FEVER / HYPERTHERMIA

Def'n: fever is a regulated rise in body core temperature to > 38°C, due to an increase in the hypothalamic 'set point'

hyperthermia is a sustained rise in body temperature

 ∞ heat production in excess of the capacity for heat loss

• normal regulation displays *diurnal variation* with nadir at 06:00-08:00 and peak at 16:00-20:00

• approximate range of *survival* (non-therapeutic) $\rightarrow 26 - 43^{\circ}C$

Metabolic Changes

- 1. $\uparrow VO_2$ ~ 7-12% / °C - net metabolic effect is *catabolism*
- 2. hyperventilation
- 3. \uparrow HR ~ 15 bpm / °C
- 4. \uparrow insensible water & electrolyte losses
- 5. 1 levels of fibrinogen
 haptoglobin, CRP
 amyloid A, α-macrofetoprotein, caeruloplasmin
- 6. \downarrow availability of iron & zinc
- 7. \uparrow production of humoral mediators of inflammation

Beneficial Effects

- 1. inhibits replication of some microorganisms
- 2. \uparrow generation of cytotoxic T-cells
- 3. \uparrow B-cell activity & immunoglobulin production
- 4. \downarrow serum iron / \uparrow organisms iron requirement for growth

Causes for Apyrexia

- 1. extremes of age seriously ill newborns & elderly patients
- 2. uraemia
- 3. corticosteroids | immunosupression
- 4. contnuous antipyretic use

Infectious	Causes
------------	--------

	i. ii.	common causes uncommon sites	 UTI, urinary catheters pulmonary surgical wounds IV, IA, CVC, PA catheters antibiotic induced bacterial colitis ischaemic colitis hepatitis acalculous cholecystitis ascending cholangitis SBE subphrenic abscess cholangitis sinusitis decubitus ulcers prostatitis endometritis periodontal abscess meningo-encephalitis parasitic, malaria
Non-Infe	ectioi	ıs	
¥			
	i.	inflammatory	 - AMI - pancreatitis - acute arthritis, gout - familial mediterranean fever - sarcoidosis
	ii.	autoimmune	 SLE, RA polyarteritis, temporal arteritis, other vasculitis Wegener's granulomatosis Kawasaki's disease
	iii.	blood-borne	 haemolysis, transfusion reaction DVT, pulmonary embolus internal haemorrhage (CNS, joints, AAA, retroperitoneal) cyclic neutropaenia
	iv.	allergic	 blood transfusion, blood products drug induced fever
	v.	metabolic	 hypercalcaemia adrenal insufficiency delerium tremens, addictive drug withdrawal

vi.	hyperthermic syndromes	 MH, malignant neuroleptic syndrome heat stroke hyperthyroidism central anticholinergic syndrome 	
vii.	neoplasm	 atrial myxoma lymphomas, carcinor hepatoma, liver secon carcinoid 	
viii.	drugs	 sympathomimetics analeptics salicylates phenothiazines anticholinergics in O. MH & MNS triggers 	(vasoconstriction & muscle activity) (↑ BMR) (CNS regulation) /D
ix.	others	- Fabry's disease - hyperlipidaemias - granulomatous hepat	itis

Drug-Induced Fever

- 1. overdose
- 2. withdrawal
- 3. allergic reaction
- 4. interference with temperature regulation
 - i. central
 - ii. peripheral sweating, vasoconstriction, etc.
- 5. alteration of BMR / muscle activity
- 6. antibiotic induced superinfection
- 7. MH / NMS triggers

Fever Unknown Aetiology

Def'n: Petersdorf & Beeson, 1961, a febrile illness,

- 1. duration > 3 weeks
- 2. temperature $> 38.3^{\circ}C$

• Causes

- 1. infections ~ 30-40%
- 2. neoplasms ~ 20-30%
- 3. collagen vascular diseases ~ 15%
- 4. others ~ 15-20%
 - i. drug fever
 - ii. multiple PE's
 - iii. sarcoid
 - iv. inflammatory bowel disease
- 5. *undiagnosed* ~ 10%
- *NB:* follow-up studies have shown, carefully evaluated but undiagnosed FUO's, generally have a *good prognosis*

Clinical Approach

- *NB:* the majority of patients have a *treatable* or curable disease, which is presenting in an *uncommon manner*
- 1. rule-out common infections & other causes
 - i. history & examination
 - ii. drug history
 - iii. investigations
 - FBE, ESR, CRP
 - LFT's
 - CXR
 - M,C&S blood cultures, urine culture, stool examination
- 2. establish true nature of FUO
 - ie. ensure actually present & for > 3 weeks prior to extensive work-up

3. FUO workup

- i. extensive history
- geographic origins, travelexposure to TB
- animal exposure
- drug use, medical & recreational
- HIV risk factors
- ii. follow-up serial histories as required during investigation
- iii. physical examination
 - skin stigmata of SBE (only present in 20-30%)
 - rash of vasculitis
 - lymph nodes
 - hepatomegaly | splenomegaly
 - other abdominal masses
 - rectal & pelvic examinations
 - cardiac examination
- iv. serial physical examination is crucial
- v. laboratory investigation
 - viral studies HBV, HCV, HIV, CMV, EBV
 - respiratory pathogens
 - autoantibodies RF, ANF, ANCA, ENA, etc.
 - see below

Laboratory Aids in FUO

1. blood cultures

- i. continuous bacteraemia eg. endocarditis
 - 3 sets of BC's will recover the organism in ~ 95% of cases
 - prior oral or parenteral AB's will alter this yield
 - some *fastidious organisms* may take days/weeks (*Brucella*, *Haemophilus*)
- ii. culture-negative endocarditis
 - accounts for ~ 5-15% of BE
 - should be considered in all patients with FUO, negative initial BC's and underlying CVS disease

2. tissue biopsies

- i. lymph nodes
- ii. liver granulomatous hepatitis
- iii. skin nodules & rashes

3. skin tests

- i. intermediate PPD test
 - should be done routinely unless the patient is a known reactor / immunised
- ii. other antigens *Monilia*, trichophytin, mumps
- iii. fungal skin tests generally of little value

4. serology

ii.

- i. acute phase sample & convalescent titre
 - single sample titre > 1:1024 highly suggestive
- iii. febrile agglutinins
- Salmonella sp.
- Brucella sp.
- Pasturella tularenis
- Proteus
- these have shown *low specificity* & cross-reactivity
- poor value as a screening test
- iv. specific disease
 - viral disease HIV, EBV, HIV
 - toxoplasmosis
 - rikettsial disease
 - Legionaire's disease
 - psittacosis
- 5. ESR / CRP
- 6. screening for collagen-vascular diseases
- 7. XRay contrast studies IVP, GIT studies
- 8. radionuclide scans
 - i. gallium
 - ii. labelled WBC's ¹¹¹Indium
 - iii. bone scan
 - iv. 99mTecnecium
- 9. ultrasound
- 10. CT / MRI
- 11. exploratory laparotomy

Rare Causes of FUO

- 1. juvenile RA
- 2. familial Mediterranean fever
- 3. granulomatous hepatitis
- 4. bacterial hepatitis
- 5. hyperimmunoglobulinaemia D and periodic fever

SEPSIS

Def'n: Infection: a microbial phenomenon characterised by,

- 1. an inflammatory response to the presence of microorganisms, or
 - 2. the invasion of normally sterile host tissue by these organisms
- Def'n: Bacteremia: the presence of viable bacteria in the blood

Systemic Inflammatory Response Syndrome : a characteristic clinical response, manifested by *two or more* of the following,

1.	temperature	> 38°C		
		< 36°C	(rectal)	
2.	WCC	> 12,000	/mm ³	
		< 4,000	$/mm^3$	
		>10%	immature band forms	
3.	tachycardia	> 90	adults	
		>150	children	
		>160	infants	
4.	tachypnoea	> 20	adults or	$P_{aCO2} < 32 \text{ mmHg}$
		> 50	children	
		> 60	infants	

Def'n: Sepsis : SIRS secondary to infection

Severe SIRS / Severe Sepsis : SIRS / sepsis with associated organ dysfunction, hypoperfusion, or hypotension

SIRS with Shock / Septic Shock :

SIRS / sepsis with associated organ dysfunction or hypoperfusion, with hypotension *not responsive* to fluid resuscitation

Multiple Organ Dysfunction Syndrome :

state characterised by physiologic derrangements in which organ function is not capable of maintaining *homeostasis*

NB: Bone et al., American College of Chest Physicians / Society of Critical Care, 1992

• hypoperfusion and perfusion abnormalities may include, but are not limited to,

- 1. oliguria
- 2. an acute alteration in mental status
- 3. lactic acidosis

• patients who are on inotropes / vasopressors need not be hypotensive to fulfill criteria

• in paediatrics, hypotension is *not* necessary for diagnosis, as it is a late & ominous sign

Def'n: paediatric shock : a clinical state characterised by inadequate delivery of oxygen and substrates to meet the metabolic demands of the tissues

at present there are no graded definitions for paediatric sepsis

- septic shock *mortality* ranges from 25% to 75%
- average ~ 40% and has not altered significantly in last 2 decades
 - a. 75% of deaths occur early 2° to *refractory hypotension*
 - b. 25% occur late 2° to *MODS*
- incidence of sepsis syndrome (US) ~ 176 per 100,000
- this has increased 140% from 1979 to 1987
- **Treatment Modalities**
 - 1. antibiotics bacteriacidal, bacterostatic
 - 2. surgical procedures debridement, drainage
 - 3. intensive life support
 - i. IPPV
 - ii. intravascular volume expansion
 - iii. inotropic support
 - iv. dialysis

Immunology of Sepsis

• the hosts inflammatory response contributes substantially to the development of septic shock,

- plasma factors complement

 clotting cascade
 kinins

 cellular components

 neutrophils
 monocytes
 - macrophages
 - endothelial cells

NB: activated cells produce a range of potentially toxic host mediators

- i. cytokines TNF - IL1, IL6
- ii. kinins
- iii. eicosanoids
- iv. PAF
- v. NO
- 1985 Tracey demonstrated passive immunisation against TNF protected mice from endotoxin
- infusion of rTNF mimicked tissue injury & metabolic derrangements of endotoxic shock
- high concentrations of TNF found in patients with severe sepsis/shock
- TNF levels were inversely correlated with survival, however, not present in all patients
- Darville, et al., Infection 1993, four stages of SIRS,
 - 1. induction phase
 - 2. cytokine synthesis & secretion
 - 3. cytokine cascade
 - 4. secondary mediators & end-products resulting in cellular damage

Induction Phase

• SIRS may be initiated by,

- 1. infection bacteria, viruses - fungi, protozoa
- 2. trauma
- 3. ischaemia
- 4. autoimmune factors
- 5. other diseases pancreatitis cirrhosis

• gram negative bacterial sepsis most extensively studied

• the outer membrane of gram negative bacteria possess,

1.	O-polysaccharide chain	 O-side chain highly <i>variable</i> between bacterial strains <i>non-toxic</i> on administration to animals
2.	core sugar & <i>lipid A</i>	 embedded deeply in the outer membrane similar structure between bacterial strains <i>toxic</i> an administration to animals

administration to animals produces CVS and organ dysfunction similar to septic shock
however,

- 1. neither induced tolerance, nor genetic resistance is protective during GN infections
- 2. increased sensitivity to endotoxin *does not* alter the course of GN infections
- 3. endotoxin & endotoxaemia are not necessary to produce septic shock

• antibodies to the O-side chain produce *sero-specific*, complement dependent bactericidal activity

• however, serospecificity limits clinical utility

 \rightarrow

core and lipid-A Ab's avoid this problem

• these were believed to mediate anti-endotoxin, or endotoxin clearing effects, however their exact mechanism of action is uncertain

Agent	Possible Effect	Clinical Examples
LPS O-chain Ab	C' dependent bactericidal activity <i>Serospecific</i> against GN bacteria	Octavalent P. aeruginosa vaccine
LPS Core/Lipid A Ab	Enhanced endotoxin clearance in GN septicaemia	HA-1A, E5, J5 immune plasma or serum
Peptides & proteins which bind endotoxin	Neutralisation Enhanced clearance	Cationic peptides polymixin B, colistin HDL Bactericidal/permeability increasing protein
Lipid A derivatives	Induce tolerance to endotoxin Direct antagonism of endotoxin	Deacylated endotoxin Lipid X Monophosphorylated lipid A

- core-directed Ab's are the only type to have been subjected to clinical trial
- other agents listed above may reduce the host inflammatory response by,
 - 1. directly neutralising endotoxin
 - 2. increasing endotoxin clearance
 - 3. antagonising endotoxin effects on host cells
 - 4. inducing tolerance

• the first clinical trial using *J5-antisera* (Ziegler *et al.* NEJM 1982) showed a reduction in *sepsis-related* mortality from $39\% \rightarrow 22\%$

in a sub-group requiring inotropes for > 6 hours, the reduction was from 77% to 44%
however,

- 1. the effect of J5-antiserum on mortality from all causes was not reported
- 2. 5 subsequent clinical trials using polyclonal core-reactive antiserum, or Ig have shown *no survival benefit*
- Monoclonal Ab's
- were developed in an attempt for more specific antiendotoxin therapy
- E5 was tested in 2 multicentre, randomised, placebo-controlled trials

• the first showed no overall benefit in survival, however, retrospective analysis inferred benefit to a subgroup *without* refractory shock

• the second trial, (Wenzel, Bone *et al.*, 1991, ICAAC), was conducted to confirm this effect, however failed to do so

- *NB:* meta-analysis combining the two studies showed that **E5-Ab** substantially decreased the time to recovery from organ dysfunction and improved survival in a subgroup of patients with GN sepsis and organ dysfunction who were *not* in *refractory shock*
- a third multicentre trial is being conducted to confirm this effect
- HA-1A trials also failed to show any increase in survival

• the main study was sponsored by the manufacturers (Centocor) and the study design was changed following production of interim results

- 1. when analysed using the original design, no improvement of survival (p = 0.12)
- 2. placebo population was not equivalent,
 - i. more patients in the placebo arm had inadequate antibiotic therapy
 - ii. greater number of risk factors at study entry
- in addition, animal studies showed an increase in *myocardial dysfunction* in the HA-1A group
- this may be due to non-specific binding to *cardiolipin* (an Ag in myocardium)
 - *NB*: a second randomised trial was conducted, however was terminated in Jan'93 after there was a *higher* mortality in the HA-1A treated group

