis ??

· all patients were in established ARF, no good RCT looking at 'prevention'

1. low dose dopamine

i.

- \uparrow DO₂ via modest \uparrow CO (~ 20% on low dose), and usually an \uparrow RBF
- potential \downarrow renal VO₂ due to inhibition of Na⁺ reabsorption
- potential renal vasodilator in normal man, but ?? not in *septic* patients
- · conflicting animal evidence regarding protective effect
- known *diuretic effect* \rightarrow demonstrated in uncontrolled human studies
- · no controlled human studies looking at long term renal function or mortality
- adverse effects include,
 - extrarenal side-effects tachyarrhythmias
 - \uparrow PCWP, RV & LV afterload
 - \uparrow shunt fraction & $\downarrow P_{aO2}$
 - \downarrow central respiratory drive
 - \downarrow TSH release & ? other anterior pituitary function
- ii. impairs TGF mechanism, thereby may worsen regional O₂ supply/demand
- iii. the induced diuresis is not always associated with an increase RBF
- iv. diuresis may mask, or augment hypovolaemia & renal hypoperfusion
- similar \uparrow RBF achievable with inotropes *not* affecting tubular function
- tubular & DA₁-receptor effects blocked by commonly used drugs
- *NB*: "if *dopamine*, or other *diuretics* are used in the setting of ARF, then greater attention must be paid to the basic elements of critical care blood volume, renal perfusion pressure (MAP) and cardiac output as urine output can no longer be used as a guide to the adequacy of RBF" (Duke, Bersten AIC 1992)

• Other Agents

- Ca⁺⁺ entry blockers, proven *lack* of benefit in ARF
- may be of some benefit post-transplantation
- · agents investigated but inadequate studies,
 - 1. ATP-MgCl₂
 - 2. inosine
 - 3. clonidine
 - 4. chlorpromazine

(Conger, AJKD)

Management ARF

- 1. *dialysis*
 - indications
 - i. fluid overload | pulmonary oedema
 - ii. hyperkalaemia
 - iii. metabolic acidosis, refractory to R_x
 - iv. uraemic symptoms | complications (Ur > 50 mmol/l)
 - v. hyperuricaemia
 - aim in maintenance phase for creatinine ~ 200-400 μ mol/l

- urea ~ 20-40 mmol/l

- 2. management of *uraemic complications*
 - i. pericarditis, effusion
 - ii. anaemia, thrombocytopaenia, bleeding tendency
 - iii. encephalopathy, myopathy, neuropathy
 - iv. peptic ulcer disease
 - v. infections | sepsis
- 3. biochemical homeostasis
- 4. nutrition
 - some poorly controlled studies suggest improved survival with use of TPN
- 5. monitor drug therapy / avoid nephrotoxic agents
- 6. normalise intra-abdominal pressure aim for $< 20 \text{ cmH}_2\text{O}$
- *NB*: maintenance of volume status & biochemical normality during polyuric recovery phase
- other therapies of little or no use,
 - 1. Ca⁺⁺ chanel blockers * except transplants
 - 2. adenosine receptor antagonists aminophylline
 - 3. oxypentifylline
 - 4. chlorpromazine
 - 5. clonidine
 - 6. ATP-MgCl₂
 - 7. ANF

Nephritic Syndrome

• Essential Features

1.	usually sudden onset					
2.	haematuria and RBC casts					
3.	hypertension	> 140/90	mmHg	(or > 20% increase)		
4.	biochemical renal insufficiency					
	i. \uparrow creatinine	> 0.14	mmol/l			
	ii. uraemia	> 20	mmol/l			
5.	mild <i>oedema</i> - usually facial - rarely generalized					
6.	mild <i>proteinuria</i>	< 3 g/d				
7.	↑ESR					
8.	hypergammaglobulinaemia					
9.	low <i>complement</i> levels,					
	i. low $C_{3,4}$	\rightarrow	"classical"	pathway activation		
	ii. low C_3 / normal	$C_4 \rightarrow$	"alternativ	e" pathway		
NB:	NB: alternate pathway activation seen in membranoproliferative GN					

• <u>Aetiology</u> Common

- a. post-streptococcal GN
- b. Goodpasture's syndrome
- c. SLE
- d. Henoch-Schönlein purpura
- e. polyarteritis nodosa

Nephrotic Syndrome

• Essential Features [®] Leaky Glomeruli

- a. \uparrow creatinine and urea
- b. generalized *oedema*
- c. heavy *proteinuria* > 3.5 g/d
- d. hypoalbuminaemia < 20 g/l
- e. hyperlipidaemia / lipiduria
- f. \pm hypertension
- g. *no* haematuria
- h. oliguria
- i. usually insidious onset

Aetiology

a.	primary glomerular lesions		~ 75%	
	i.	membranous GN	~ 40%	
	ii.	minimal change GN	~ 15% adult / 80% children	
	iii.	focal glomerulosclerosis	~ 15%	
	iv. proliferative GN			
		 membranoproliferative 	~ 7%	
		 mesangioproliferative 	~ 5%	
		• other	- crescentic, focal	

b. secondary glomerular lesions ~ 25%

i. *diabetes mellitus*

- ii. infections
 - · post-streptococcal, bacterial endocarditis, shunt infections
 - · leprosy, syphilis, HBV, EBV, malaria, schistosomiasis, filariasis
- iii. drugs
 - gold, penicillamine, probenecid, antivenoms / antitoxins
 - contrast media, captopril, street heroin
- iv. collagen-vascular disease
 - SLE, PAN, Henoch-Schönlein purpura, Goodpastures'
 - necrotising vasculitis (inc. Wegener's), dermatomyositis
- v. malignancy
 - · Hodgkin's & NH lymphomas, leukaemia, carcinoma (breast, GIT), melanoma
 - Wilm's tumour, multiple myeloma
- vi. familial
 - sickle cell disease, Alport's syndrome (sensorineural deafness)
- vii. miscellaneous
 - sarcoidosis, amyloidosis
 - pre-eclampsia, renovascular hypertension
 - · thyroiditis, myxoedema, morbid obesity
 - renal transplant rejection
 - vesico-ureteric reflux

