ICU Outcome Scoring Systems

Specific

a.	head injury	\rightarrow	Glasgow coma score
b.	burns	\rightarrow	% + age ~ mortality
c.	trauma	\rightarrow	injury severity score (ISS) trauma score
d.	IHD	\rightarrow	NYHA / AHA classification
e.	pancreatitis	\rightarrow	Ranson's scoring criteria
f.	liver failure	\rightarrow	Child's classification

• General

- a. TISS = therapeutic intervention scoring system
 - rough indicator of severity
 - useful for costing & staffing assessments
 - · influenced by available equipment, staff & enthusiasm
- b. APACHE II = 12 variables + age + chronic health
 - objective, easy
 - uses available hospital data
 - valid for many diagnoses
 - indicative of illness severity
 - independent of treatment
- c. APACHE III \rightarrow boarder base, taking into account,
 - referral patterns
 - time delay from diagnosis to admission
 - daily score
 - more individual use
 - board cost-benefit analysis
- d. APS, SAPS = sickness score, mortality prediction models
 - comparable specificity ~ 90-95%
 - poor sensitivity ~ 50-60%
- e. Knaus' = mortality vs. organ failure prediction table

• Why Predict Outcome ?

- a. prognosis
- b. cost-benefit analysis
- c. withdrawal of treatment
- d. comparison between different centres
- e. monitoring/assessment of new therapies
- f. population sample comparison in studies

Requirements for a Good Scoring System

- a. simple, reliable, easily obtainable
- b. wide patient applicability different diagnoses
 - all age groups
 - all levels / types of ICU's
- c. high sensitivity/specificity ie. should be a good *discriminator*
- d. stimulates improvement in outcomes
- e. independent of treatment
- f. physiological parameters
- g. optimal time is unclear
- h. number of criteria is unclear

Potential Problems

NB: should not,

- i. limit treatment of individuals
- ii. result in nihilistic therapy
- iii. outweigh clinical judgement
- iv. depersonalise therapy

Baldock ICW 1987

NB: \rightarrow three groups of scoring systems

- 1. *anatomical* eg. Injury Severity Score
 - score 0-5 for each anatomical area involved
 - final score \rightarrow sum of 3 highest squared
 - useful for trauma audits & research
- 2. *therapeutic* eg. Therapeutic Intervention Scoring System, TISS
 - sum of weighted scores of 70 therapeutic interventions
 - correlates well with *outcome*
 - wide applicability
 - limited by available facilities, illness severity, staff enthusiasm and experience

3. physiological

- eg. "acute physiology and chronic health evaluation", APACHE
- designed for quality review rather than prognosis
- extensive, 33 variables & difficult to use clinically
- simplifications \rightarrow SAPS (13 var) & APACHE II
- APACHE II = 12 var + age + previous health
- correlates with *hospital mortality*
- limited by subjective scoring

• <u>Knaus</u> CCM 1985

• point score based on 12 physiological variables

• variable selection & weighting was based on 'expert' physician determination

			A	APACHE	II				
	+ 4	+ 3	+ 2	+ 1		+ 1	+ 2	+ 3	+ 4
Temperature	≥ 41	39-40.9		38.5-38.9	36-38.4	34-35.9	32-33.9	30-31.9	≤29.9
MAP	≥160	130-159	110-129		70-109		50-69		≤ 49
HR	≥180	140-179	110-139		70-109		55-69	40-54	≤ 39
RR	≥ 50	35-49		25-34	12-24	10-11	6-9		≤5
Oxygenation ¹	≥ 500	350-499	200-349		< 200 P _{aO2} > 70	61-70		55-60	< 55
рН	≥7.7	7.6-7.69		7.5-7.59	7.33-7.49		7.25-7.32	7.15-7.24	< 7.15
Na ⁺	≥180	160-179	155-159	150-154	130-149		120-129	111-119	≤110
K ⁺	≥7	6.6-6.9		5.5-5.9	3.5-5.4	3-3.4	2.5-2.9		< 2.5
Creat	≥								
Hct	≥ 60		50-59.9	46-49.9	30-45.9		20-29.9		< 20
WCC	≥40		20-39.9	15-19.9	3-14.9		1-2.9		< 1
15-GCS									
$F_1O_2 > 0.5 \text{ record } \delta A \text{-} aO_2$ $F_1O_2 < 0.5 \text{ record } P_{aO2}$									