Potential Problems

- 1. exposure of the innermost core as antigenic determinants on pathogenic smooth gram negative bacteria remains *purely hypothetical*
- 2. it has been difficult to demonstrate cross-reactivity of polyclonal antisera to rough mutants, and divergent cross-reactivity results have been seen for monoclonal Ab's (HA-1A)
- 3. *has not* been shown that these Ab's participate in opsonic activity for bacterial or LPS *clearance*
- 4. *neutralisation* of the effect of endotoxin by anti-core polyclonal or monoclonal Ab's has not been described
- 5. HA-1A and other monoclonal core Ab's *do not* diminish serum TNF or IL-6 levels, cf. Ab's against specific O-side chains
- newer agents which bind to and neutralise endotoxin are being developed, these include,
 - 1. peptides non-toxic derivates of polymyxin B
 - neutrophil-derived bactericidal / permeability increasing protein
 - 2. lipoproteins HDL
- Ulevitch et al. described a family of proteins with LPS binding sites,
 - 1. LPS-binding protein

- LPB
- concentration increases ~ 100 fold during acute phase response
- binds to lipid-A moeity forming a LPS-LPB complex
- interaction with LPS and its CD-14 receptor on myeloid cells is greatly enhanced
- LPS-LPB-CD14 results in *cytokine* gene encoding
- depletion of LPB in serum, or blocking of CD14 with Ab's, results in marked reduction of macrophage activation and TNF production
- 2. *bactericidal / permeability increasing protein* BPI
 - binds to LPS and prevents macrophage activation

Cytokine Synthesis & Secretion

• in general cytokines are not stored preformed, rather their synthesis is initiated by,

- 1. *new gene transcription*, or
- 2. translation from *preformed RNA*

• transcription activating protein, NF- κ B, activated by phosphorylation of cytosolic inhibitor I κ B appears a common feature

• post-transcriptional control of biosynthesis is prominent for most cytokines

• levels of TNF-mRNA increase 100 fold in response to LPS-LPB/CD14, cf. *in vitro* increases in gene transcription ~ 3 fold

Pretranslational Blockers

- *pentoxifylline* and *amrinone* \rightarrow \uparrow **cAMP**
- former results in decreased TNF synthesis in murine endotoxic shock model
- amrinone is more potent
 - NB: concern over *in vitro* experiments which show marked cellular
 hyper-responsiveness to LPS following discontinuation of these agents, potentially sensitising the individual to otherwise harmless episodes of endotoxaemia (?? duration not studied)

Translational Blockade

- corticosteroids primarily block translational activation of TNF-mRNA in macrophages
- the steroid effect is entirely *pre-emptive*, administered post-LPS they are without effect

• the ideal dose is unknown, and there is good animal evidence that increasing the dose beyond an optimal level is associated with increased mortality

NB: Darville *et al.*, "blocking TNF production may be of most benefit where bacteria are rapidly killed by antibiotics, and where the inflammatory response can cause severe sequelae, eg. meningococcaemia or typical childhood meningitis"

The Cytokine Cascade

Tumor Necrosis Factor

- trimer protein hormone
- exerts is biological effects by cross-linking cellular TNF receptors

• TNF- β , *lymphotoxin*, is produced by TH1 lymphocytes, has 30% amino acid homology and binds to the same receptors as TNF- α

- the temporal rise in cytokines following overwhelming E.coli bacteraemia in baboons follows,
 - 1. TNF ~ 90 min
 - 2. IL-1 β ~ 3 hrs
 - 3. γ -interferon ~ 6 hrs
- studies of the effects of exogenously administered rTNF show,
 - 1. acute myocardial dysfunction
 - 2. activation of coagulation
 - 3. increased release of neuroendocrine stress hormones
 - 4. significant stimulation of immune function
 - *NB*: however, circulating TNF is not consistently detected during conditions of clinical shock, infection, or severe tissue injury

• reasons for failure to detect TNF may be,

- 1. short biological half-life and sampling at the wrong time
- 2. local tissue secretion & action \rightarrow paracrine / autocrine
- 3. assays affected by circulating *inhibitors* of TNF

• organs implicated in significant production of TNF,

- 1. lung
- 2. spleen
- 3. kidney
- 4. pancreas
- 5. heart
- 6. uterus

• morbidity & mortality following TNF administration is synergistically *enhanced* by even low concentrations of IL-1 & γ -IFN

Interleukin-1

- exists as two distinct molecules, IL-1 α and IL-1 β
- these are structurally related *polypeptides* with ~ 25% AA homology
- most IL-1 α remains in the cytosol in its precursor form, or is associated with the cell membrane
- IL-1 β is cleaved by IL-1 β converting enzyme within the cell and subsequently secreted
- clinical effects include,
 - 1. fever
 - 2. anorexia
 - 3. sleep
 - 4. increased concentrations of colony stimulating factors
 - IL-6
 - hepatic acute phase reactants
 - collagenase synthesis
 - 5. bone and cartilage resorption
 - 6. inhibition of lipoprotein lipase
 - 7. induction of PGE_2
 - 8. capillary leak
 - 9. hypotension
 - NB: however, IL-1 has never been shown to be directly lethal in animals, cf. TNF

thus, the TNF component is necessary for servere sepsis/SIRS & MODS

Interleukin 6

- has also been known as,
 - a. B-cell stimulating factor
 - b. hybridoma / plasmacytoma growth factor
 - c. hepatocyte stimulating factor
 - d. cytotoxic T-cell differentiation factor
- temporal relationship in sepsis models strongly suggests antecedent TNF & IL-1 stimulation
- if TNF or IL-1 are inhibited then IL-6 levels are markedly reduced
- clinical effects include,
 - a. endogenous pyrogen, cf. IL-1
 - b. induction of hepatic acute phase reactants
 - c. *does not* result in haemodynamic decompensation, regardless of dose
 - d. suppresses,
 - i. LPS-induced TNF production
 - ii. LPS and TNF induced IL-1 production
 - e. production of numerous anti-inflammatory proteases
 - *NB:* the general evidence is that IL-6 is *anti-inflammatory* in nature, however, it may play an adverse role in endotoxaemia

■ <u>TNF Antagonism</u>

- 1. no adequate clinical trials of *anti-TNF Ab's* in human sepsis have yet been published
 - Ab therapies in humans have limitations, therefore,
- 2. most attention has focused on *soluble TNF receptors*
 - naturally occurring proteins represent the extracellular domains of the two TNF receptors
 - thought to act as naturally ocurring *TNF antagonists*
 - have prevented *E.coli* induced sepsis in baboons & death in mice
- 3. TNF-receptor-Fc chimeric proteins
 - artificial soluble TNF receptor linked covalently to the Fc portion of IgG
 - specific inhibitor of TNF with the affinity of a natural receptor, but the half-life of naturally occurring Ab
 - single dose significantly reduces haemodynamic instability in animal models

IL-1 Antagonism

- 1. *any* attempt to treat sepsis by modulating TNF will have to occur soon after onset, cf. IL-1, where a window of several hours theoretically exists
- 2. *IL-1 receptor antagonist* is a naturally occurring competitive antagonist to IL-1
- 3. has to be administered in large quantities to block IL-1 activity in vivo
- 4. recently conducted multicentre phase III trial showed *no decrease* in mortality

Secondary Mediators & Toxic Byproducts

• the *endothelium* plays an important role both as,

- 1. a target for cytokines, and
- 2. as a source of additional mediators

cytokines increase expression of *adhesion molecules* on both endothelial cells and PMNs
activated neutrophils and endothelial cells produce,

- 1. arachidonic acid metabolites
- 2. free oxygen radicals
- 3. nitric oxide $\leftarrow \uparrow$ iNOS

NB: these appear to be the direct mediators of the physiological derangements of SIRS; *platelet activating factor* interacts with the cytokines and may either,

- i. *enhance*, or
- ii. *down-regulate* mediator release

• Arachidonic Acid Metabolites

• LPS, TNF and IL-1 \rightarrow \uparrow *prostaglandins* from endothelial cells

elevated levels of PGI₂ have been found to correlate with the severity of septic shock in humans
indomethacin given 1 hr prior to TNF blocks the metabolic acidosis, shock & death in rats

• animal studies have employed combination therapy with cyclo-oxygenase inhibitors and

- 1. leukotriene receptor antagonists
- 2. lipoxygenase inhibitors
- *NB*: clinical trials of efficacy are lacking, potential problems of *renal failure & bronchospasm*

• Oxygen Derived Free Radicals

- · generated upon reperfusion or re-oxygenation
- anions which are generated activate a *superoxide-dependent chemoattractant*
- this produces an influx of neutrophils, with further production of superoxide

• Bernard, AJM 1991, a preliminary report of a randomised trial with N-acetylcysteine in patients with established sepsis-induced ARDS shows some promise (subsequent NFG)

■ Nitric Oxide

- synthesized by *constitutive NO synthase* and activates soluble *guanylate cyclase*
- resultant increase in cGMP produces,
 - i. vasodilatation
 - ii. inhibition of platelet aggregation
 - iii. modulation of leukocyte adhesion
 - iv. modulation of spinal neurohumoral transmission
- endotoxin & cytokines \rightarrow \uparrow *inducible NO synthase* which is expressed in various cells,
 - i. endothelium
 - ii. vascular smooth muscle
 - iii. macrophages
 - iv. neutrophils

• effects of NO can be reversed in vitro & in vivo by N_G-monomethyl-L-arginine (NMLA)

• there have been some early reports of NMLA in sepsis, however main concern is reduction in *tissue perfusion*

• some animal studies have reported damage to organ structure with NO-synthase inhibition in the setting of sepsis

• another concern is enhanced platelet activation with subsequent microvascular thrombosis

Platelet Activating Factor

• LPS produces PAF from,

- i. neutrophils
- ii. macrophages
- iii. platelets
- iv. endothelial cells

• a potent phospholipid inflammatory mediator which increases cell adhesion and activates endothelial cells, either by a direct effect or via formation of toxic O_2 species or arachidonic acid metabolites

• evidence for haematologic growth factors & cytokines interacting with PAF amplifying mediator release in septic shock

• PAF mediates many of the toxic effects of TNF & IL-1

• phase III trials of **PAF** antagonists in septic shock are currently underway

Clinical Use of Immunotherapy in Sepsis

major problem is which therapy, or combination of therapies will provide the best outcome for a given patient with SIRS, depending on the time course of the illness
anti-LPS Ab's have been shown to be ineffective.

- a. they target only a subset of patients ie. gram negative septicaemia
- b. once the patient is clinically septic, the cytokine cascade is already activated

• now believed that anti-TNF and anti-IL-1 have more promise on theoretical grounds

• however, neither is consistently demonstrable in all patients with sepsis/SIRS

• the possible existence of recurring, or ongoing tissue cytokine production, and the required duration of therapy has not been addressed

NB: very few studies have assessed the effectiveness of these agents administered *after* the onset of shock

• also, there is evidence that a total lack of cytokine activity is detrimental

• it is possible that anti-cytokine therapies would only be beneficial if used at a particular dose and during a certain window period

• there is considerable evidence that TNF serves an essential role in immune *ontogeny* & regulation during development

• disruption of TNF activity in the newborn may have irreversible consequences

NB: "there must be some concern using agents which act against an endogenously produced substance which has been *teleologically conserved*"

Multiple Organ Dysfunction Syndrome MODS

Def'n: presence of altered organ function in an acutely ill patient, such that *homeostasis* cannot be maintained without intervention

specifically the term *dysfunction* infers a continuum of serverity and dysfunction, cf. the previous dichotomy of *organ failure*, definitions for which varied between institutions and researchers

- onset usually 7-10 days after precipitating event,
 - a. septic shock
 - b. severe trauma
 - c. burns
 - d. pancreatitis
 - e. intra-abdominal sepsis, etc.

• high <i>mortality</i>	~ 25-40% overall
	~ 50% of these die from <i>nosocomial pneumonia</i>

a.	1 organ system	~ 24%	~ 45% (elderly)
b.	2 organ systems	~ 53%	~ 70% (elderly)
c.	3 organ systems	~ 93-100%	

- syndrome is usually maintained by *ongoing sepsis* \pm (+)'ve blood cultures
- high risk factors include,
 - a. initial disease severity APACHE II score
 - b. systemic sepsis
 - c. respiratory infection
 - d. elderly
 - *NB:* following are *organ failure definitions*, which are no longer applicable to MODS these give an indication of organ system involvement & dysfunction in SIRS

• Organ Failure Definitions

- a. *liver failure*
 - sine qua non ~ *intrahepatic cholestasis*
 - hyperbilirubinaemia $\geq 100 \,\mu$ mol/l *disproportionate to enzyme levels
 - mild ALP elevation \equiv^{t} "obstructive jaundice" pattern
 - severe hypoalbuminaemia
 - INR ≥ 1.4
 - reduced protein synthesis, AA clearance, low redox potential

b. *respiratory failure* ~ ARDS & ventilator dependency

- tachypnoea, RR < 5 or > 49
- diffuse lung infiltrates
- reduced lung compliance $\leq 50 \text{ ml/cmH}_2\text{O}$
- hypoxia, increased $\delta P_{A-aO2} \ge 350 \text{ mmHg}$
- hypercarbia, $P_{aCO2} \ge 50 \text{ mmHg}$

c. cardiovascular failure

• bradycardia	\leq 55 bpm
---------------	---------------

- tachyarrhythmias * VF or VT
 - hypotension, MAP < 50 mmHg
- high CO, low SVR, high VO_2
- lactic acidosis, pH $\,<7.25$
- arrhythmias, bacterial endocarditis, ischaemia $LV \pm RV$
- · receptor down-regulation, reduced response to catecholamines
- reduced catecholamine stores
- minimal requirements for survival Schumaker

CI	\geq 4.5 l/min/m ²	~ 8 l/min CO	
DO_2	$> 600 \text{ ml/min/m}^2$	~ 1000 ml/min, or	15 ml/kg/min
VO ₂	$> 170 \text{ ml/min/m}^2$	~ 280 ml/min, or	4 ml/kg/min