DIALYTIC THERAPIES

Indications

- 1. acute reversible *renal failure* especially in critically ill
 - i. hyperkalaemia
 - ii. fluid overload | pulmonary oedema
 - iii. refractory metabolic acidosis
 - iv. uraemic symptoms / complications
 - v. hyperuricaemia
- 2. *fluid overload* states refractory to conventional therapy

3. drug overdosage

- i. lithium
- ii. methanol, ethylene glycol, isopropanol
- iii. salicylates
- iv. rarely theophylline, barbiturates

4. plasmapheresis

- i. hyperviscosity syndromes
- ii. GB syndrome
- iii. myasthenia

5. haemoperfusion

- theoretical advantages for lipid soluble / highly protein bound molecules
- studies have *not* shown improved morbidity/mortality
- severe *thrombycytopaenia* is a common side-effect
- recently developed *polystyrene resins* (Amberlite XAD-4) have high affinity for lipid soluble compounds and have a clearance $\sim 2x$ charcoal

6. research

- i. hepatic encephalopathy
- ii. septicaemia / SIRS

Techniques

Def'n: dialysis: solute diffusion through a semipermeable membrane, driven by the electrochemical activity gradient for each molecular species

ultrafiltration: solvent & solute transfer through a semipermeable membrane, driven by the hypdrostatic & osmotic pressure difference across the membrane

- 1. *SCUF* slow continuous ultrafiltration
 - usually only used for excess fluid removal
 - clearance of urea, with 3000 ml/hr filtrate, is only 50 ml/min
- 2. *haemofiltration* *CAV or CVV + **HF**
 - uses ultrafiltration only to remove solvent & solute
 - filtrate replacement either pre/post-filter
 - pre-filter dilution may increase urea clearance up to 20%
 - results in better CVS stability, see later
 - major advantages are simplicity, no requirement for dialysate solution
 - major disadvantages are potential fluid imbalance due to large volumes filtered
- 3. *haemodialysis* *CAV or CVV + **HD**
 - i. intermittent
 - conventional haemodialysis = dialysis + ultrafiltration
 - ii. continuous
 - most commonly used in ICU \rightarrow CVVHD
- 4. *haemodiafiltration* *CAV or CVV + **HDF**
- 5. peritoneal dialysis
- Filter Membranes
 - a. surface area \geq BSA x 0.75m² for maximal solute clearance
 - b. material
 - i. cellulose cuprophane
 regenerated cellulose, cellulose acetate
 ii. synthetic polyacrylnitrile (PAN)
 polymethylmethacrylate (PMMA)
 polysulphone, polyamide, polycarbonate
 - c. geometry
 - i. hollow fibre minimize extracorporeal blood volume
 - ii. plate

Membrane Selection

- synthetic membranes
 - a. \downarrow platelet sequestration
 - b. \downarrow neutrophil activation
 - c. \downarrow IL-1 production from monocytes

 \rightarrow

- d. higher *hydraulic permeability*, ∴ preferred for HF
- e. more effective solute clearance
- f. longer filter life
- g. more rapid resolution of ARF & lower mortality (Hakim *et al.*, J.A.Soc.Neph. 1994)

Haemofiltration

Advantages

- 1. cardiovascular stability
- 2. correction of,
 - i. electrolyte & acid-base abnormalities
 - ii. fluid overload
- 3. creation of "fluid space" for TPN, ABP, drugs, etc
- 4. low & middle MW molecule clearance
 - i. renal and hepatic failure metabolites
 - ii. mediators of systemic inflammatory response syndrome
- 5. maintenance of oncotic pressure albumin replacement
- 6. avoids rises in ICP with haemodialysis

Problems

- 1. slow electrolyte removal
- 2. large volumes removed potential for hypo/hypervolaemia
- 3. systemic anticoagulation
- 4. thrombocytopaenia
- 5. technical difficulties
 - i. access
 - ii. haemorrhage, thrombosis
 - iii. infection
 - iv. other complications

• Methods to Improve Clearance

a.	increase filter blood pressure / flow	pumpedshort, wide-bore lines
		1 1

- b. *pre-dilution* non-classical haemoperfusion
- c. ultrafiltrate "suction"
- d. counter-current dialysate ie. haemodialfiltration
- e. plate filter

Haemodialysis

- 1. intermittent vs continuous
- 2. CAV vs CVV *vascular access
- 3. anticoagulation

Dialysate

- acetate or lactate are added due to poor stability of *bicarbonate* in solution
- normal individuals can metabolise up to 300 mmol/hr of acetate, largely in skeletal muscle
- · this is significantly reduced in critically ill patients
- high *acetate* levels \rightarrow
 - a. fatigue, dizziness, headache, nausea
 - b. hypoxia
 - c. hypotension
 - *NB*: ∴lactate often used in critically ill
- *lactate* metabolised mainly in the liver, .:. solutions should be avoided in hepatic failure
- bicarbonate solutions result in fewer problems, however $Ca^{\scriptscriptstyle +\!+}$ & $Mg^{\scriptscriptstyle +\!+}$ cannot be added directly