• plus points for,

- 1. age > 44 years
- 2. chronic health status

• 5815 ICU patients from multicentre study,

- a. increased score correlated with *mortality*
- b. high specificity (> 98%) but low sensitivity (< 30%)
- c. correct prediction only ~ 80%

Chang Anaesthesia 1987

• prospective study of APACHE II for 12 months in Saudi Arabia, 210 patients

- · increased score associated with increased mortality,
 - a. sensitivity < 42%
 - b. specificity >95%

Knaus Ann Surg 1985

- prospective multicentre study of 5677 ICU patients
- comparing number of organ systems failing (OSF) and mortality
- where the organ systems were,
 - 1. CVS
 - 2. respiratory
 - 3. renal
 - 4. CNS
 - 5. haematological

No. of OSF	Mortality					
	Age	< 65	Age > 65			
	day 1 day 7		day 1	day 7		
1	16%	30%	32%	60%		
2	46%	55%	61%	90%		
3	76%	100%	85%	100%		

- predictive value limited
- not stratified for disease types nor previous health
- indicative of mortality during study period only

• Lemeshow CCM 1985

- multiple regression analysis of 775 adult medical & surgical ICU patients
- measured condition and treatment variables on admission and at 24 hours
- univariate significant factors
 - a. significant factors *on admission*
 - i. age
 - ii. BP & HR
 - iii. number of OSF
 - iv. presence of infection
 - v. if CPR used
 - vi. conscious level
 - vii. elective or emergency
 - viii. type of admission (p < 0.001)
 - b. significant factors at 24 hours = above plus,
 - i. mechanical ventilation
 - ii. number of "lines"
 - iii. use of vasoactive drugs
 - iv. high levels of PEEP
 - v. oliguria
 - vi. use of a S-G catheter
 - vii. PaO_2 , F_1O_2 , arterial pH, creatinine
 - viii. infection
 - ix. shock
 - x. type of admission (p < 0.001)

Multivariate Significant Factors						
	On admission	At 24 hours				
	level of consciousness	level of consciousness				
	infection	infection				
	number of OSF	number of OSF				
	age	age				
	admission type (med/surg)	admission type				
	systolic BP	shock				
	cancer	F _I O ₂				
Sensitivity	~ 50%	~ 55%				
Specificity	~ 96%	~ 95%				
Prediction	~ 87%	~ 85%				

Lemeshow CCM 1987

• comparison of APS, SAPS, MPM \rightarrow all performed comparibly with 2000 ICU patients

■ *Teres CCM* 1987

- previously developed weighted scoring system, MPM, mortality predictive model
- tested on ~ 2000 patients with some modifications
- · admission score better than 24 hour score in mortality prediction
- with the number of OSF added to criteria,
 - a. sensitivity ~ 50%
 - b. specificity ~ 95%

• Chang CCM 1988

• once only APACHE II versus daily APACHE II in 212 patients

· later more accurate predictor of mortality,

- a. sensitivity ~42%
- b. specificity ~ 97%
- c. prediction ~ 83%

Shoemaker CCM 1985

• used empirically derived numeric *severity index*, developed from 220 surgical patients, intensively monitored perioperatively

- recommends many new "normal ranges" for many vital signs etc. in post-operative patientslimited by,
 - a. small study group
 - b. all elective patients
 - c. unusual statistical "fiddling"
 - d. involves invasive monitoring

Nicholas ICM 1985

• multicentre study, 792 ICU admissions to 8 institutions,

- a. mortality increased with $age \rightarrow < 45 \text{ yrs} \sim 15\%$ > 65 yrs ~ 37%
- b. mortality similar for all elderly age groups,

 \rightarrow > 55 yrs there is little increase in mortality from age difference alone

- c. high APS score associated with high mortality in all age groups, ie. less difference between ages
- d. increased age associated with increased treatment (TISS score)
- e. increased age not associated with longer duration in ICU

■ **Jacobs** ICM 1988

• followed 313 ICU patients, looking at survival,

a.	at discharge	~ 76%
b.	at 6 months	~ 61%
c.	at 12 months	~ 58%

• of those discharged,

- a. $21\% \rightarrow$ developed decreased physical status and function
- b. $2\% \rightarrow$ improved from time of discharge
- c. 76% \rightarrow unchanged from time of discharge
- *NB: health status* prior to admission best indicator of "quality of life" after discharge from ICU;

age and SAPS scores showed less correlation

Definitions of Organ System Failure (OSF) Knaus et al

• if patient has one of more of the following during a 24 hour period, regardless of other values, OSF existed on that day:

UNIDIC	u on i	mai aay.				
1.	CVS		*pre	sence of one	e or more of	the following
	i.	MAP	≤49	mmHg		
	ii.	HR	≤ 54	bpm		
	iii.	VF or VT				
	iv.	AGA	pH ≤	≤ 7.24 with F	$PaCO_2 \le 49$	mmHg
2.	Resp	oiratory	*pre	sence of one	e or more of	the following
	i.	RR	< 5/r	$\min or \ge 49/2$	min.	
	ii.	PaCO ₂	≥ 50	mmHg		
	iii.	AaDO ₂	≥35	0 mmHg		
	iv.	ventilator c	lepenc	lence on the	fourth day	of OSF
		• ie. not a	pplica	ble for the i	nitial 72 hr c	of OSF
3.	Rena	ıl				
		• •			•	e hospital admission
	• pi	resence of or	ne or 1	nore of the f	following,	
	i.	urine outpu	ıt	≤479	ml/24 hr or	$r \le 158 \text{ ml/8 hr}$
	ii.	urea		≥36	mmol/l	
	iii.	creatinine		≥270	µmol/l	
4.	Haer	natological f	failure			
	• pi	resence of or	ne or 1	nore of the t	following,	
	i.	WBC		$\leq 1 \ge 10^{9}/l$		
	ii.	platelet cou	unt	$\leq 20 \ge 10^{9}$	1	
	iii.	haematocri	it	$\leq 20\%$.		
5.	Neu	ological fail	ure			
	• G	CS £ 6		*in absenc	e of sedation	n at any point of the day
	• if	intubated, u	se clir	ical judgem	ent for verba	al responses as follows,
	i.	patient unr	espon	sive		1
	ii.	patient's ab	oility to	o converse i	n question	3
	iii.	patient app	ears a	ble to conve	erse	5

Multiple Organ Dysfunction Score Marshall Et Al

- $\begin{array}{rccc} 1. & Respiratory & \rightarrow & P_{aO2} \,/\, F_IO_2 \\ & \bullet & \text{without reference to mode of mechanical ventilation and use or level of PEEP} \end{array}$
- 2. Renal \rightarrow creatinine μ mol/l
 - without reference to use of dialysis
- 3. Hepatic \rightarrow bilirubin μ mol/l
- 4. Pressure adjusted HR \rightarrow PAR = HR × RAP/MAP
 - normal, 2.5 to 10 beats/min
 - record the three component variables simultaneously
- 5. Haematological \rightarrow platelet count (platelets/m 10-3)
- 6. Neurologic \rightarrow Glasgow Coma Score

■ <u>Scored</u>

- a. once per day in the morning 0900; missing values entered as normal
- b. as worst value, if such is available, after the approach of Knaus et al

• this will allow a comparison between the approach of Marshall et al

• "We chose to record these variables at a constant time point (usually the first morning values) to minimize aritifactual variability and to reflect a model of organ dysfunction as a sustained rather than a transient, process. The effect of other approaches merits study as the score evolves".

Consensus Conference

NB: Bone et al., American College of Chest Physicians / Society of Critical Care, 1992

Def'n: Infection: a microbial phenomenon characterised by an inflammatory response to the presence of microorganisms, or the invasion of normally sterile host tissue by these organisms

Bacteremia: the presence of viable bacteria in the blood

Systemic Inflammatory Response Syndrome : a characteristic clinical response, manifested by *two or more* of the following,

1.	temperature	> 38°C	
		< 36°C	(rectal)
2.	WCC	> 12,000	/mm ³
		< 4,000	/mm ³
		> 10%	immature band forms
3.	tachycardia	> 90	adults
		> 150	children
		>160	infants
4.	tachypnoea	> 20	adults or $P_{aCO2} < 32 \text{ mmHg}$
		> 50	children
		> 60	infants

Def'n: Sepsis : SIRS secondary to infection

Severe SIRS / Severe Sepsis :

 $\ensuremath{\text{SIRS}}$ / sepsis with associated organ dysfunction, hypoperfusion, or hypotension

SIRS with Shock / Septic Shock :

SIRS / sepsis with associated organ dysfunction or hypoperfusion, with hypotension *not responsive* to fluid resuscitation

Multiple Organ Dysfunction Syndrome :

state characterised by physiologic derrangements in which organ function is not capable of maintaining homeostasis

- Def'n: Hypotension in the absence of other causes for hypotension,
 - 1. systolic blood pressure < 90 mmHg, or
 - 2. a reduction from baseline > 40 mmHg
- Def'n: Hypoperfusion and perfusion abnormalities may include, but are not limited to,
 - 1. lactic acidosis
 - 2. oliguria
 - 3. an acute alteration in mental status