- d. *renal failure* ~ ATN
 - oliguria < 500 ml/day or < 20 ml/hr for 8 hrs
 - high urea $> 36 \mu mol/l$
 - high creatinine > 0.3 mmol/l

oliguric renal failure, ATN \pm hepatorenal syndrome

e. haematological failure

- WCC $\leq 1000/\mu l$
- thrombocytopaenia $\leq 20,000/\mu l$ ± thrombocytopathy
- anaemia, Hct. $\leq 20\%$
- \pm DIC, fibrinolysis, thromboembolism

f. neurological failure

- GCS < 7 *in absence of sedation at any point of the day
- if intubated, use clinical judgement for verbal responses as follows,

1

- i. patient unresponsive
- ii. patient's ability to converse in question 3
- iii. patient appears able to converse 5
- septic encephalopathy
- critically ill polyneuropathy
- cerebral oedema
- central pontine myelinolysis / osmotic demyelination syndrome

• Associated Organ System Failure

a. gastrointestinal

- stress ulceration & haemorrhage
- ileus, pseudo-obstruction
- acute acalculous cholecystitis
- acute ischaemic pancreatitis
- culture negative diarrhoea, gram (-)'ve colonisation
- bacterial & endotoxin mucosal translocation, enterocolitis

b. *immune suppression*

- lymphocytopaenia <1000/µl
- severe anergy, reduced T_4/T_8 ratios
- reduced fibronectin
- infections with resistant/unusual pathogens (fungal, protozoal, bacterial)

c. hypermetabolic state

- fever
- high VO_2 > 150 ml/min (paralysed, ventilated)
- high energy requirement > 30 kcal/kg/day
- high urea & CO₂ production
- persistent hyperglycaemia, lipolysis, protein catabolism, malnutrition
- acute vitamin deficiencies folate, thiamine
- electrolyte disorders

Treatment Principles

- 1. source control
- 2. microcirculatory control
- 3. maintain oxygenation
- 4. metabolic support
- 5. prevention of complications

French ICU Group for Severe Sepsis JAMA 1995

inception cohort study, 2 month prospective survey of 11,828 admissions to 170 adult ICUs
patients meeting clinical criteria for *severe sepsis* were included and classified as,

- a. documented severe sepsis n = 742
- b. culture-negative severe sepsis n = 310
- measures of hospital and 28-day mortality

a.	suspected sepsis	~ 9.0/100 admissions
	• 28d mortality	~ 60%
b.	confirmed severe sepsis	~ 6.3/100 admissions

- 28d mortality ~ 56%
- risk factors for,
 - 1. *both* early (<3 days) and 28d deaths were,
 - i. SAPS II
 - ii. number of acute organ system failures
 - 2. *early* deaths,
 - i. pH < 7.33
 - ii. shock
 - iii. bacteremia in patients with documented sepsis
 - 3. *late* deaths,
 - i. admission category
 - ii. rapidly, or ultimately fatal underlying disease *McCabe & Jackson, 1 or 2
 - iii. pre-existing liver or cardiovascular insufficiency
 - iv. hypothermia
 - v. thrombocytopenia
 - vi. multiple sources of infection
- conclusions,
 - 1. ~75% patients with clinically *suspected* severe sepsis have documented infection
 - 2. patients with culture negative and proven severe sepsis share *common risk factors* and have a similarly high risk of death
 - 3. in addition to the severity of illness score, *acute organ failures* and the characteristics of *underlying diseases* should be accounted for in stratification of patients and outcome analyses

ANTIBIOTICS

Source	Organisms	Antibiotic	
Urinary tract • community • nosocomial	<i>E.coli</i> Enterobacteriaceae ¹ <i>Strep. faecalis</i> <i>Pseudomonas</i> spp. Staphlococci, Candida	Amoxicillin Amoxicillin Gentamicin	1g q6h 1g q6h 1.5 mg/kg q8h
Bowel	Enterobacteriaceae Strep. faecalis anaerobic cocci Bacteroides faecalis	Amoxicillin Gentamicin Metronidazole	1g q6h 1.5 mg/kg q8h 500 mg q8h
Female genitalia	anaerobes Enterobacteriaceae Strep., (Staph.)	Amoxicillin Gentamicin Metronidazole	1g q6h 1.5 mg/kg q8h 500 mg q8h
LRTI • community	Strep. pneumoniae	Penicillin	2MU q4h
LRTI • hospital	Enterobacteriaceae Strep., Staph. oral anaerobes	Cefotaxime or Penicillin Gentamicin	2g q8h 2MU q4h 1.5 mg/kg q8h
LRTI • aspiration		Amoxicillin Gentamicin Metronidazole	1g q6h 1.5 mg/kg q8h 500 mg q8h
LRTI • either	Pseudomonas	Tobramycin Timentin	1.5 mg/kg q8h 3.1 g q4h
IV catheter or skin	Staph., gram (-)'ve	Flucloxacillin Gentamicin	2g q4h + 1.5 mg/kg q8h
Neutropaenic patient		Flucloxacillin Gentamicin Timentin	2g q4h + 1.5 mg/kg q8h + 3.1g q4h
Meningitis	Streptococci, Meningococci Haemophilus	Cefotaxime	2g q6h
Cerebral abscess	Staph., anaerobes	Penicillin Metronidazole	2MU q4h + 500mg q8h

Penicillin G

- penicillin is a generic term for a broard spectrum of agents, including penicillin G
- the precise mechanism of action is *unclear* \rightarrow *bactericidal*
- provides good levels in,
 - a. serum
 - b. urine
 - c. synovial fluid
 - d. pleural fluid
 - e. pericardial fluid

NB: does not penetrate significantly into the cerebrospinal fluid

• excretion primarily by *tubular secretion* and *GFR*, thus require dose adjustment in renal failure

• the penicillinase resistant agents are an exception to this, see later

• *penicillinase* is a beta-lactamase enzyme which cleaves the β -lactam ring, with the resultant *penicillinoic acid* inactive against bacteria

• this is the principal mechanism of resistance for,

- a. resistant, coagulase-positive S.aureus
- b. E.coli
- c. *Proteus* spp.
- d. Pseudomonas spp.
- e. Bacteroides fragilis
- Activity Spectrum
 - a. gram positive aerobic cocci
 - very effective against *S. pneumoniae*, *S. pyogenes* (gp A), *S. viridans*, *S.bovis*, and penicillin-sensitive *S. aureus*
 - *not* effective for *enterococcal* infections
 - b. gram-negaive aerobes
 - minimal spectrum of activity
 - agent of choice for *N. meningitidis, Pasteurella multocida*
 - c. anaerobes
 - very effective against anaerobic cocci, Clostridium spp., Fusobacterium spp.
 - effective against most *Bacteroides* spp. (esp. oral)
 - *not* effective against *B. fragilis* from bowel
 - agent of choice for A. israelii
 - d. *T. pallidum* agent of choice

■ **Dosage**

- 1. high-dose therapy ~ 3-4 MU q4h
 - indicated for severe infections
- meningitis
- endocarditis
- clostridial infections
- requires reduction in renal failure
- no indication for doses > 30 MU/day
- ↑ neurotoxicity
- alternative agents available
- 2. intemediate doses $\sim 8-12 \text{ MU} / \text{day}$
 - often used to achieve synergistic effect with aminoglycosides
 - used in aspiration pneumonias, lung abscess, moderate to severe soft tissue infections
- 3. lower doses $\sim 2.4 \text{ MU} / \text{day}$
 - used in pneumococcal pneumonia
 - higher doses are not required and promote superinfection

• Adverse Effects

- 1. allergy and hypersensitivity reactions
- 2. drug fever
- 3. eosinophilia
 - the rapy should be ceased if level > 15% of peripheral WCC
- 4. interstitial nephritis
- 5. CNS toxicity GABA antagonist

Dose Modification

- a. renal failure
- b. dialysis removed, but amount uncertain
- c. probenicid use

Penicillinase-Resistant Penicillins

- synthetic agents produced by modification of the common penicillin side-chain
- bactericidal agents produced principally to treat S. aureus

Activity Spectrum

- a. gram positive aerobic cocci
 - i. S. aureus
 - preferred as first line agents in suspected infection
 - majority of community & hospital acquired S. aureus penicillin resistant
 - penicillin G is the preferred agent if susceptible due to lower cost, better *in vitro* activity
 - ii. other gram positives
 - effective against *S. pneumoniae, S. pyogenes* (gp A) and viridans streptococci but the MIC's are higher than for penicillin G, ∴ this is the preferred agent
 - in mixed infections with resistant *S. aureus* and *S. pyogenes* these agents can be used as sole therapy
 - not effective for enterococcal infections
- b. gram-negative aerobes
 - not effective against the Enterobacteriaceae or *Pseudomonas* spp.
 - not recommended for the R_x of gonorrhoea
- c. anaerobes
 - cf. penicillin, they have *less activity* against sensitive anaerobes
 - not effective against *B. fragilis* from bowel

Agents

- 1. flucloxacillin
 - *hepatitis* with prolonged administration has been described
- 2. oxacillin
- 3. nafcillin
- 4. methicillin
 - avoid in adults due to high risk of *interstitial nephritis*

Interstitial Nephritis

- may occur with any penicillin derivative, but is more common with *methicillin*
- does not appear dose-related \rightarrow probably a *hypersensitivity reaction*
- signs & symptoms usually appear several days following the start of therapy,
 - a. fever
 - b. eosinophilia
 - c. morbilliform rash
 - d. haematuria, proteinuria
 - e. renal failure ~ 50%

• urinary sediment shows eosinophils and renal biopsy shows interstitial nephritis with eosinophillic aggregations

• cross-sensitization with the *cephalosporins* has been documented & renal failure may be aggravated

• agent of choice is therefore vancomycin

Broad-Spectrum Penicillins

- these possess variable activity against gram negative organisms
- often subdivided into,

1.	second generation	- ampicillin, amoxicillin
2.	third generation	- carbenicillin, ticarcillin
3.	fourth generation	- piperacillin, azlocillin, mezlocillin

• Ampicillin & Amoxicillin

- active against all of those agents listed for *penicillin G*
- when an organism is susceptible, the narrower spectrum agent is preferrable
- the expanded spectrum for these penicillins includes,
 - 1. Enterococcus
 - 2. *Haemophilus influenzae* *10-25% of strains resistant, ∴ use cephalosporin
 - 3. Listeria monocytogenes
 - 4. many, but not all strains of
 - i. E.coli
 - ii. Proteus mirabilis
 - iii. *Salmonella* spp. amoxicillin is better
 - iv. *Shigella* spp. amoxicillin is *ineffective*
 - *NB:* oral bioavailability of amoxicillin ~ 2x that of ampicillin

- not active against,
 - 1. penicillinase producing staphylococci
 - 2. Pseudomonas spp.
 - 3. many Enterobacteriaceae especially hospital acquired
 - 4. Shigellosis amoxicillin only

• Augmentin

- combination of amoxicillin & *clavulanic acid*
- later has ring structure similar to β -lactams and acts as a *suicide inhibitor*
- inhibits the β -lactamases of,
 - 1. S. aureus $\rightarrow \sim 80\%$ resitance of these organisms
 - 2. *H. influenzae, H. ducreyi*
 - 3. N. gonorrhoea
 - 4. Branhamella catarrhalis
 - 5. many of the gram-negative bacilli *E. coli, Kelbsiella, Proteus*
- not active against,
 - 1. Enterobacter
 - 2. Pseudomonas spp.
 - 3. *Serratia* spp.
- Ticarcillin (Carbenicillin)
- *carboxypenicillins* \rightarrow \uparrow activity against *gram negative* bacteria
- not acid resistant, therefore IV only
- effective against,
 - 1. most strains of *P. aeruginosa* especially combined with an aminoglycoside
 - 2. indole-positive *Proteus* spp.
 - 3. other gram-negatives resistant to amoxicillin
 - 4. penicillin sensitive anaerobes * including majority of *B. fragilis*

• not active against,

- 1. Klebsiella
- 2. *Serratia* spp.
- 3. penicillinase producing staphylococci
- *NB:* carboxypenicillins have a global effect on *platelet membrane receptors*,
 ↑ SBT appears dose & time dependent, probably worse with carboxypenicillin

• problems with *carbenicillin*,

- a. high sodium load
- b. platelet dysfunction
- c. hypokalaemia

NB: therefore, replaced by *ticarcillin* in most institutions

• seldom used as a single agent, due to high risk of *resistance* emerging

• major indication is in combination with an *aminoglycoside* for severe gram-negative infections, especially,

- 1. pseudomonad infections
- 2. febrile leukopaenic patients
- 3. second line agent for *B. fragilis*
 - 75-85% are susceptible, but risk of resistance developing (β-lactamase)

Timentin Ticarcillin / Clavulanate

- active against the β -lactamases of organisms listed for Augmentin
- very active against *anaerobes*, including *B. fragilis*
- class 1 Richmond-Sykes β -lactamases (cephalosporinase) are *not inhibited* by clavulanate
- organisms not susceptible to this combination include strains of,
 - 1. Enterobacter
 - 2. *Citrobacter*
 - 3. Pseudomonas spp.
 - 4. *Serratia* spp.
 - 5. MRSA

NB: enterococci are moderately resistant

- side-effects,
 - 1. hypersensitivity reactions
 - 2. eosinophilia
 - 3. mild LFT abnormalities
 - 4. hypernatraemia | hypokalaemia
 - 5. oral candidiasis
 - 6. diarrhoea

Piperacillin

- 4th generation, broad spectrum, *ureidopenicillin*
- derived from amoxicillin, as are all members of this class
- cf. the 3rd generation agents, they possess greater *in vitro* activity against,
 - 1. Klebsiella spp.
 - 2. Serratia marcescens
 - 3. *P. aeruginosa*
 - *NB*: however, this is *not clinically significant* as prospective comparative studies show no clear advantage cf. 3rd generation agents

■ <u>Summary</u>

- 1. 4th generation agents show *no* clear clinical advantage
 - possibly less *bleeding tendency*, ie. platelet dysfunction
 - lower *sodium load*, if this is deemed critical
- 2. *monotherapy* in severe infections is *not advised*not bactericidal, except at high concentrations
- 3. no agent shows clear advantage * piperacillin | azlocillin | mezlocillin

Beta-Lactams

Side Effects

1. hypersensitivity

- i. rash
- ii. fever
- iii. eosinophilia
- iv. anaphylaxis

2. haematological

- i. haemolytic anaemia Coomb's positive
- ii. platelet dysfunction / thrombocytopaenia
- iii. neutropaenia

3. *renal*

i. interstitial nephritis

4. other

v.