■ Gambro Solution #1

1.	Na^+	140	mmol/l	
2.	Cl	102	mmol/l	
3.	\mathbf{K}^{+}	1.0	mmol/l	
4.	Ca ⁺⁺	1.6	mmol/l	* no protein, \therefore predominantly ionized
5.	Mg^{++}	0.82	mmol/l	
6.	lactate	45	mmol/l	* both D & L-lactate
7.	glucose	10.9	mmol/l	
8.	osmolality	285	mosmol/kg	

Disequilibrium

- usually patients with moderate to severe azotaemia dialysed too rapidly
- results in *cerebral oedema* due to rapid reduction in ECF *urea* with insufficient time for diffusion
- · causes headache, dizziness, agitation, N&V, seizures and coma

Hypoxaemia

- occurs during the first 1-2 hrs, usually more marked with *acetate*
- ? because greater capacity for metabolism
 - a. loss of CO_2 in the dialysate
 - b. consumption of CO_2 with regeneration of HCO_3^- from lactate/acetate
 - c. subsequent *hypoventilation*
 - d. membrane dependent mechanisms C' activation, platelet activation, etc.

• Compounds Removed by Haemodialysis

- a. antibiotics
 - aminoglycosides
 - most cephalosporins & penicillins not cefamandole or cloxacillins
 - metronidazole, chloramphenicol, sulphonamides
 - some anti-TB drugs
 - acyclovir

b.	hypnosedatives	- phenobarbitone
----	----------------	------------------

- lithium, meprobamate
- c. antiarrhythmics procainamide, quinidine, disopyramide
- d. antihypertensives diazoxide, nitroprusside
 - methyldopa
- e. endogenous metabolites- lactic acid, uric acid, etc.
- f. others immunosuppressive agents
 - alcohols, paraquat
 - aspirin, theophylline (?), cimetidine

CAVH vs. Conventional Dialysis Techniques

Advantages CAVHD

- 1. cardiovascular stability
- 2. better middle molecule clearance
- 3. no disequilibrium syndromes
- 4. technical simpler, less equipment
 - less expensive
 - training of personnel

Problems Conventional Haemodialysis

- 1. haemodynamic instability
- 2. hypoxia neutrophil activation - platelet margination
 - $-\uparrow$ shunt fraction

- rapid fluid shifts

- 3. disequilibrium syndrome
- rapid electrolyte shifts

- 4. blood loss
- 5. vascular access
- 6. equipment
- 7. trained personnel

Dialytic Therapies					
ModeBlood Flow ml/minDialysate Flow ml/min		Cl-MW D	Cl-urea ml/min	Fluid loss litres	
Kidney	1250		< 50,000	> 60	1.5
HD^{1}	200-300	500	< 1,500	150	2-7
CAVHF	100-200		< 40,000	7-15	20-30
CVVHD	150-250	15-30	< 5,000	15-30	2-12
CVVHDF	150-250	15-30	< 40,000	15-30	2-12
¹ conventional 4 hr haemodialysis averaged over 24 hours					

Peritoneal Dialysis

- used for both acute and chronic renal supplementation
- technical difficulties,
 - a. difficult insertion previous surgery, adhesions
 - b. haemorrhage
 - c. bowel perforation
 - d. drainage failure
 - e. difficult/contraindicated with recent surgery, drains
 - intra-abdominal infection

• Efficiency

- a. slow fluid and solute removal
- b. less predictable effect than other dialytic therapies
- c. hyperglycaemia markedly hyperosmolar dialysate fluids
- d. protein loss

<u>Problems</u> Peritoneal Dialysis

- 1. slow fluid and solute removal
- 2. less predictable effect
- 3. catheter related infection peritonitis
- 4. drainage failure
- 5. respiratory embarrassment
- 6. hyperglycaemia
- 7. protein loss
- 8. difficult/relatively contraindicated with recent surgery
 - abscess
 - abdominal drains, etc.

• Other Complications

- a. catheter related infection peritonitis
- b. respiratory embarrassment $-\downarrow$ FRC
 - pleural effusion
 - especially in children

CHRONIC RENAL FAILURE

<u>Common Causes</u>

- 1. diabetic nephropathy $\sim 28\%$
- 2. hypertension $\sim 24\%$
- 3. glomerulonephritis ~ 21%
- 4. polycystic kidney disease
- 5. analgesic nephropathy

Retained Potentially Toxic Metabolites

- probably only a "marker" in CRF urea a. polypeptide "middle molecules" - MW's ~ 300-3500 b. - guanidine, methyl/dimethyl-guanidine guanine derivatives c. - guanidosuccinic acid - creatine, creatinine d. nucleotide metabolites e. aromatic *amino acid* derivatives - tryptophan, tyrosine, phenylalanine f. aliphatic amines elevated hormone levels - PTH g. - glucagon, insulin - GH, LH, PRL

• Clinical Effects

a.	GFR ~ 50%	 asymptomatic mild elevation of creatinine (∝ 1/GFR)
b.	GFR ~ 25-30%	 hypertension anaemia polyuria, nocturia ↑ creatinine, urea ↑ glucose, urate, TG
с.	GFR ~ 15-20%	 overt renal failure metabolic acidosis fluid overload GIT, CVS, CNS complications K⁺, HPO₄⁼ & urate rise as GFR < 25%