• patients who are on inotropes / vasopressors need not be hypotensive to fulfill criteria

• in paediatrics, hypotension is *not* necessary for diagnosis, as it is a late & ominous sign

Def'n: paediatric shock : a clinical state characterised by inadequate delivery of oxygen and substrates to meet the metabolic demands of the tissues

- at present there are no graded definitions for paediatric sepsis
- septic shock *mortality* ranges from 25% to 75%
- average ~ 40% and has not altered significantly in last 2 decades
 - a. 75% of deaths occur early 2° to *refractory hypotension*
 - b. 25% occur late 2° to *MODS*
- incidence of sepsis syndrome (US) ~ 176 per 100,000
- this has increased 140% from 1979 to 1987

<u>McCabe and Jackson</u> Disease Severity Classification

- 1. Rapidly fatal \rightarrow not expected to survive more than *1 year*
- 2. Ultimately fatal \rightarrow not expected to survive more than 5 years
- 3. Nonfatal \rightarrow 5 year survival not affected by underlying disease

Comorbidity Score Gross Et Al

- the number of conditions is restricted to nine,
 - 1. smoking habit
 - active smoking of 10 cigarettes/day with 10 UPY-unit pack years
 - 2. alcoholism
 - regular intake > 80g of alcohol per day
 - history of alcoholic pancreatitis or hepatitis
 - portal hypertension and varices
 - cirrhosis at surgery or by biopsy
 - 3. non-cured malignancy
 - 4. diabetes mellitus requiring treatment
 - 5. splenectomy before ICU admission
 - 6. major surgery within 2 months prior to admission
 - 7. previous antibiotic therapy within 2 months prior to admission and for at least 2 months
 - 8. previous cardiogenic shock or cardiopulmonary resuscitation before admission to the ICU
- Sedation Score After Ramsay Levels
 - 1. anxious and agitated, or restless, or both
 - 2. cooperative, oriented and tranquil
 - 3. respond to commands only
 - 4. asleep but brisk response to glabellar tap or loud auditory stimulus
 - 5. asleep, sluggish response to glabellar tap or loud auditory stimulus
 - 6. no response

SAPS

- LeGall et al. 1984, CCM
- 679 patients from 8 ICU's, 40% surgical patients
- 14 physiological variables
- divided scores, 4 to > 21 and associated risks of death,
 - a. 5-6 ~ 10%
 - b. > 21 ~ 81%
- ROC area ~ 0.8
- SAPSII introduced by LeGall & Lemeshow, JAMA 1993, 17 variables
 - a. ROC ~ 0.86
 - b. correlation SAPS / SAPSII ~ 0.79

TQEH Data							
	Mean	Median	StDev	Min	Max		
Age	61.445	66	18.707	15	90		
APACHE2	20.8	20	9.288	2	51 ¹		
ROD^2	0.3529	0.294	0.2848	0.002	0.983		
SAPS	14.501	14	5.572	1	35		
SAPS2	41.186	38	18.98	0	97		
RODSAPS2	0.3279	0.213	0.2918	0	0.98		
¹ highest survivor APACHEII ROD		= 41 = 98%					
~ 299	ual deaths / ROD % / 35%	(n < 0.05)					
~ 0.8	2	(p < 0.05)					

ICU DESIGN

- Levels of ICU
 - a. level I = small district hospital
 - ~ high dependency unit
 - ~ 24 hour ventilation facilities
 - b. level II = general hospital
 - prolonged ventilation facilities
 - pathology, radiology, biochem., haematol., etc.
 - c. level III = tertiary referral centre

• Generalised Requirements

- a. 1-2% of hospital beds
- b. patient area ~ 18.2 m^2 , larger for isolation rooms
- c. electrical
 - i. "cardiac protected" electrical area
 - ii. emergency power for ventilators, lighting and equipment
 - iii. 16 power outlets 8 on emergency circuit
- d. required "outlets" per bed,
 - i. 3 oxygen, 2 air, 4 suction
 - ii. 1 non-splash hand washing basin
- e. central nurses station with all beds visible
- f. adequate storage area
- g. adequate equipment with backups and facility for service
- h. staff offices, relative waiting area(s)
- i. staffing medical
 - nursing
 - physiotherapy
 - administrative
- j. facility access operating theatres
 - imaging
 - laboratories
 - accident & emergency