- i. seizures
- ii. diarrhoea
- iii. pseudomembranous colitis
- iv. elevated LFT's rarely hepatitis
 - more common with flucloxacillin
 - hypokalaemia antipseudomonal agents
 - carbenicillin, ticarcillin, piperacillin, azlocillin

Cepaholsporins

Advantages

- a. bactericidal cf. the penicillins
- b. effective against penicillinase producing S. aureus
 - especially 1st generation agents, ie. Cephalothin
- c. broad spectrum of activity gram positive & gram negative organisms
 - wide therapeutic index therapeutic:toxicity ratio
 - lower frequency of allergic reactions

Disadvantages

d.

- a. poor CSF penetration of older agents
 - i. especially $1^{st} \& 2^{nd}$ generation \rightarrow *not recommended*, even if susceptible
 - ii. 3^{rd} generation agents \rightarrow agents of choice
 - extremely active against routine organisms causing meningitis
 - provide good bactericidal concentrations
- b. limited activity against enterococci & pseudomonads
 - 3rd generation maybe effective, but *not recommended* as sole agent
- c. enhanced nephrotoxicity when combined with aminoglycosides
 - probably not correct, but most reports implicated cephalothin

Clinical Uses

i.

- 1. surgical prophylaxis
 - i. 1st generation mainstay, especially where *S. aureus* is possible
 - ii. 2nd generation cefoxitin, cefotetan suitable for GIT procedures
 - iii. 3rd generation * *not indicated*
- 2. bacteraemia / septicaemia
 - unclear aetiology 1st generation & aminoglycoside
 - 3rd generation as sole agent
 - ii. post-splenectomy / aetiology unclear
 - need to cover, S. pneumoniae, H. influenzae, N. meningitidis
 - cefuroxime (2^{nd}) or 3^{rd} generation agent suitable
 - iii. susceptible infections *non-neutropaenic* patient
 - emergence of resistance is *not* a concern
 - desirable to *avoid* an aminoglycoside
 - iv. not indicated as sole therapy for,
 - P. aeruginosa, except for sensitive meningitis
 - enterococcal infections
- 3. skin & soft tissue 1st generation agents preferrable

- 4. dental / oral infections
 - penicillin remains the drug of choice
 - in allergic patients, or those not responding, *clindamycin* is second choice
 - *cefoxitin* (2^{nd}) is an alternative as it has reasonable anaerobic cover
- **CNS** infections 5.
 - 1st / 2nd generation i. * not indicated
 - 3rd generation ii.
 - currently the *drug of choice* for enteric gram negative meningitis
 - this is uncommon, except in neonates & following neurosurgical procedures
 - meningitis in children iii.
 - neonates cefotaxime and amoxicillin \rightarrow
 - children > 3 months \rightarrow cefotaxime, or ceftriaxone
 - brain abscess iv.
 - useful agents, but combination therapy preferred
- 6. respiratory infections
 - S. aureus or S. pneumoniae in a penicillin allergic patient may be treated with a i. 1st generation agent
 - severe community acquired pneumonia 3rd generation ii.
 - Enterobacter spp. and other nosocomial GN organisms risk development of resistance, ∴not effective as sole agent
 - if atypical pathogens are likely, then *erythromycin* should be added
 - Pseudomonas infections should not be treated using a sole agent iii.
- 7. cardiac infections
 - i. gram positive organisms 1st generation agent \rightarrow
 - no cephalosporin currently available is active against enterococci
 - 3rd generation agent may be useful **GNB** endocarditis ii. \rightarrow
 - iii. **MRSA**
 - even if sensitive in vitro, cephalosporins are of no use in vivo
- 8. intra-abdominal sepsis
 - mild / moderate community acquired infections
 - cefoxitin, or other 2nd generation agent may be useful
 - moxalactam is no longer used due to bleeding problems
 - 3rd generation agents have *less* anaerobic cover, ∴ have little to offer unless enhanced GN cover is desirable
- 9. urinary tract infections
 - community acquired pyelonephritis - 1st generation agent i.
 - complicated recurrent UTI's ii.
- 2nd / 3rd generation agent
- 3rd generation agent non-bacteraemic P. aeruginosa iii.

• Spectrum of Activity

- 1. *first generation* *cephalothin
 - i. gram positive organisms
 - penicillin susceptible & resistant *S. aureus, S. pneumoniae, S. pyogenes* and other aerobic streptococci
 - not active against enterococci
 - ii. gram negative organisms
 - some Enterobacteriaceae are susceptible
 - only modest activity against *H. influenzae*
 - many Serratia, Enterobacter and Proteus are resistant
 - Pseudomonas spp. are resistant
 - iii. anaerobes
 - active against penicillin sensitive anaerobes
 - not effective against B. fragilis
- 2. *second generation* *cefoxitin
 - i. gram positive organisms
 - same spectrum, but slightly less active than 1st generation
 - not active against enterococci
 - ii. gram negative organisms
 - extended activity but separate *sensitivity testing* must be performed
 - active against N. gonorrhoea
 - Enterobacter cloacae and Pseudomonas spp. are resistant
 - bacterial resistance frequently develops
 - iii. anaerobes
 - active against penicillin sensitive anaerobes
 - effective against 80-95% of strains of B. fragilis
 - more effective than newer 3rd generation agents

3. third generation

- gram positive organisms i.
 - 1st / 2nd generation agents are 2-4x as active against *S. aureus*
 - mixed infections, there is no need to add separate anti-staphylococcal cover
 - streptococci, groups A, B, C, G, viridans and bovis are susceptible
 - *S. pneumoniae* are highly susceptible
- coagulase negative staphylococci
- not active against L. monocytogenes
- gram negative organisms ii.
 - *H. influenzae* and other *Haemophilus* spp.
 - active against *N. gonorrhoea* and other *N.* spp.
 - enhanced activity against the *Enterobacteriaceae*, being their major advantage over the earlier agents
 - *Enterobacter* spp., especially *E. cloacae* ~ 10-30% resistant
 - only *ceftazidime* is active against *P. aeruginosa* (± *P. cepacia*)
- iii. anaerobes
 - activity is suitable for respiratory (oral) anaerobes only
 - none of these agents is truely stable to *B*. *fragilis* β -lactamase
 - less effective than the 2^{nd} generation agents

Indications 3rd Generation

- 1. enteric GNB meningitis agents of choice \rightarrow
- 2. empiric therapy for meningitis in children
 - cefotaxime preferred as doesn't displace bilirubin • neonates - plus amoxicillin to cover Listeria monocytogenes
- GN infections resistant to older agents 3.
- susceptible multiresistant organisms (aminoglycoside resistant) 4.
- 5. severe bacteraemias & infections where enhanced bactericidal activity is desirable
- with an aminoglycoside for P. aeruginosa in penicillin allergic patients 6.
- severe H. influenzae infection pending sensitivities 7.
- mixed infections where use of a 3rd generation agent allows monotherapy 8.
- 9. severe community acquired infections - eg. pneumonia
 - ie. where *P. aeruginosa* is *not* a concern

- *no cephalosporin* is active against - enterococci

Side Effects Cephalosporins

- 1. phlebitis
- 2. primary *allergic reactions* ~ 5%
 - i. urticarial and morbilliform rashes
 - ii. fever
 - iii. eosinophilia
 - iv. serum sickness
 - v. anaphylaxis
 - in *penicillin allergic* patients reported cross-reaction rates ~ 5-15%
 - however, more recent reports are much lower \rightarrow
 - with a history of *immediate generalised reaction* to penicillin, the cephalosporins should be avoided, unless careful skin testing is performed
 - in patients with delayed mild reactions, cephalosporins may be used

3. nephrotoxicity

- used as sole agents, they are infrequently associated with toxicity
- i. cephaloridine is no longer available due to toxicity
- ii. conflicting data regarding *cephalothin* and aminoglycosides

4. haematological

ii.

- i. positive Coomb's reaction * haemolytic anaemia is rare
 - granulocytopaenia / thrombocytopaenia are rare
- iii. hypoprothrombinaemia and bleeding diathesis
 - described with *moxalactam*, cefamandole, cefotetan, cefoperazone
 - · moxalactam has also been associated with platelet dysfunction
 - cefamandole \rightarrow hypoprothrombinaemia ~ 10% bleeding much less
 - mechanisms destruction of *menaquinone* producing gut flora
 - *N-methylthiotetrazole* inhibition of synthesis
 - · later effect limited to agents with the NMTT side chain
- 5. ethanol intolerance

* disulfiram-like reactions

~1%

- 6. antibiotic related *diarrhoea*
- 7. *resistance* | superinfection
 - development of resistance highest with the *second generation* agents
 - *cefoxitin* actually used to induce/study resistance by some laboratories

Carbepenems Imipenem / Cilastatin

- first agent of this class, released early 1987
- widest spectrum of the β -lactam agents,

1. imipenem

- parent compound is *thienamycin*, which is unstable chemically
- .: use the crystalline amidine derivative, *N-formimidoyl thienamycin* (imipenem)

2. cilastatin

- this is not an antibiotic, nor a β -lactamase inhibitor
- acts as a selective enzyme inhibitor, with 2 actions,
- i. inhibits *dehydropeptidase-I* on the brush border of the nephron
 - given in a 1:1 ratio, prevents degradation in the tubule
 - \rightarrow enhancing urinary concentrations
- ii. "nephroprotective effect"
 - high dose imipenem given over months to animals produces *nephrotoxicity*
 - coadministration of cilastatin prevents tubular accumulation of antibiotic and subsequent toxicity

Activity Spectrum

- inhibits > 90% of all clinically significant infective organisms worldwide
- this is currently being reduced, especially in Europe, where resistance is increasing
- this spectrum of activity is due to 3 factors,
 - 1. no *permeability barrier* to gram negative bacteria
 - 2. stability against attack from β -lactamases
 - 3. *high affinity* for penicillin-binding proteins
 - *NB*: imipenem is a potent *inducer* of β -lactamases which can cleave other β -lactam agents, and has shown antagonism when given concomitantly, eg *P. aeruginosa*

imipenem *does not* penetrate into mammalian cells, therefore is unsuitable for *intracellular pathogens*

- specific organisms,
 - a. gram positive aerobes
 - similar efficacy to the penicillins and first generation cephalosporins
 - majority of Staph's and Strep's, including penicillin-resistant S. pneumoniae
 - *Enterococci* are usually susceptible, however some *S. fecium* strains are resistant
 - MRSA and coagulase-negative staphylococci are routinely resistant
 - some strains of *L. monocytogenes* are susceptible, but readily develop tolerance

b. gram negative aerobes

- i. nonenteric pathogens
 - MIC's for β-lactamase positive and β-lactamase negative *H. influenzae* and *N. meningitidis* are identical
 - other *N*. spp. and *H*. spp. are also *highly susceptible*
- ii. Enterobacteriaceae *three levels of sensitivity
 - *Proteus* spp. being less sensitive $\sim 2-4 \ \mu g/ml$
 - Serratia, Enterobacter & Citrobacter spp. ~ 1-2 µg/ml
 - all other organisms highly susceptible $< 1.0 \,\mu g/ml$
- iii. Pseudomonas
 - *P. aeruginosa* are moderately susceptible $\sim 5.0 \,\mu \text{g/ml}$
 - imipenem shows synergism with *aminoglycosides*
 - \rightarrow now routinely recommended for *P. aeruginosa*
 - P. maltophilia and P. cepacia are routinely resistant
- iv. Acinetobacter
 - usually very susceptible
- c. anaerobes
 - based on *in vitro* testing, imipenem is the most active β -lactam agent, being comparable in efficacy to clindamycin, chloramphenicol and metronidazole
 - MIC for *C. perfringens* is slightly higher at 4.0 μ g/ml and some *C. difficille* are relatively resistant at ~ 10 μ g/ml

• other resistant organisms include,

- a. *Flavobacterium* spp.
- b. *Corynebacterium* spp.
- c. Mycobacterium fortuitum
- d. C. trachomatis
- e. mycoplasma

• Adverse Effects

1.	phlebitis	$\leq 5\%$
2.	GIT symptoms	~ 5%
	• with high dose therapy	~ 20%
3.	allergic reactions	
	• drug fever, rash, pruritis	< 3%
	• patients showing an immediate gener considered imipenem allergic	ralised response to penicillin should be
4.	seizures	
	• unclear aetiology	~ 1.5%
	 increased frequency with, 	
	i. prior history of seizure disorder	
	ii. CNS lesion	
	iii. renal failure	
	iv. higher doses	
5.	haematological effects	
	i. eosinophilia	~ 4%
	ii. positive direct Coomb's test	~ 2%
	• usually <i>without</i> haemolysis	
	iii. neutropaenia / thrombocytopaenia	rarely
	• largest report actually \rightarrow	-
		collagen-induced platelet aggregation
	iv. increased prothrombin time has be	een reported
6.	nephrotoxicity has rarely been described	d

- 7. *colonisation* / superinfection
 - superinfection appears to be less problematic, but colonisation is common,
 - i. resistant *P. aeruginosa* *usually aminoglycoside sensitive
 - ii. fungi

• Contraindications

- 1. not as sole therapy for severe infections with,
 - i. *P. aeruginosa*
 - ii. *enterococci*
- 2. other *Pseudomonas* infections
- 3. the majority of community acquired infections
- 4. surgical prophylaxis
- 5. MRSA

Aztreonam

- this is another new (1987) β -lactam antibiotic, first of the monobactam class
- general niche is as a safer agent for the treatment of gram negative infections
 - 1. interfers with bacterial cell wall synthesis
 - 2. bactericidal concentrations ~ inhibitory concentrations, ∴ tolerance is *unusual*
 - 3. highly resistant to β -lactamases produced by GN bacteria
 - 4. poor inducer of chromosomal β-lactamase production
 - 5. virtually *no nephrotoxicity*