• Clinical Features

1. those *corrected by dialysis*

- i. fluids & electrolytes
 - Na⁺ & fluid overload
 - metabolic acidosis
 - hyperkalaemia, intracellular potassium *deficit*
 - hyperphosphataemia, hypocalcaemia
 - glucose intolerance
- ii. hypothermia, fatigue, lethargy
- iii. asterixis, muscle irritability, myoclonus, coma
- iv. CCF, pericarditis, uraemic lung
- v. anorexia, nausea, vomiting, gastroenteritis
- vi. coagulopathy, platelet dysfunction

2. those which may be *unchanged by dialysis*

- i. renal osteodystrophy, 2° hyperparathyroidism
- ii. hyperuricaemia, hyperlipidaemia
- iii. protein, calorie malnutrition
- iv. growth and sexual dysfunction
- v. peripheral neuropathy
- vi. paralysis, seizures
- vii. accelerated atherosclerosis
- viii. hypertension, cardiomyopathy
- ix. pallor, pruritus, ecchymoses
- x. anaemia, lymphopaenia, immunosuppression
- xi. peptic ulcers
- xii. splenomegaly, hypersplenism
- xiii. restless leg syndrome

c. those "exacerbated" by haemodialysis

- i. hypotension
- ii. muscle cramps
- iii. disequilibrium syndrome (cerebral oedema)
- iv. dialysis dementia ? aluminium toxicity from older filters
- v. atherosclerosis
- vi. GIT haemorrhage
- vii. hepatitis, ascites
- viii. neutropaenia, low complement

• Metabolic Effects

- a. impaired Na^+/K^+ -ATP'ase activity
- b. hypothermia, \downarrow BMR
- c. glucose intolerance, insulin resistance
- d. protein intolerance
- e. high TG, normal cholesterol

Immunosuppression

- a. lymphopaenia, lymphoid atrophy
- b. normal neutrophil number but impaired chemotaxis
- c. decrease in acute inflammatory response & delayed hypersensitivity
- d. \downarrow IgG and complement levels
- e. drug immunosuppression steroids, cyclosporin

• Coagulopathy

- a. impaired platelet function ? guanidosuccinic acid
- b. low levels of *PAF III*
- c. impaired prothrombin activity

- hyperglycaemia, occasionally ketosis

Indications for Dialysis

- a. <u>short term dialysis</u>
 - i. symptomatic renal failure
- pericarditis
- metabolic acidosis
- uraemic symptoms
- ii. acute biochemical alterations
 - $[K^+] > 7.0 \text{ mmol/l}$
 - or associated with arrhythmias
 - or rapidly increasing
 - pH < 7.15
 - [Cr] > 0.6 mmol/l
 - [urea] > 40 mmol/l, or rapidly increasing

b. <u>other therapy</u>

- i. fluid overload CCF, hypertension
- ii. drug intoxication salicylates, lithium
 - barbiturates, ethanol, methanol
 - theophylline
- iii. biochemical uncontrolled hyper- Ca^{++}/K^+

c. <u>chronic dialysis</u>

- i. failed conservative management
- ii. creatinine > 0.6-0.8 mmol/l
- iii. GFR < 3 ml/min
- iv. progression of bone disease
- v. progression of CNS disease neuropathy
 - encephalopathy
- vi. uraemic pericarditis
- vii. awaiting transplantation

GLOMERULONEPHRITIS

Clinical Presentation

1.	acute nephritic syndrome	- hypertension, oedema	

- proteinuria, haematuria, rbc casts
- *nephrotic* syndrome heavy proteinuria, hypoalbuminaemia, oedema
 chronic renal failure * ie. presentation may be *fulminant* or *indolent*
- 5. Chilome renai fai
- 4. loin pain
- 5. constitutional features of CRF
- 6. acute oliguric renal failure very rarely

Histological Presentation

- a. minimal lesion "normal" LM presentation
- b. membranous no cellular proliferation
- c. focal glomerulosclerosis
- d. proliferative GN
- diffuse - focal
- mesangial
- rapidly progressive
- chronic endothelial

Implicated Antigens

a.	bacterial	 β-haemolytic Streptococci, Staphlococci TB syphilis Salmonella
b.	viral	- HBV - varicella, mumps - EBV, Coxsackie B
c.	protozoal	- malaria - shistosomiasis - toxoplasmosis
d.	autoimmune	- SLE, PAN, SS - thyroiditis - cryoglobulins
e.	drugs	- penicillamine - heroin

HAEMOLYTIC-URAEMIC SYNDROME / TTP

Def'n: disease of unknown aetiology with target organ dysfunction secondary to marked *platelet aggregation* in the microcirculation (Dabrow & Wilkins 1993)

- TTP first described by Moschocowitz in 1925
- HUS first described by Gasser et al. in 1955
- now considered different expressions of the same underlying disease process

• known associations,

a. infection, septicaemia	* feces for pathogens
---------------------------	-----------------------

- i. children especially Shigella sp., Salmonella
 - ii. adults enterohaemorrhagic E. coli
 - VTEC 0157:H7 produces vero cytotoxin
 - pneumococcal infection
- iii. viruses Coxsackie, echoviruses
- b. drugs OCP, cisplatin, mitomicin C, cyclosporin A
- c. malignant hypertension
- d. pregnancy
- e. radiation
- f. autoimmune disorders SLE, scleroderma

Pathogenesis

- plasma contains a *transmissible factor* which aggregates platelets
- this is *not* complement or antibodies
- unknown mechanism results in widespread *endothelial damage* (key lesion)

 \rightarrow release of *HMW-vWF* \rightarrow platelet aggregation

- excess ULvWF, possible due to missing enzyme in its processing, eg protease inhibitor
- multi-organ infarction / ischaemia, mainly renal in HUS
- arterioles filled with *hyaline thrombosis*(fibrin & platelets)
- · diarrhoea negative HUS, frequently associated with severe pneumococcal infection
- characteristically become far more ill than the E.coli associated HUS

• mechanism is felt to be due to exposure by *neuraminidase* producing strains of pneumococcus of a usually hidden T antigen (*Thomsen-Friendenreich antigen*) found on platelets, red cells and endothelial cell surfaces

• most people have naturally occuring antibodies to this T "cryptantigen", which rapidly leads to the damage associated with HUS.