Activity Spectrum

- a. gram positive aerobes * little or *no activity*
- b. anaerobes * little or *no activity*
- c. gram negative aerobes
 - highly active against Enterobacteriaceae
 - activity is comparable to the aminoglycosides and 3rd generation cephalosporins
 - against *P. aeruginosa*, required concentrations are ~ 2x those of ceftazidime and it is less active than imipenem
 - organisms generally *resistant* include,
 - i. *Citrobacter freundii*
 - ii. Enterobacter aerogenes and E. cloacae
 - iii. Legionella pneumophilia
 - iv. the majority of strains of Acinetobacter sp.
 - v. many strains of *Pseudomonas* spp. (maltophilia, cepacia)

• Clinical Uses

• penetrates most body fluids well, except the *meninges*, \therefore a 3rd generation cephalosporin is preferrable in this setting

• may be useful for oral prophylaxis in immunocompromised patients, effectively selectively decontaminating the GIT without significantly altering the anaerobic flora

- · compared with the aminoglycosides, aztreonam
 - 1. has an almost *identical* spectrum of activity
 - 2. is effective in anaerobic conditions, acid pH, and abscesses
 - 3. lacks nephrotoxicity
 - 4. is considerably more *expensive*
 - *NB*: ∴ may be cost effective if requirement for routine *drug levels* is included

Aminoglycosides

- a. "micin" gentamicin, netilmicin, produced from *Micromonospora*
- b. "mycin" tobramycin, derived from a *Streptomyces* species
- c. *amikacin* semi-synthetic, derived from kanamycin-A

penetrate the cell wall & membrane & bind to 30S bacterial *ribosomes*, resulting in misreading of messenger RNA → nonfunctional proteins & cell death, *bactericidal* factors supporting the recent change to *once daily dosage*, (4.0-5.0 mg/kg/day)

- 1. bacterial killing is *concentration dependent*
 - high peak levels are more effective and less toxic than intermittent low doses
 - studies show a clear positive relationship between the ratio of *peak* plasma levels, bacterial MIC, and clinical outcome
 - the rapeutic levels require a peak > 6 mg/l, with no advantage > 10 mg/l
- 2. with respect to GNB, the is a prolonged *post-antibiotic effect*
 - persistent suppression of bacterial growth following exposure to antibiotic
 - both concentration and time dependent
 - there may not be a requirement to administer AB immediately calculated drug levels fall below bacterial MIC
- both *in vitro* and *in vivo* evidence that administration of subsequent aminoglycoside, while there is still trace aminoglycoside levels, may reduce or abolish the bacteriacidal effect → *"adaptive resistance after first exposure"*
 - this is due to down-regulation of bacterial aminoglycoside uptake
 - models with *P. aeruginosa* show most bactericidal activity has not returned < 24 hours after the first exposure
- 4. *renal cortical uptake* and concentration is greater with infusions or multiple dose regimens, cf. single daily dosage of equal amount
 - renal toxicity relates directly to renal cortical aminoglycoside concentration
- **NB:** 28 published trials comparing single daily with multiple dose regimens
 - → efficacy 27 showed no statistical difference, 1 increased lessened or delayed in 5, no different in remainder 2 showed decrease, remainder no difference

no study has shown an advantage for conventional multiple dose regimens

• studies in *neutropaenic* patients support once daily dosing in this group

• while there has been no increase in toxicity, there is concern regarding the use of the same *trough level* for single daily dosage

- 1. trough of 1.5-2.0 μg/ml at 24 hours representing significant accumulation
 - \rightarrow AUC ~ 2.5 times that for the same trough and 8 hourly interval
- 2. patients with normal renal clearance have *an undetectable trough level at 24 hours*
 - \rightarrow \therefore may be more appropriate to aim for same AUC, or trough < 0.8

Activity Spectrum

- a. gram positive aerobes
 - not recommended as sole agents
 - some activity, primarily against Staphylococci
 - *synergistic* with penicillins against,
 - i. enterococci
 - ii. viridans and other streptococci
 - iii. MRSA & coagulase negative staphylococci (+ vancomycin)
 - iv. L. monocytogenes
 - not active/synergistic against pneumococci
- b. gram negative aerobes
 - particularly active against the Enterobacteriaceae, *Pseudomonas* spp., *Acinetobacter* sp., *Providencia* sp.
 - .:. very useful in initial therapy of *nosocomial infections*, usually in combination with a cephalosporin or extended spectrum penicillin
 - minimally active against Neiserria and Haemophilus sp.
- c. anaerobes * *no significant* activity
- *NB:* against susceptible pathogens, these agents have been shown to be equally effective;

tobramycin may be slightly more effective against *Pseudomonas aeruginosa* gentamicin is slightly more effective against the *Enterobacteriaceae*

- poor oral absorption, : IV only, except if trying to minmise enteric bacterial load
- limited CSF penetration & narrow margin of safety preclude use in CNS infections
- if absolutely required, then give intraventricuarly (gentamicin ~ 4-8 mg, *no formalin*)

• Side Effects

- 1. *nephrotoxicity*
 - overall incidence ~ 5-15%
 - tobramycin may be slightly less nephrotoxic, but studies variable & small numbers

* usually *reversible*

- i. high *trough levels*
- ii. prolonged therapy
- iii. previous aminoglycoside therapy <1 year
- iv. female gender
- v. dehydration, shock
- vi. bacteraemia / septicaemia
- vii. liver disease
- viii. other nephrotoxic drugs
 - loop diuretics
 - vancomycin
 - cephalosporins * follow-up multivariate study \rightarrow *no difference*

- 2. *ototoxicity* * usually *ir*
 - * usually *irreversible*
 - clinically detectable hearing loss < 0.5%
 - audiometric deterioration ~ 2-12%
 - selective destruction of the outer hair cells of the organ or Corti
 - also *vestibular* dysfunction nausea, vomiting, vertigo, nystagmus
 - · increased with increasing duration of therapy
- 3. prolonged neuromuscular blockade
- 4. fever & rash

Prevention of Nephrotoxicity

- 1. correction of hypotension, hypovolaemia
- 2. use single daily (or longer) dosing, individualised to the patient & serum levels
- 3. use the shortest appropriate course
- 4. consider alternative agents for susceptible organisms
- 5. avoid the indiscriminate use of concomitant nephrotoxic agents

■ *Barza et al. BMJ 1996*

• metanalysis to assess relative efficacy and toxicity of aminoglycosides given by single daily dose compared with multiple daily doses

• 21 randomised trials overviewed with fixed effects and random effects models and with meta-regression analysis

- 3,091 patients with bacterial infection, most *without* pre-existing renal disease
- randomised to once daily or multiple dose regimens with similar total dose
- outcome measures for single daily dose against traditional regimen,
 - 1. clinical failure of treatment
 - a non-significant decrease in risk of antibiotic failures (risk ratio 0.83 (95% CI 0.57 to 1.21))
 - benefit was greater when *pseudomonas* isolates in a trial were higher
 - 2. nephrotoxicity, ototoxicity
 - reduced risk of nephrotoxicity (fixed effects risk ratio 0.74 (0.54 to 1.00))
 - similar trends in *children* & patients with *febrile neutropenia*
 - no significant difference in ototoxicity, but the pooled power was low
 - 3. mortality
 - · there was no significant difference in mortality
 - *NB*: ∴ once daily administration in patients *without* pre-existing renal impairment is as effective as multiple daily dosing, has a lower risk of nephrotoxicity, and no greater risk of ototoxicity; thus, should be the preferred mode of administration

Erythromycin

- is a *macrolide* with a different chemical structure from the β -lactams
- inhibits protein synthesis at a *ribosomal* level & is usually *bacteriostatic*
- believed one of the safest antibiotics in clinical use

Activity Spectrum

- 1. bacterial pathogens
 - i. gram positive organisms
 - streptococci groups A, B, C, G, and S. pneumoniae
 - S. aureus is usually susceptible, but other agents are preferred
 - drug of choice for C. diphtheriae, and active against other Corynebacterium

ii. gram negative organisms

- agent of first choice for *L. pneumophilia, Legionella* spp.
 - Bordetella pertussis
 - H. ducreyi
 - Campylobacter jejuni
- alternative for Branhamella catarrhalis, active against N. gonorrhoea
- resistant organisms Enterobacteriaceae
 - ~ 40% of H. influenzae
- iii. anaerobes * no clinically significant activity

2. nonbacterial pathogens

- i. mycoplasms M. pneumoniae and Ureaplasma urealyticum
 - clamydiae *C. trachomatis, C. pneumoniae* (TWAR strain)
- iii. spirochetes T. pallidum, Borrelia burgdorferi (Lyme disease)

Drug of Choice

ii.

- 1.M. pneumoniae- may use tetracycline- erythromycin ~ 50x more potent
- 2. *L. pneumophilia, Legionella* sp. pneumonias
- 3. C. trachomatis pneumonia
- 4. Bordetella pertussis whooping cough
- 5. *Campylobacter jejuni*
- 6. Corynebacterium haemolyticum nonstreptococcal pharyngitis
- 7. Corynebacterium diphtheriae
- 8. *H. ducreyi* chanchroid genital lesions

• Alternative in Penicillin Allergic Patient

- 1. group A streptococcal URTI
- 2. S. pneumoniae pneumonia
- 3. dental prophylaxis for bacterial endocarditis
- 4. superficial staphylococcal infections therapy
- 5. rheumatic fever prophylaxis
- 6. *T. pallidum* infections

Drug Interactions

1.	theophylline	\rightarrow	\uparrow levels with erythromycin use
2.	warfarin	\rightarrow	\uparrow hypoprothrombinaemic effect
3.	carbamazepine	\rightarrow	\downarrow hepatic metabolism with erythromycin use
4.	digoxin	\rightarrow	\uparrow GIT absorption with erythromycin use

• Adverse Effects

- 1. GIT upset
- 2. cholestatic jaundice rare, but only with the *estolate* (oral) preparation
- 3. transient deafness reported rarely with high dose therapy
- 4. *C. difficile* diarrhoea
- 5. hypersensitivity reactions
 - fever, rash and eosinophilia are relatively *uncommon*

*resistance may emerge during

Vancomycin

· early preparations contained substantial fermentation broth impurities with associated toxicity

- increased use in the 1980's due to,
 - 1. infections with MRSA and coagulase negative staphylococci
 - 2. resistant gram positive organisms
 - 3. C. difficile diarrhoea complicating broad spectrum agents
- structurally *unrelated* to the β -lactams, \therefore useful in penicillin allergic patients
- bactericidal by inhibition of bacterial cell wall synthesis

NB: however, there is *no* competition for *penicillin-binding proteins*

 \rightarrow cross-resistance does not occur

Activity Spectrum

- 1. gram positive organisms
 - active against virtually *all* GP organisms, including,

i.	enterococci	- may only be bacteriostatic against some strains
		- occasional E. fecium, E. faecalis resistant
		* usually combined with aminacheoside

- * usually combined with *aminoglycoside*
- ii. penicillin-resistant S. aureus and MRSA
- iii. MRSE occasional isolates may be resistant, S. haemolyticus
- 2. gram negative organisms * *no* clinically useful activity
- 3. anaerobes * *no* clinically useful activity
 - does cover *Clostridium* spp., but clinically unimportant
- penetrates inflammed meninges, but treatment failures have occurred
- excreted primarily by the kidneys and requires dose adjustment with renal insufficiency,
 - a. peak levels $\sim 30-40 \,\mu g/ml$ b. trough $\sim 5-10 \,\mu g/ml$

Adverse Effects

- 1. ototoxicity generally only with levels > $80 \ \mu g/ml$
- 2. nephrotoxicity now believed to be *uncommon*
- 3. red man syndrome * non-IgE mediated *histamine* release \propto administration rate
- 4. skin rashes $\sim 5\%$
- 5. phlebitis
- 6. *neutropaenia* rarely with prolonged use

NB: ototoxicity & nephrotoxicity may be additive with aminoglycosides

Teicoplanin

- chemically similar, but with significant structural differences to vancomycin
- spectrum of activity virtually mirrors that of *vancomycin*
- significant features,
 - 1. long half-life allows *once-daily* administration
 - 2. excellent gram positive *bacteriacidal* activity
 - 3. useful for patients with allergic or neutropaenic responses to vancomycin
 - 4. potentially *less toxic* than vancomycin
 - 5. lesser requirement for dose adjustment in *renal insufficiency*

Cloramphenicol

Activity Spectrum

- a. gram positive aerobes
 - majority of GPC are susceptible, though the MIC's are moderately high
 - not considered a drug of choice against staphylococci or enterococci

b. gram negative aerobes

- virtually all strains of Haemophilus and Neisseria
- Enterobacteriaceae are susceptible, require sensitivity testing
- *Pseudomonas* sp. are generally *resistant*
- c. anaerobes * *virtually all*
- d. Rickettsiae * most

Adverse Effects

- 1. bone marrow suppression
 - i. dose related bone marrow suppression
 - ii. rare \rightarrow *irreversible fatal aplastic anaemia*
- 2. grey baby syndrome
- 3. haemolysis with G6PD deficiency
- 4. ?? childhood leukaemia

Clindamycin

- lincomycin isolated in 1962, side-chain modified to produce clindamycin which is more active
- can be *bactericidal* or *bacteristatic* depending upon the concentration
- inhibits protein synthesis at the *ribosomal* level

Activity Spectrum

- a. gram positive aerobes
 - active against group A streptococci and most strains of S. aureus (80-95%)
 - may be used as an alternative in penicillin/cephalosporin allergic patients
 - active in vitro against pneumococci
 - not active against *enterococci*
- b. gram negative aerobes * *no significant* activity
- c. anaerobes
 - active against both GP & GN anaerobes, including B. fragilis and C. perfringens
 - *resistant* ~ 20% of other *Clostrididium* sp.
 - ~ 10% of Peptostreptococci
 - $\leq 5\%$ of *B. fragilis*[§]

NB: severe infections, *metronidazole* is preferred due to small frequency of resistance[§]

Dosage

a.	oral	- 75 & 150 mg tablets
		~ 300 - 450 mg q6h

b. IV ~ 600 mg q6-8h

■ <u>Side Effects</u>

- 1. hypersensitivity reactions $\leq 10\%$
- 2. higher frequency of *C. difficile* diarrhoea cf. metronidazole
- 3. minor elevation of LFT's is common
 - overt hepatitis is rare
- 4. bone marrow suppression has been reported, but rare
- 5. metallic taste when given IV
- *NB*: nephrotoxicity does *not* appear to occur

Metronidazole

Activity Spectrum

- a. gram positive aerobes * *no significant* activity
- b. gram negative aerobes
 - some minor activity, but none clinically useful
 - Gardnerella (H.) vaginalis is susceptible

c. anaerobes

- very active & *bactericidal* against both GP & GN anaerobes
- including *B. fragilis* and other *Bacteroides* spp., *Clostrididium* sp., *Fusobacterium* sp., *Peptococcus* and *Peptostreptococcus* sp.
- Proprionibacterium acnes is highly resistant

d. *parasites*

• very active against Entamoeba histolitica, Giardia lamblia and T. vaginalis

Limitations

- a. pregnancy reports of carcinogenesis in mice & rats
- b. lactating women
- c. pulmonary anaerobic infections
 - relative resistance of *microaerophilic streptococci*

Adverse Effects

- a. carcinogenic potential
 - metronidazole *has not* been shown to be teratogenic in humans
- b. alcohol intolerance
- c. peripheral *neuropathies* seizures have rarely been reported
- d. potentiation of warfarin
- e. minor GIT symptoms

Trimethaprim / Sulphamethoxazole

- both agents inhibit *folate synthesis* but at sequential steps, therefore combination,
 - 1. produces *synergistic* activity
 - 2. reduces development of *resistance*
- optimal plasma ratio TMP:SMZ ~ 1:20
- penetrates the CNS well, with CSF levels ~ 40% of plasma
- Activity Spectrum
 - a. gram positive aerobes
 - virtually all GP cocci, including many MRSA, L. monocytogenes
 - *not* active against enterococci
 - b. gram negative aerobes
 - most Enterobacteriaceae, Salmonella & Shigella spp.
 - H. influenzae (amoxicillin sensitive/resistant), Branhamella catarrhalis
 - P. cepacia & P. maltophilia (Xanthomonas) usually susceptible
 - not active against P. aeruginosa
 - other organisms usually susceptible,
 - i. L. pneumoniae, L. micdadei
 - ii. Yersinia enterocolitica, H. dulcreyi
 - c. anaerobes * *no significant* activity
 - d. others P. carinii
 - Nocardia spp.

Drug of Choice

- 1. *Shigella* spp.
- 2. Yersinia enterocolitica
- 3. Aeromonas spp.
- 4. *P. cepacia & P. maltophilia (Xanthomonas)*
- 5. P. carinii

• Adverse Effects

- 1. mild GIT sympotoms
- 2. *skin rashes* ~ 3.5%
 - exfoliative dermatitis, Stevens-Johnson syndrome occur rarely
- 3. bone *marrow suppression*
 - megaloblastic marrow changes are rare, except in patients with pre-existing folate store depletion (alcoholics, elderly, pregnancy, malnourished, phenytoin)
 - concomitant administration of *folinic acid* will reverse the antifolate effects
 - main problem group appears to be paediatric, non-AIDS patients ??
- 4. potential teratogenesis
- 5. potential kernicterus

Tetracyclines

- *bacteriostatic* agents, acting by interference with protein synthesis at the *ribosomal* level
- there are *no important* clinical differences in terms of activity

Activity Spectrum

- a. gram positive aerobes
 - many strains of streptococci, staphylococci, and even pneumococci are resistant
 - .:. *not* recommended for GP infections
- b. gram negative aerobes
 - most Enterobacteriaceae & Pseudomonas spp. are resistant
 - uncomplicated *E. coli* infections are susceptible to urinary concentrations
 - effective against *Brucella* sp., *Calymmatobacterium granulomatis*, *Vibrio* spp., *Clamydia trachomatis*
- c. anaerobes * *no significant* activity
- d. other organisms
 - i. spirochetes B. burgdorferi, B. recurrentis
 - T. pallidum, Leptospira spp.
 - ii. rickettsiae Q fever, typhus, etc
 - iii. mycoplasms M. pneumoniae, Ureaplasma urealiticum
 - iv. Clamydiae C. psittaci, C. trachomatis, C. pneumoniae
 - v. mycobacterium M. marinum, M. fortuitum
 - vi. Nocardia spp.
 - vii. short term prophylaxis for chloroquine-resistant P. falciparum malaria

• Adverse Effects

- 1. teeth & bone depression of growth, discolouration
- 2. hypersensitivity uncommon
- 3. GIT effects frequent following oral administration
- 4. exacerbation of prerenal azotaemia
- 5. benign intracranial hypertension
- 6. oesophageal ulcerations
- 7. thrombophlebitis

Quinolones

- original prototype of this class was *nalidixic acid*
- newer synthetic agents have modified the 2-member ring \rightarrow 7-piperazine / 6-fluorine
- ciprofloxacin & norfloxacin were released in 1987
- action by interferring with DNA synthesis, inhibiting *bacterial DNA gyrase*

<u>Activity Spectrum</u> Ciprofloxacin

- a. gram positive aerobes
 - S. aureus are moderately susceptible \rightarrow MIC ~ 0.5-1.0 µg/ml
 - S. epidermidis is slightly more susceptible \rightarrow MIC ~ 0.12-0.5 µg/ml
 - S. pyogenes & enterococci are moderately susceptible
 - other streptococci (pneumococcus, viridans, GBS) are relatively resistant
- b. gram negative aerobes *susceptibility *break-point* < 1.0 µg/ml
 - i. highly susceptible
 - *N. gonorrhoea, N. meningitidis & H. influenzae* ($\pm \beta$ -lactamase)
 - Enterobacteriaceae : E. coli, Klebsiella, Enterobacter, Serratia, Salmonella, Shigella
 - L. pneumophilia, Acinetobacter, Campylobacter, Aeromonas, Yersinia, Pasturella, Branhamella
 - ii. intermediate sensitivity
 - *P. aeruginosa* \rightarrow MIC ~ 0.5 µg/ml
 - iii. *resistant*
 - P. cepacia, P. maltophilia
- c. anaerobes * *no significant* activity
- d. others
 - Mycoplasma pneumoniae, Bordetella pertussis
- appear to penetrate the CSF adequately

• emergence of *resistance* is relatively *uncommon*, with the exception of *S. aureus*, *P. aeruginosa*

• synergistic combinations vary, eg ciprofloxacin plus,

a.	anti-pseudomonal penicillin	~ 20-50% of <i>P. aeruginosa</i> isolates
b.	aminoglycoside	~ no synergy for P. aeruginosa

• Adverse Effects

- 1. N,V & D ~ 5%
- 2. mild CNS problems $\sim 1-4\%$
 - *seizures* have been reported but very rare
 - avoid with history of seizure disorder & avoid use with NSAIDs
- 3. skin reactions $\sim 1-2\%$
- 4. cartilage erosions
 - not recommended for children or pregnant women
 - various studies now showing efficacy in children, without adverse effects
 - ∴ use on an as indicated basis
- 5. may increase plasma theophylline levels

Antibiotic Dosage

NB: adjustment in severe *liver disease*

- 1. chloramphenicol
- 2. clindamycin
- 3. erythromycin
- 4. flucloxacillin
- 5. isoniazid
- 6. metronidazole
- 7. nafcillin
- 8. rifampicin
- 9. vancomycin

Antibiotic	Sensitive	Resistant
Cephalothin 1 Cefazolin	gram (+)'ves gram (-)'ves + <i>H. influenzae</i>	Enterococci, MRSA, Pseudomonas, Acinetobacter, Proteus, Enterobacter, Serratia, B. fragilis
Cefoxitin 2 Cephamandole	gram (+)'ves gram (-)'ves + <i>H. influenzae</i> anaerobes ± <i>B. fragilis</i>	Enterococci, MRSA, <i>Pseudomonas</i> , <i>Enterobacter</i> , <i>Listeria</i> <i>B. fragilis</i> if mixed infection
Cefotaxime 3	gram (+)'ves gram (-)'ves + <i>H. influenzae</i> anaerobes ± <i>B. fragilis</i>	Enterococci (S. faecalis), MRSA, Listeria, Pseudomonas, Acinetobacter C. difficile ± B. fragilis
Ceftriaxone 3	gram (+)'ves gram (-)'ves + <i>H. influenzae</i> ± <i>Pseudomonas</i> anaerobes ± <i>B. fragilis</i>	Enterococci, MRSA, Acinetobacter, Listeria C. difficile
Ceftazidime 3	gram (+)'ves (weak) gram (-)'ves + <i>H. influenzae</i> + <i>Pseudomonas</i> anaerobes	Enterococci, MRSA, Campylobacter, Listeria C. difficile, B. fragilis

Antibiotic	Sensitive	Resistant
Imipenem	gram (+)'ves + <i>Strep. faecalis</i> gram (-)'ves anaerobes + <i>Bacteroides</i>	S. epidermidis, MRSA, S. fecium, Corynebacterium, P. maltophilia, P. cepacia, Flavobacterium C. difficile
Timentin	gram (+)'ves gram (-)'ves anaerobes	MRSA, ± Pseudomonas, Enterobacter (some species)
Gentamicin	Staph. (most) ± Strep. <i>faecalis</i> gram (-)'ves	S. pneumoniae, most S. faecalis, MRSA, Neisseria, Acinetobacter, Providentia & resistant Pseudomonas, <i>all</i> anaerobes
Tobramycin	Staph. (most) ± Strep. <i>faecalis</i> gram (-)'ves + Pseudomonas + Acinetobacter	Strep. <i>pneumoniae</i> , some Strep. <i>faecalis</i> , MRSA, Neisseria Providentia & resistant Pseudomonas <i>all</i> anaerobes

Amphotericin

- still the most effective agent for the majority of fungal infecions
- binds to *ergosterol*, the main component of susceptible fungal cell membranes
- \rightarrow increasing *permeability* resulting in cell death
- outcome does not appear to be related to plasma levels
- poorly absorbed from the GIT
- poor penetration into,
 - a. spinal fluid
 - b. aqueous humour
 - c. urine & dialysis fluid
- elimination occurs slowly via the *biliary tract*
- no uniform agreement on the optimal mode of administration
- we use,

1.	test dose	~ 1-5 mg + hydrocortosone 100 mg IV	
2.	incremental doses	~ 5-10 m	g/day
3.	maximal doses	~ 50 mg/day	(some use 0.7-1.0 mg/kg)

- standard infusion rate is 4-6 hours
- some believe the incidence of adverse reactions may be *reduced* by *faster* infusion
- however, results in release of *potassium* from mammalian cells
- therefore may produce hyperkalaemia & infusion should be over ≥ 1 hr
- most agree that if $Cr>200\mathchar`-300\ \mu\mbox{mol/l}$ then should either,
 - 1. decrease dose
 - 2. use alternate day regimen
 - 3. hold therapy until renal function improves

Combination Therapy

- 1. *flucytosine*
 - synergistic with, especially for cryptococcal infections in non-AIDS patients
- 2. rifampicin
 - preliminary studies suggest may also be synergistic

■ *Toxicity*

- 1. fever & rigors
- 2. anorexia, N&V
- 3. *nephrotoxicity*
 - early toxicity \rightarrow dose related
 - late toxicity \rightarrow proportional to *cumulative dose*
 - usually reversible early, later may become dialysis dependent
 - frequency may be reduced by *saline loading*

4. anaemia

- direct bone marrow depression occurs in $\sim 75\%$
- usually mild, leukopaenia & thrombocytopaenia are rare

5. hypokalaemia

- secondary to renal tubular dysfunction $\sim 25\%$
- 6. phlebitis

Flucytosine 5FC

- converted to 5-fluorouracil within sensitive fungal cells, then interfers with protein synthesis
- widely distributed to all body fluids, especially CSF
- $\bullet > 90\%$ eliminated unchanged in the urine
- dose,
 - 1. normal renal function ~ 12.5-37.5 mg/kg po q6h
 - 2. renal dysfunction
 - according to plasma levels $\sim 50-100 \ \mu g/ml$
- rapid emergence of *drug resistance* precludes use as a single agent
- often combined with Amphotericin B in non-AIDS patients

■ <u>Toxicity</u>

- 1. hepatic dysfunction $\sim 5\%$
- 2. leukopaenia / thrombocytopaenia
 - potentially lethal & more common in conjunction with Amphotericin B
- 3. GIT intolerance
- 4. teratogenic effects
- 5. severe *marrow depression* in AIDS patients with Amphotericin

Fluconazole

• bis-triazole antifungal agent, released early 1990

• mechanism similar to ketoconazole, inhibition of *sterol-14-\alpha-demethylase*, with subsequent membrane enzyme dysfunction & growth inhibition

NB: depletes *ergosterol*, to which amphotericin binds, ∴ co-administration theoretically *contraindicated*

- reliable GIT absorption > 90%
- renal excretion ~ 80%
- plasma elimination $t_{1/2B}$ ~ 25 hrs
- good penetration into,

a.	CSF	- levels ~ 60-80% of plasma *cf. amphotericin & ketoconazole

- b. urine effective in urinary tract candidiasis
- c. sputum, saliva and skin

Dosage

- a. oropharyngeal candidiasis 200 mg first day, then 100 mg daily oesophageal candidiasis
- b. cryptococcal meningitis
 - i. suppression 200 mg daily
 - ii. therapy 400 mg first day, then 200 mg daily
- c. Rex study ~ 400 mg/day

Side Effects

- a. rash ~ 4-5%
- b. nausea & vomiting ~ 8-10%
- c. Stevens-Johnson syndrome
- d. thrombocytopaenia
- e. *hepatotoxicity*
 - transient \uparrow LFTs common, especially in AIDS patients
- f. adrenal suppression virtually *absent*, cf. ketoconazole

• Metabolism of Imidazoles

- imidazole antifungal agents include ketoconazole, fluconazole, and itraconazole
- they work by inhibiting a P_{450} enzyme in fungi, *lanosterol 14-demethylase*
- they are potent human P_{450} inhibitors
 - \rightarrow ketoconazole is often used in hepatocyte cultures to inhibit 3A

• both ketoconazole and itraconazole have been shown in human volunteers to increase midazolam peak concentration 3-4 fold, presumedly through 3A inhibition