• avoid transfusing serum in any form (no FFP/cryo) unless exsanguinating, and wash all RBC's

• this will avoid giving the patient a fresh new supply of IgM to bind and damage the cells with T antigen still available

Clinical Features

- a. fever
- b. nausea, vomiting, diarrhoea, abdominal pain
- c. arthralgia
- d. bleeding, petechiae
- e. renal failure & uraemia
- f. jaundice
- g. rarely hepato/splenomegaly
- h. cerebrovascular events especially in TTP

NB:	HUS usually	\rightarrow	children & more severe renal failure
			fever & CNS signs are usually <i>absent</i>
	TTP usually	\rightarrow	young female, adults & more thrombotic events,
			especially CNS

Laboratory

a. microangiopathic *haemolytic anaemia*

- anaemia, fragmented rbc's, reticulocytosis
- thrombocytopenia
- \downarrow haptoglobin, \uparrow haemopexin, haemalbumin present
- b. *normal coagulation profile* c.f. DIC - isolated deficiencies may occur
- c. hyperbilirubinaemia, \uparrow LDH
- d. ANA ~ 20% +'ve
- e. biopsy \rightarrow characteristic vascular changes
 - skin, mucous membranes, gingiva, renal

Diagnosis

- 1. anaemia microangiopathic picture
- 2. evidence of haemolysis
- 3. severe thrombocytopaenia
- 4. uraemia
- 5. *normal* coagulation profile and absence of FDP's

Treatment Modalities

- 1. routine management of,
 - i. anaemia
 - ii. renal failure
 - iii. hypertension
 - iv. electrolyte & fluid balance
- 2. early, uncomplicated disease \rightarrow *prednisolone*
- 3. severe disease
 - i. *plasmapheresis*
 - ii. plasma transfusion
 - iii. vincristine for refractory TTP/HUS
 - iv. high dose IgG inhibits platelet aggregation
 - v. splenectomy
- 4. antiplatelet drugs *not effective*

Prognosis

- usually lasts days \rightarrow weeks, rarely months
- · fatal if left untreated, but treatment is effective in most
- Hayward et al. 1994,

a.	remission	~ 96%
b.	late TTP/HUS related problems	~ 50%
c.	ESRF	~ 8%
d.	relapse	~ 21%

HEPATORENAL SYNDROME

- *Def'n:* potentially *reversible* renal failure associated with severe liver failure, without obvious other cause, characterised by,
 - 1. oliguria with low urine Na⁺
 - 2. high urine osmolality but unresponsive to fluids / inotropes
 - 3. may progress to ATN
- *NB:* this is distinct from *pseudohepatorenal syndrome*, where both liver and kidneys are primarily affected by the underlying disease process

Clinical Features

- a. mortality ~ 95% * recovery associated with improvement of liver function
- b. oliguric renal failure with H_2O/Na^+ retention
- c. high urine osmolality with $[Na^+] < 10 \text{ mmol/l}$
- d. low SVR, low cardiac output, hypotension
- e. hypervolaemia
- f. decreased response to vasopressors
- g. high circulating renin, angiotensin II, aldosterone
 - these may *decrease* with the onset of HRS
- h. increased renal excretion of noradrenaline & TBX_{B2}
- i. *decreased* renal production / urinary excretion of PGE₂
 - normally *increased* in cirrhosis with ascites
 - ie. intrarenal PG's protect GFR against high circulating angiotensin/aldosterone

Precipitating Factors

- 1. usually occurs with,
 - i. chronic alcoholic cirrhosis
 - ii. fulminant hepatic failure any cause
- 2. paracentesis ? probably marker only, syndrome associated with ascites!
- 3. diuretics ? intravascular volume depletion
- 4. NSAIDs ? impaired renal PG synthesis
- 5. sepsis ? relative hypovolaemia
 - ? chronic endotoxaemia

Proposed Mechanisms

Arteriolar Vasodilatation Hypothesis 1988

- intense arteriolar vasodilatation 2° to hepatic failure \rightarrow arterial underfilling
- distinct from hypovolaemia \rightarrow \uparrow PRA / AI&II / aldosterone
 - ↑ NA, ADH
 - \rightarrow intense *renal vasoconstriction*
- + Na⁺ & H₂O retention worsen oedema and ascites
- the kidneys respond with \uparrow PG synthesis (vasodilatory) which delays the onset of ARF
- this accounts for the marked sensitivity to NSAID's and other PG inhibitors

Secondary Tubular Dysfunction

- the disorder is completely reversible with return of liver function
- successful transplantation of HRS kidneys
- the enzymuria & β_2 -microglobinuria seen in HRS is not seen in ATN or pre-renal failure
- however, absence of histological tubular damage in some studies
- · other studies show ATN-like changes, bile vacuoles in tubular cells and hypertrophied JGA

Mediator Imbalance

• xenon studies show maldistribution of RBF \rightarrow renal *cortical hypoperfusion*