• although *in vitro* the relative potencies are debated, for cyclosporin metabolism the order is,

a. ketoconazole > itraconazole > fluconazole

b. with ketoconazole 500 times more inhibitory than fluconazole

NB: ∴ *fluconazole* is likely to be clinically interaction-free for 3A drugs

• however, some impairment of phenytoin clearance has been demonstrated

• they have also been shown to have an *immunosuppressive* effect, strongly diminishing

 CD_3 -induced human *T cell proliferation*, due to a marked inhibition of IL-2 synthesis

• this may explain the report of decreased ARDS mortality with ketoconazole therapy

Savino et al. J-Trauma 1994

• a PRCT to determine if *prophylactic* antifungal agents prevented *yeast colonization* (YC) or *yeast sepsis* (YS), or if they diminish *mortality*

292 adult (nontransplant / nonburned) surgical and trauma patients, SICU > 48 hours
randomized to receive,

- 1. group I no therapy
- 2. group II clotrimazole 10 mg tds
- 3. group III ketoconazole 200 mg per day, or
- 4. group IV nystatin 2 MU qid

• patients were stratified by the criteria of Slotman and Burchard (14 risk factors) into,

- 1. high risk ≥ 3 risk factors
- 2. low risk < 3 risk factors
- *NB: no significant* difference between the four groups with regard to YC (23%, 18%, 12%, and 15%, respectively), YS (3%, 1%, 2%, and 7%, respectively), or mortality (15%, 14%, 6%, and 20%, respectively)

• 50 patients (17%) had yeast colonization, nine (3.1%) had yeast sepsis, and 41 (14%) died • stepwise LR analysis for significant predictors of yeast colonization and sepsis \rightarrow

- 1. treatment with three or more antibiotics
- 2. APACHE II > 10
- 3. ventilatory support > 48 hours

Winston et al. Ann-Intern-Med. 1993

PRCT (multicenter) of 257 adults undergoing chemotherapy for acute leukemia to evaluate the efficacy and safety of *fluconazole* for prevention of fungal infections
patients assigned to receive either,

1. fluconazole - 400 mg orally once daily, or fluconazole - 200 mg IV bd

2. placebo

• the study drug was started at initiation of chemotherapy and continued until recovery of neutrophil count, development of proven or suspected invasive fungal infection, or the occurrence of a drug-related toxicity

fluconazole decreased,

1.	fungal colonization		p < 0.001	
	i.	placebo patients	- 83 of 122	68%
	ii.	fluconazole patients	- 34 of 119	29%
2.	prov	en fungal infections	p = 0.02	
	i.	placebo patients	- 27 of 132	21%
	ii.	fluconazole patients	- 11 of 123	9%
3.	supe	rficial fungal infections	p = 0.01	
3.	supe i.	rficial fungal infections placebo patients	p = 0.01 - 20 of 132	15%
3.	-	•	1	15% 6%
3. 4.	i. ii.	placebo patients	- 20 of 132	
	i. ii.	placebo patients fluconazole patients	- 20 of 132 - 7 of 123	

• fluconazole was especially effective in eliminating colonization and infection by Candida species other than *Candida krusei*

• Aspergillus infections were infrequent in both fluconazole (3 cases) and placebo groups (3 cases)

• the use of amphotericin B, the incidence of drug-related side effects, and overall mortality were similar in both study groups

NB: prophylactic fluconazole prevents *colonization* and *superficial infections* by Candida species other than *Candida krusei* in patients undergoing chemotherapy for acute leukemia

fluconazole *could not* be clearly shown to be effective for preventing *invasive* fungal infections, reducing the use of amphotericin B, or decreasing *mortality*

■ <u><i>Rex, et</i></u>	al. The Candi	daemia Study Gr	oup	NEJM 1994
• multicen	tre, randomized trial of versus	amphotericin fluconazole	-	e :
a.	206 non-neutropaenic	patients		
b.	mean APACHEII	~ 16 - no	t different be	tween groups
c.	mostly renal failure, no	on-haematologica	l cancer & G	TT disease
d.	predominant species w i. peripheral venipu ii. CVC sample		~ 64%	~ 60% of isolates
e.	vascular catheters wer	e the most likely	source	~ 72% of cases
• results,				
1.	no statistically significationexcept for secondarysuccessful outcome	y analysis of pati	ents treated f	
2.	 Cr/BUN amphotericin fluconazole 	~ 37% ~ 2% [p <	0.001]	
3.	hypokalaemiaamphotericinfluconazole	~ 10% ~ 2% [p =	0.006]	
4.	LFTsamphotericinfluconazole	~ 10% ~ 14% [p =	0.43]	

NB: renal dysfunction resulted in cessation of amphotericin in 3 patients, liver dysfunction resulted in cessation of fluconazole in 2 patients

the most frequent site of *secondary spread* was the eye, with retinal lesions in 29/206 patients
problems,

- a. patient group only included ~ 10 patients with deep/intra-abdominal infection
 - ie. how applicable is this data to deep seated infection in ICU ?
- b. 62 patients in each group underwent complete catheter exchange on day one
 - in 10 of the amphotericin group and 7 for fluconazole this was *over wire*

Antibiotic Resistance

• first resistance reported in 1940 by Abraham & Chain

→ E.coli (B. coli) producing penicillinase

- 1944 Kirby reported similar resistance in S. aureus
- multiple other isolated of in vitro resistance prior to the widespread use of antimicrobial agents

NB: ∴ resistance is not simply a consequence of antibiotic use, but is integral to the bacteriums natural defence mechanisms

• early 60's & 70's recognition of strains of *H. influenzae* and *N. gonorrhoeae* which had acquired genetic information for production of β -lactamase

• Factors Producing Resistance

1. common gene mutation

- best example is current emergence of *extended spectrum* β *-lactamases*
- ESBL's first reported in 1982 in E. coli
- that ESBL was only 3 AA different from the 'wild-type' β-lactamase of ampicillin resistant *E. coli* strains
- ESBL's now number > *30 types*
- other mutations may affect resistance,
- i. genes coding for *membrane permeability*
- ii. genes coding for target protein synthesis

2. genetic exchange

- mechanisms of exchange include,
- i. *transformation* uptake of naked DNA
- ii. *transduction* transfer of DNA by bacteriophage
- iii. *conjugation* cell to cell transfer, ie. *plasmids*
- process may extend to include highly *unrelated* groups of organsisms, eg. *Campylobacter coli* & *enterococci*
- however, differences in genetic control mechanisms between species may limit *expression* & functionality of acquired DNA
- though, clinically relevant examples exist, eg. *enterococcal* genes coding for gentamicin resistance and β-lactamase were acquired from *staphylococci*
- USA nosocomial *enterococci* isolates resistant to vancomycin, VRE
 - \rightarrow 0.4% in 1989 \rightarrow \uparrow **13.6%** in 1993
- 3. *selective pressures* *institution & community
 - hypothesised mutant cells would not survive if not for selection
 - Atlanta, USA, **25%** of *pneumococcus* penicillin resistant, 9% to cephalosporins
 - among 3 children with 3rd generation resistant pneumococcal meningitis, *all* had received prior therapy with cephalosporins for otitis media

Resistance Testing

- vancomycin resistance in *enterococci* is difficult to detect by automated methods
- major problem with cephalosporin resistance in GNB's, especially that mediated by ESBL's
 - 1. MIC *breakpoints* for "susceptibility" were set prior to the existence of these enzymes
 - based on bacterial population susceptibilities
 - now effectively 3 populations, not 2
 - 2. MIC's for ESBL containing bacteria may vary from 4 μ g/ml to 256 μ g/ml \rightarrow ie. from "susceptible" to highly resistant
 - usual MIC of *Klebsiella pneumoniae* to ceftazidime ~ 0.06 µg/ml,
 ∴ may have *50-fold* decrease in sensitivity & still be reported as "susceptible"

Optimising Hospital Antibiotic Use JAMA 1995

- 1. optimise choice and duration for *surgical prophylaxis*
- 2. optimise choice and duration of *empiric therapy*
- 3. achieve 1&2 by educational & administrative means
- 4. establish system to monitor & feedback on occurrence of *resistance*
- 5. develop institutional guidelines for use of "important" types of antimicrobials

• Minimising Organism Resistance

- 1. system to monitor, recognise, and rapidly report changes in *resistance patterns*,
 - i. at an institutional level
 - ii. at a patient-caregiver level
- 2. increased adherence to standard *infection control* measures
- 3. develop a plan for identifying, transferring, discharging & readmitting patients colonised with *specific antimicrobial-resistant pathogens*

ANAEROBIC INFECTIONS

Def'n: anaerobic bacteria require a reduced O_2 tension for growth, failing to grow on solid media in 10% CO_2 in air

microaerophilic bacteria require oxygen for growth, can grow in 10% CO₂ in air, or in aerobic conditions

facultative bacteria can grow in the presence or absence of air

NB: organisms causing human infections are usually *aerotolerant*, *mixed* infections with anaerobic, facultative, and aerobic species

- most important anaerobes,
 - a. *Bacteroides* *out of proportion to gut content
 - b. Fusobacterium
 - c. anaerobic Streptococci *Peptostreptococci*, microaerophilic strep.
 - d. Clostridia

• anaerobic *virulence* features,

- a. adherence factors
- b. low immunogenicity of capsule
- c. enzyme production protease - superoxide dismutase
- d. produce antibacterials $-\beta$ -lactamase
- e. lipopolysaccharides which reduce effectiveness of phagocytosis

• Antibiotics Effective Against Anaerobes

- a. good against *all* anaerobes Imipenem
 - Timentin
 - Chloramphenicol
 - Clindamycin / Lincomycin
- b. Penicillin G
 - highly effective against anaerobic cocci
 - active against many *Bacteroides* species, especially oral
 - *not effective* for *B. fragilis* from bowel sources, 2° β-lactamases
- c. Cephalosporins
 - cefotaxime, ceftriaxone suitable for respiratory pathogens (oral anaerobes)
 - the 2^{nd} generation agents are more active than 3^{rd} generation agents
 - \rightarrow effective against 80-95% of strains of *B. fragilis*
 - none of the 3rd generation agents suitable for colonic anaerobes
 - less Clostridial cover
- d. Metronidazole
 - drug of first choice for enteric anaerobes
 - not effective against Actinomyces, Proprionibacterium acnes is highly resistant

• Manifestations

a.	Oral	 dental abscesses Ludwig's angina necrotizing gingivitis
b.	Cerebral	 subdural/intracerebral abscess chronic otitis media or sinusitis otogenic meningitis
c.	Skin	 necrotizing cellulitis, fasciitis wound abscess gangrene human bite infections
d.	Lung	 aspiration pneumonia lung abscess, empyema
e.	GIT	 hepatic abscess, peritoneal abscess pelvic abscess, pelvic cellulitis
f.	GUT	 pyelophlebitis tubo-ovarian abscess endometritis pyometra

• Clinical Features

- a. foul odour
- b. abscess, necrotic tissue, gangrene
- c. crepitus from gas production
- d. septic thrombophlebitis
- e. sites as above

• brain abscesses

- f. spread through tissue planes subcutaneous
 - fascia, muscle

Bacteroides Sp.

- ~ 50%
- post-op. wound infections ~ 50% (emergency or elective bowel surgery)
- aspiration pneumonitis ~ 30-40%
- hepatic/pelvic abscesses ~ 20-45%

Specific Cases

Bacterial Synergistic Gangrene

- mixed-anaerobic infection
 - i. anaerobic and microaerophilic Strep.
 - ii. gram (-)'ve bacilli
 - iii. \pm Staph aureus
- occurring also at surgical wound but causing spreading necrotic infection with little systemic effect
- R_x : gentamicin/tobramicin 1.5 mg/kg/q8h + clindamycin 600 mg/q6h ± penicillin for \uparrow clostridial cover

early surgical review

- requirement for cover for *B. fragilis* is determined by the likelihood of penetration of an abdominal viscera
- if no penetration, then penicillin & an aminoglycoside will suffice

Fournier's Gangrene

- mixed anaerobic cellulitis of scrotum, perineum, anterior abdominal wall
- rapidly spreading along deep fascial plains
- best considered a form of bacterial synergistic gangrene

Meleney's Ulcer

• anaerobic and microaerophilic Streptococcal infection of surgical wound producing undermined ulcer and systemic toxicity

Meleney's Cellulitis

- synergistic infection with Staph. and anaerobic Strep.
- best considered a form of bacterial synergistic gangrene

Necrotizing Fasciitis

- acute streptococcal (not anaerobic) widespread fascial necrosis
- see over

Necrotizing Fasciitis

Def'n: aerobic, usually gram (+)'ve spreading superficial infection of skin and subcutaneous tissues, resulting in skin necrosis

• Clinical Features

- a. superficial widespread fascial necrosis
- b. blue/brown skin discolouration due to ecchymoses
- c. cutaneous gangrene, oedema, tenderness
- d. frequently lower limbs, following minor trauma or infection
- e. subcutaneous emphysema is *rare*
- f. vesicles occasionally form
- g. systemic features jaundice
 - septic shock
 - acute lung injury
- h. wide range of ages

Causative Organisms

a.	Streptococci	~ 45%	- haemolytic, ? pyogenes
b.	Staphlococci	~ 45%	- haemolytic
c.	gram negatives	~ 10%	- Pseudomonas, E. coli

Preceding Event

a. minor trauma	~ 80%
-----------------	-------

- b. postoperative ~ 10%
- c. diabetes ~ 5%

Synergistic Necrotizing "Cellulitis"

Def'n: mixed aerobic/anaerobic, (usually gram (+)'ve & anaerobic Strep.), causing widespread infection of deep fascial layers and muscle (similar to gas gangrene), with little superficial involvement → ie. this is a misnomer

• Clinical Features

- a. discharging ulcer with foul-smelling "dish-water" pus
- b. subcutaneous *emphysema* ~ 25%
- c. severe *tenderness* without obvious superficial infection
- d. skin changes uncommon

e.	systemic toxicity common	~ 65%
f.	site of infection	~ 50% perineum ~ 25% thigh ~ 13% leg - feet, arms, neck
g.	associations	~ 75% diabetes ~ 70% obesity ~ 33% CVS + renal disease - cachexia
h.	systemic features	- fever, anaemia - diabetic ketoacidosis
i.	high <i>mortality</i>	~ 70%

• Causative Organisms

a.	aerobes	~ 40% Klebsiella ~ 30% E. coli
		~ 40% Proteus - Pseudomonas
b.	anaerobes	~ 50% Streptococci ~ 25% Bacteroides

NB: Meleny's synergistic cellulitis is a similar mixed infection, but involves *Staph. aureus* and anaerobic Strep.