- a. $\downarrow PGE_2$ fall in substrate & enzyme activity - cf. normal in ATN
- b. $\uparrow TBX_{A2}$? 1° or 2° to hypovolaemia & high circulating catecholamines * little evidence to support this (Maxwell & Kleeman)

c.	\downarrow renin-angiotensin activity	low renin substrate in HRSimproved filtration with FFP or AII infusionopposite of arteriolar vasodilatory mechanism
d.	\downarrow ''glomerulopressin''	 hormone, MW ~ 500, synthesised in the liver increased by AA infusion & glucagon reduces afferent aa. tone and <i>increases GFR</i> synthesis blocked by NSAID's

Intra-Abdominal Hypertension

• increased renal vein pressure

• improved filtration with paracentesis + colloid or peritovenous shunt

High SNS Tone & Reversible Cortical Ischaemia

- probably not involved,
 - 1. fall in ANF levels are only marginally reduced
 - infusion *does not* improve filtration
 - 2. high renin-angiotensin II ?
 - 3. aldosterone levels correlate poorly with the degree of Na^+ retention
 - 4. chronic endotoxaemia

Treatment

- a. largely supportive \rightarrow *prevention*
 - i. optimise volume status
 - ii. treat septicaemia
 - iii. avoid nephrotoxic agents
- b. paracentesis + FFP | Albuminex-20%
- c. peritoneovenous (LeVeen) shunt
 - \uparrow preload, cardiac output
 - \uparrow RBF, GFR
 - high operative mortality
 - may result in marked thrombocytopaenia
 - *no* improved survival
- d. liver transplant

• other modalities tried with little or no success,

- a. vasodilators dopamine
- b. lumbar sympathectomy
- c. vasopressors transient improvement
- d. A-II inhibitors marked hypotension
 - no increase in GFR
- e. Ca⁺⁺ entry blockers * no lasting effect
- f. PGE₂ infusion
- g. TBX_{B2} inhibitors
- h. water immersion increases venous pressure
- i. dialysis
- j. plasma exchange

RHABDOMYOLYSIS

Def'n: the disintegration or dissolution of muscle, associated with the excretion of *myoglobin* in the urine

Aetiology

- 1. trauma / ischaemia / exhaustion
 - i. crush injuries | compartment syndromes
 - ii. arterial embolism | thrombosis, torniquets, antishock trousers
 - iii. burns
 - iv. electric shock
 - v. hyperthermic syndromes
 - heat stroke
 - malignant hyperthermia
 - malignant neurolept syndrome
 - vi. drug induced
 - suxamethonium in myopathic disorders
 - myopathy alcohol, salicylates, amphetamines
 - aminophylline, phencyclidine, LSD, heroin
 - · overdose of any sedative agent & pressure effects
 - vii. envenomation
 - viii. overuse
 - prolonged exercise, pretibial syndrome
 - status epilepticus
 - tetanus
 - delerium tremens
- 2. infection / inflammation
 - i. viral myositis
 - ii. gas gangrene
 - iii. acute polymyositis
 - iv. Legionaires' disease
- 3. metabolic defects
 - i. severe hypophosphataemia, hypokalaemia, hyperosmolality
 - ii. myxoedema, thyrotoxicosis
 - iii. McArdle's syndrome
- 4. familial myoglobinuria
- *NB:* systemic release of *myoglobin* by itself is *not nephrotoxic*, however when combined with hypotension and renal hypoperfusion may result in ATN

Investigations

- 1. muscle *compartment pressures*
 - normal < 10 mmHg
 - if > 30-40 mmHg, or
 - $> BP_{Dias} 30 \text{ mmHg} \rightarrow fasciotomy$
- 2. biochemistry
 - hypocalcaemia, hyperphosphataemia, hyperkalaemia
 - hyperuricaemia
 - \uparrow LDH, AST
 - CK-MM > 5x or greater
 - metabolic acidosis
 - thrombocytopaenia & haemoconcentration
- 3. myoglobinuria
 - false negative tests may occur in up to 36% of cases
 - both haemoglobin & myoglobin test positive to urine "dipstick"

Management

- 1. early, aggressive IVT to support intravascular volume & urine output
 - saline loading \rightarrow prevent hypovolaemia / dehydration
- 2. mannitol
 - theoretically increases proximal tubular flow & reduces effects of pigmenturia
 - · supported by some animal data on nephrotoxic models
 - supported by the "Israeli" school but no controlled trials to support use
 - human trials in prevention of angiographic dye ARF *worsen* outcome
- 3. bicarbonate
 - alkalinisation of urine improves solubility of myglobin, \therefore reducing cast formation
 - animal studies showing reduction in ATN
 - · like mannitol, no controlled trials to support use
- 4. acetazolamide

• Crush Injuries & Renal Failure

- 1. activation of renin-angiotensin system, ↑ catechoamines & ADH
- 2. nephrotoxicity of *myoglobinuria* & *uricosuria*
 - potentiated by acidifcation & concentration in tubules
- 3. acute increase in plasma $Ca^{++}-PO_4^{-}$ product
 - may result in suppression of renal function
- 4. *microthrombi* in renal vasculature

■ Management Israel (Nephron 1990)

1. early aggressive volume replacement, pr	preferrably at the scene of injury
--	------------------------------------

• immediate resuscitation

• N.saline or Ringer's lactate	@ 1500 ml/hr adult	
	@ 20 ml/kg/hr child	

2. forced mannitol-alkaline diuresis

	• 5% Dextrose	+ + @	NaCl 70 mmol mannitol 20% bicarbonate 8.4% 500 ml/hr	50 ml 50 ml	= 10g = 50 mmol
	• 12 l/day	\rightarrow	600g dextrose=840 mmol NaCl+120 g mannitol	2400 kcal 600 mmol	NaHCO ₃
3.	acetazolamide	 - if plasma pH > 7.45 - due to enhancement of metastatic calcification 			

- · claimed improvement in survival against historical controls
- no prospective randomised study to support this protocol
- almost certainly associated with electrolyte disturbances

RENAL TUBULAR ACIDOSIS

Type I Distal RTA

• inherited as an autosomal dominant, "classic" RTA

· inability to maximally acidfy the urine, or excrete daily acid load

Clinical Features

a.	low a	nion gap acidaemia - I	oH < 7.35
b.	hyperchloraemia and hypokalaemia		
c.	 urine pH > 5.4, even after acid load - NH₄Cl ~ 100 mg/kg absence of urinary infection 		
d.	complications		
	i.	chronic acidaemia $\rightarrow \uparrow Ca^{++} e$	excretion
	ii.	2° hyperparathyroidism	
	iii.	nephrocalcinosis, calculi	~ 60-70%
	iv.	vit.D deficiency, osteomalacia, rickets	- especially children

Treatment

- a. NaHCO₃ ~ 0.5-2.0 mmol/kg/day
- b. or, Na⁺/K⁺-citrate $\rightarrow \downarrow CO_2$ production in GIT
- c. large K⁺ supplement usually *not* required

Type II Proximal RTA

- generalized tubular disorder, may be *congenital* or *acquired*
- reduced H^+ secretion, impaired HCO_3^- reabsorption (reduced T_M)
- mild low anion gap acidosis, also have amino aciduria and phosphaturia
- treatment need only be commenced when the $[HCO_3^-] < 18 \text{ mmol/l}$

 \rightarrow NaHCO₃ ~ 5-10 mmol/kg/d + K⁺ supplement

Type III - RTA

• a combination of type I & type II RTA (very 1

(very rare, possibly doesn't exist!)

Type IV - RTA

- the urine acidifies during periods of marked acidaemia, however there is hyperkalaemia
- metabolic acidosis may be associated with hypotension
- usually seen with *hyporeninaemic hypoaldosteronism*,
 - 1. diabetic nephropathy
 - 2. hypertensive nephrosclerosis
 - 3. chronic tubulointerstitial nephropathies
- also seen in Addison's disease & advanced age
 - *NB: hyperkalaemia* inhibits renal tubular generation of *ammonia*, thereby reducing urinary buffer and worsening the acidosis

Renal Tubular Acidosis			
	Туре І	Type II	Type IV
"site" of lesion	distal	proximal	distal
low anion gap acidosis	yes	yes	yes
minimum urine pH	> 5.5	< 5.5	< 5.5
% filtered HCO_3^- excreted	< 10%	> 15%	< 10%
plasma K⁺	low	low	high
Fanconi syndrome	no	yes	no
nephrocalcinosis / stones	yes	no	no
daily H ⁺ excretion	low	normal	low
ammonium excretion	high for pH	normal	low for pH
daily HCO_3^- replacement	< 4 mmol/kg	>4 mmol/kg	< 4 mmol/kg

Causes of RTA

Proximal

1.

2.

isolated HCO ₃ ⁻ wasting				
i.	idiopathic	- genetic / hereditary - sporadic		
ii.	low carbonic anhydras	e activity - drug induced, acetazolamide - deficiency, cf ospeoporosis		
iii.	hyperkalaemia			
generalised proximal tubular defect				
i.	hereditary defects	- Fanconi-like syndromes		
ii.	toxic damage			
	 heavy metals 	- Pb, As, Hg		
	• drugs	- aminoglycosides, 6-mercaptopurine, paraquat		
iii.	dysproteinaemias	- m.myeloma, amyloidosis, MGUS		
iv.	immunologic			
	• autoimmunopathy	- CAH, SLE, RA		
	• renal transplantation	1		
	• interstitial nephritis			
	1 .1 .1.	10.1 (1) 1		

- v. hyperparathyroidism 1° hyperparathyroidism
 - deficiency of, or resistance to Vit.D

■ Distal

- 1. idiopathic
- 2. nephrocalcinosis *may be a result of, or produce the disease
 - medullary sponge kidney, idiopathic nephrocalcinosis
 - · chronic hydronephrosis, analgesic nephropathy, renal transplantation
 - hyperthyroidism, 1° hyperparathyroidism
- 3. drugs amphoterecin B, lithium
- 4. low NH_3 availability
 - i. defect in NH₃ generation
 - \downarrow ATP synthesis
 - inhibition of glutamine metabolism
 - decreased availability of glutamine
 - fuel competition
 - ompetition
- ne malnutrition, GI disorders

- hyperkalaemia

- ketoacidosis, TPN
- ii. defect in NH₃ transfer
 - interstitial nephritis
 - hyperkalaemia

- 5. low H^+ secretion
 - i. H⁺-pump defect
 - interstitial renal disease
 - low aldosterone activity
 - ii. voltage defect
 - low Na⁺ delivery
 - inhibitors of Na^+ reabsorption
 - low aldosterone activity
 - iii. H^+ backleak
 - hereditary disorders
 - drugs amphoterecin B

• Hyperkalaemic RTA

- 1. primary aldosterone deficiency
 - i. combined with cortisol
 - Addison's disease, idiopathic
 - bilateral adrenalectomy
 - bilateral adrenal destruction
 - congenital enzyme defects
 - ii. isolated aldosterone deficiencycortisone methoxidase
- types I & II, familial
- transient hypoaldosteronism of infancy
- chronic idiopathic hypoaldosteronism
- heparin induced
- 2. secondary hyporeninaemic hypoaldosteronism
 - i. diabetes mellitus
 - ii. tubulointerstitial nephritis
 - iii. nephrosclerosis
 - iv. drugs

i.

- 3. mineralocorticoid resistant hyperkalaemia
 - generalised DT dysfunction
 - obstructive nephropathy
 - sickle cell disease, amyloid
 - interstitial nephritis
 - ii. pseudohypoaldosteronism hypovolaemic
 - iii. chloride shunt hypervolaemic
 - iv. drugs
 - spironolactone
 - amiloride, triamterene

- usually results in hyperkalaemia

- haemorrhage, tumour, infection, infiltration

Bartter's Syndrome

- 1. autosomal *recessive* frequently symptomatic in childhood
- 2. renal juxtaglomerular apparatus hyperplasia
- 3. high plasma *renin* activity, angiotensin I/II & aldosterone secretion
- 4. *normal BP*decreased vascular response to noradrenaline & angiotensin II[§]
 - decreased vascular response to noradrenaline & angiotensin
- 5. *hypokalaemia* ± alkalosis
 - \pm hypomagnesaemia
 - weakness & periodic paralysis
 - polyuria ∝ nephrogenic DI
 - overproduction of $\textit{prostaglandins} \rightarrow \text{ altered Na}^{+}/\text{K}^{+} \text{ handling}$

NB: the principal defect is reduced NaCl absorption in the *thick ascending LOH* \rightarrow volume depletion & TGF \rightarrow \uparrow renin-angiotensin-aldosterone

- increased NaCl delivery to the late DT, with raised aldosterone, produces severe K⁺ wasting
- defective function of TA-LOH results in *hypomagnesaemia* & exacerbation of K⁺ wasting
- hypokalaemia $\rightarrow \uparrow PGE_2, PGI_2$
 - \rightarrow further increase in renin secretion

• angiotensin-II & aldosterone \rightarrow \uparrow renal kallikrien \rightarrow \uparrow plasma *bradykinin*

- normal BP reflects,
 - a. \downarrow vasopressor activity of angiotensin-II ? diminished by downregulation
 - b. vasodepressor actions of PGE₂ & bradykinin

Treatment

- a. oral K⁺ / Mg⁺⁺ supplementation
 b. propranolol / atenolol ↓ renin release
- c. captopril $-\downarrow$ angiotensin II
- d. spironolactone antagonise aldosterone
- u. spironolacione antagonise autosterone
- e. PG synthesis inhibition indomethacin, ibuprofen - aspirin

NB: \rightarrow ~ opposite to RTA

Renin - Angiotensin System

Renin

- a glycoprotein *acid protease* released by the juxtaglomerular apparatus
- MW ~ 40000, acts to cleave the Leu-Leu bond in *angiotensinogen* to form *angiotensin I*
- stimuli to release include,
 - 1. increased sympathetic tone $-\beta_1$ -agonists
 - 2. reduced hydrostatic pressure in the *afferent arteriole*
 - 3. increased Cl⁻ at the macula densa tubuloglomerular balance
 - 4. low angiotensin II level reduced -'ve feedback on JGA

• common clinical stimuli include,

- a. total body Na⁺ deficit
- b. upright posture

c.	disease states	 renovascular disease CCF, hypovolaemia, hypotension chronic liver disease pre-renal ARF Bartter's syndrome
d.	drugs	 most anaesthetic agents vasodilators α/β-adrenergic blockers captopril, enalpril, saralasin diuretics theophylline chlorpromazine OCP

Angiotensinogen

- an \mathbf{a}_2 -globulin, glycoprotein, synthesised by the liver
- ? also synthesized locally by the macula densa for local release
- angiotensin I is formed from the 10AA at the amino terminus
- production is increased by,
 - a. steroids with glucocorticoid effect
 - b. oestrogens, pregnancy
- effectively "renin substrate"
- levels may be derranged in hepatorenal syndrome

Angiotensin II

- produced by cleavage of 2AA from angiotensin I by ACE in the lung, ie. 8AA peptide hormone
- ? ACE also present in the kidney
- plasma elimination half life, $t_{_{1/2\beta}} \sim 1-2 \text{ min}$
- inactivated by many different enzymes in many tissues including RBC's

• actions include,

- a. potent vasoconstrictor (2nd to *endothelin*)- inhibited by saralasin
- b. \uparrow efferent > afferent arteriolar tone in the kidney
- c. \downarrow GFR and \uparrow Na⁺ reabsorption through GTB

 $\rightarrow \quad \downarrow \text{RBF} > \text{GFR}, \quad \therefore \uparrow GFR/RBF \text{ ratio}$

d. \uparrow renal PGI₂ production

 \rightarrow counteracts adverse renal effects and maintains RBF

- e. negative feedback on renin release at JGA
- f. *aldosterone* release from ZG of adrenal cortex
- g. facilitation of SNS via presynaptic AII receptors
- h. weak direct inotropic and chronotropic effects
- i. hypothalamic CNS effects
 - i. \uparrow SNS discharge
 - ii. thirst stimulation
 - iii. \uparrow ADH release

Angiotensin III

- produced by cleavage of 1AA from angiotensin II
- more potent aldosterone release than angiotensin II

• vasoconstrictor effects more potent on the arterial beds of the kidney, skin, muscle, and splanchnic circulation

· less effect on cerebral, coronary and pulmonary circulations