Botulinism

e.

- NB: rare neuromuscular disorder resulting from bacterial neurotoxin
- a. neurotoxin from *Clostridium botulinum*
 - anaerobic, spore forming, gram-positive rod
- b. 8 serotypes:
 - i. **type A** ~ 58%
 - ii. type B ~ 25%
 - iii. type E $\sim 17\%$
 - iv. C₁, C₂, D, F, & G
- c. bilateral *descending* weakness starting with cranial nn.
- d. risk of toxin ingestion (food borne) or GIT colonization
 - *absence* of sensory deficit
 - fever
 - altered mental status
- f. heat labile $\sim 80^{\circ}$ C for 15 minutes
- g. spores are heat stable & germinate if $$-\,pH<4$$$$$$$$- presence of <math display="inline">H_2O$$$$$$$$$$$$$$$$$$- T > 4^\circ C$$$
- h. *prejunctional*, non-competitive blockade $\rightarrow \downarrow$ ACh release
 - binds *irreversibly* to motor nerve terminals, ... require *new synthesis*
 - anti-toxin is of *no value* once clinical signs evident

Clinical Features

- a. incubation period ~ 6 hrs 8 days ~ 24 hrs average
- b. mortality ~ 15%
- c. presentation types,
 - i. infantile
 - ii. adult intestinal infection
 - iii. food borne
 - iv. wound infection
 - v. source unknown

d.	CNS symptoms	 dysphagia dry mouth diplopia dysarthria UL weakness LL weakness blurred vision dyspnoea paraesthesiae 	~ 96% ~ 93% ~ 91% ~ 84% ~ 73% ~ 69% ~ 65% ~ 60%
e.	CNS signs	 UL weakness ptosis LL weakness loss of gag reflex ophthalmoplegia facial weakness tongue dilated pupils nystagmus ataxia 	~ 75% ~ 73% ~ 69% ~ 65% ~ 65% ~ 63% ~ 58% ~ 44% ~ 22% ~ 17%
f.	GIT signs	 constipation nausea vomiting cramps diarrhoea 	~ 73% ~ 64% ~ 59% ~ 42% ~ 20%

Diagnosis

• clinical features as above, plus

- 1. positive *toxin assay* * blood or faeces
 - < 24 hours after onset
 - toxin may be detected for 7-30 days following exposure
- 2. \pm stool culture for *Cl. botulinum*
- 3. CSF protein levels are normal
- 4. \pm peripheral nerve stimulator \rightarrow *tetanic recruitment* no fade

NB: the *tensilon test* may be falsely positive

Differential Diagnosis

• of bulbar and pseudobulbar palsy,

- 1. myasthenic crisis
- 2. atypical GBS
- 3. early tetanus

6.

- 4. multiple sclerosis acute exacerbation
- 5. motor neurone disease
 - poisoning organophosphates, shellfish, tick paralysis
- 7. drugs nitrofurantoin, perhexiline, dapsone
- 8. acute intermittent porphyria
- 9. pontine disease infarction, central pontine myelinolysis
- 10. polyarteritis nodosa mononeuritis multiplex
- 11. infections poliomyelitis, diphtheria, infectious hepatitis
- 12. malignancy Eaton-Lambert syndrome (mainly limb girdle)

• risk factors for intestinal colonisation,

- a. infants ~ 2-6 months
- b. broad spectrum antibiotics
- c. achlorhydria*
- d. post-gastrectomy* *loss of gastric acidity

■ <u>Treatment</u>

- a. ABC support \pm ETT & mechanical ventilation
 - respiratory muscle weakness may last for up to 3 months
- b. *antitoxin* two doses 4 hrs apart
 - however, 20% get an *adverse reaction*
 - probably of no use once symptoms occur
 - no evidence that mortality is reduced
- c. high dose *penicillin*
 - i. wound infection
 - ii. GIT colonisation
 - iii. unknown origin
 - iv. ? Vancomycin
- d. gastric lavage & enemas

Tetanus

- *Def'n:* a *toxi-infection* which occurs when *Clostridium tetani* invades a host and produces the neurotoxin *tetanospasmin*, which enters the nervous system resulting in,
 - 1. disordered neurotransmission both centrally and peripherally
 - 2. widespread CNS *hyperexcitation*

Aetiology

- Clostridium tetani is a gram positive obligate anaerobe
- spors are ubiquitous in soil and feces
- following access to devitalised tissue, spors proliferate in the vegetative state producing,
 - 1. tetanospasmin TT the principal neurotoxin
 - 2. tetanolysin clinically less significant

Pathogenesis

• TT is distributed widely via the bloodstream

taken-up exclusively by the NMJ of motor neurones & is transported proximally to the CNS
TT is concentrated in cell bodies, from which it diffuses & gains access to the *presynaptic* terminals of adjacent neurones, preferentially *inhibitory interneurones* (glycine/GABA-ergic)

• prevents neurotransmitter release \propto calcium influx in all affected neurones

• there is a resultant *disinhibition* both from higher centres and locally within the spinal cord

• this affects both agonist and antagonist *motor* units simultaneously, and in severe cases also affects the *autonomic* nervous system

Immunisation

- natural immunity *does not* occur
- the lethal dose of TT is well below the dose required to invoke humoral immunity
- all patients should be actively immunised following control of infection
- mothers of affected neonates should also be immunised

• Outcome

- theoretically recovery should be complete
- followup studies have shown subtle CNS and muscular abnormalities in long-term survivors
- in *non-neonates*, mortality relates directly to,
 - 1. the *age* of the patient
 - 2. the inverse of the *incubation period*

NB: average mortality (USA) ~ 10%

Clinical Features

• the *incubation period* is related directly to the time required for TT production, uptake and distribution within the CNS

• this may vary from 1 day to several months, with an average time of 3 days to 3 weeks

• periods less than 24 hours are associated with significantly higher mortality

• 75% of non-neonatal cases present with *trismus* and the disease usually progresses in a *descending* fashion,

1. trismus

i.

- 2. dysphagia
- 3. risus sardonicus
- 4. muscle spasms
 - spine neck stiffness, opisthotonus
 - ii. limbs flexion and abduction of the arms, with extension of the legs
 - iii. larynx & diaphragm respiratory arrest
 - these are frequently very *painful* due to discordinate activity
 - may be associated with tendon separation or bony damage

5. *autonomic dysfunction*

- occurs in severe cases
- onset is usually several days *after* the onset of spasms
- increased basal sympathetic tone, with episodic marked sympathetic overactivity
- raised plasma noradrenaline levels, plus adrenaline from *adrenal disinhibition*
- may also manifest periods of sympathetic failure, with bradycardia, hypotension and occasionally cardiac arrest (especially IV drug abusers)

6. *neonatal tetanus*

- presents most commonly about day 7 with a short history of failure to feed
- the typical spasms are present however may be mistaken for convulsions
- vomiting due to raised intra-abdominal pressure may be prominent

Differential Diagnosis

- 1. strychnine poisoning receptor blockade on *post-synaptic* inhibitory neurones clinically may appear very similar
- 2. dystonic reaction tricyclics, phenothiazines, propofol
- 3. temporomandibular disease
- 4. local oral disease
- 5. convulsions
- 6. muscular tetany
- 7. CNS infections or haemorrhage
- 8. psychiatric disorders

• Complications

- 1. hypoxaemia
- 2. those 2° to mechanical ventilation
- 3. those 2° autonomic instability
- 4. myoglobinuria \pm renal impairment
- 5. septic complications especially nosocomial pneumonia
- 6. those of prolonged bed rest
 - i. pressure sores
 - ii. deep venous thrombosis \pm embolic phenomena
 - iii. prolonged ileus
 - iv. muscle wasting & osteoporosis
- 7. SIADH
- 8. psychiatric

Treatment

• the objectives of management are,

- 1. to neutralise *circulating neurotoxin*
- 2. to eradicate the *source* of the toxin
- 3. to minimise the effects of already *bound toxin*
 - i. muscle spasms
 - ii. autonomic dysfunction
- 4. provision of general *supportive care*

• *tetanus immune globulin* 500^U IM is as effective as higher doses & should be given immediately

- TIG cannot penetrate nerve fibres or the blood brain barrier, and is ineffective intrathecally
- the infected site should be located & aggressively debrided surgically
 - \rightarrow however, in ~ 20% no infective site can be found
- *metronidazole* is the drug of choice, being more effective than penicillin
- it has a narrow spectrum against anaerobes & penetrates devitalised tissue well
- penicillin is a GABA antagonist in the CNS and may aggravate spasms
- randomised trial in Lancet (?BMJ) showing lower mortality in metronidazole group
- the presence of *muscle spasms* mandates early securing of the *airway*
- much of the increase in muscle tone may be managed with *heavy sedation*
- this will also allay much of the autonomic dysfunction
- where the respiratory muscles are involved *paralysis* is required

• vecuronium has the least cardiac side-effects, pancuronium having the propensity to exacerbate tachycardia & hypertension

• traditionally a combination of α/β -blockade has been used

• α -blockade should be instituted first, as the use of unopposed β -blockade may increase TPR and result in CCF and and arrest

• *chlorpromazine* is a useful agent, as it also has CNS sedative effects

• *esmolol* allows titration of the level of β -blockade but is excessively expensive

• SNS blockade, if not readily reversible, has the potential to worsen periods of bradycardia and hypotension

• a more logical approach is to decrease CNS outflow

- as stated above *heavy sedation* will reduce SOA
- both morphine and benzodiazepines act centrally to minimise the effects of TT

• *clonidine* has been used successfully to reduce CNS outflow & avoids the problems of receptor downregulation

• *magnesium* may be useful as an additional agent, between 2.5-4 mmol/l

- a. producing a significant drop in SVR with a small fall in CO
- b. inhibiting the release of,
 - i. adrenaline from the adrenal medulla
 - ii. noradrenaline from peripheral nerve terminals
- c. reducing the sensitivity of α/β receptors
- d. neuromuscular blockade

however, Mg⁺⁺ cannot be used without sedation, and supplemental Ca⁺⁺ may be required
intrathecal *baclofen* has been used in refractory cases, however may result in respiratory depression

Supportive Therapy

a.	fluid & electrolyte balance	
b.	pulmonary care	 <i>early tracheostomy</i> regular toilet & secretion clearance
c.	nutrition	- enteral preferrably if ileus is not profound
d.	bowel care	- avoidance of constipation
e.	DVT prophylaxis	
f.	physiotherapy	muscle contracturesrespiratory function
g.	posture & pressure sor	res
h.	psychotherapy if requi	red
i.	active immunisation	patientplus mother if a neonate

Other Clostridial Infections

Species	Clinical Syndrome
Cl. tetani	• tetanus
Cl. botulinum	• botulinism
Cl. perfringens Cl. septicum Cl. bifermentans Cl. novyi	 gas gangrene → clostridial <i>myonecrosis</i>
Cl. perfringens (type A)	 food poisoning puerperal sepsis massive intravascular haemolysis cellulitis (with gas formation) gaseous cholecystitis
Cl. difficile	• pseudomembranous colitis

Rare Presentations

- a. surgical wound infection
- b. cystitis & pneumaturia
- c. osteomyelitis
- d. arthritis, bursitis
- e. endocarditis

DISSEMINATED TUBERCULOSIS

- incidence is increasing, especially among adults
- presentation of fatal TB,
 - a. ARDS
 - b. pneumothorax
 - c. meningitis
 - d. hepatic failure
 - e. adrenal failure
 - f. acute pericarditis
 - g. TB aneurysm
- aetiological agent Mycobacterium tuberculosis (var. hominis)
- culture positive in 6-8 weeks
- acid fast bacillus
 - a. stain with Zeihl-Neelsen process

 \rightarrow

- b. *fluorescent stains* ~ 3x more sensitive
- *NB*: diagnostic criteria \rightarrow microscopy $\geq 10^5$ organisms/ml

• histologically forms granulomata, with

- a. central Langerhan's giant cells
- b. mid-zone of "epithelial" cells
- c. peripheral zone of lymphocytes
- d. progression to central *caseation* and destruction of surrounding tissue
- pathogenesis of dissemination is haematogenous spread of multiple bacterial emboli,
 - a. spread from 1° infection ~ 5%
 - b. decreased host defence mechanisms
 - c. erosion of granulomata into vessel with "reactivation"
- organ involvement,
 - a. lungs ~ 20%
 - b. lymph nodes $\sim 14\%$
 - c. multiple sites ~ 39%
 - d. multiple organ involvement without granuloma formation *terminal event
 - $NB: \rightarrow$ kidneys, adrenals, CNS, liver, pleura, pericardium, GIT, eyes, joints

Predisposing Factors

NB: all probably act by impeding CMI

higher incidence in Negroid races[§] [§]genetic factors a. B_{W15} antigen[§] b. alcoholism c. d. malnutrition pregnancy e. f. uraemia leukaemia acquired factors g. steroid therapy h. cytotoxic chemotherapy i. j. immunosuppression k. AIDS

Diagnosis

a. symptoms

- usually non-specific and insidious
- mean interval from onset to seeking medical attention ~ 16 weeks
- prior exposure is known in only ~ 61%
- anorexia, weight-loss, fatigue
- fever \rightarrow low-grade or high spiking *night sweats* ~ 60%
- cough, pleuritic pain, haemoptysis is rare
- meningeal symptoms

b. signs

• fever	~ 80%	
• weight loss	~ 70%	
 respiratory signs 	~ 60%	(most common organ)
 hepatomegaly 	~ 30%	_
 splenomegaly 	~ 10%	
lymphadenopathy	~ 30%	
fundi/ahanaidal tuhanaulaa	9	

- fundi/choroidal tubercules ?
- erythema nodosum, lupus pernio

c. lab tests

- i. FBE
 - normochromic, normocytic anaemia ~ 60%
 - WCC is usually normal ± neutrophilia, monocytosis
 - ± lymphopaenia, pancytopaenia
 - \pm leukaemoid reaction
 - \uparrow ESR ~ 90% *with 30% > 100mm
- ii. Coags DIC rare
- iii. U&E's ± hyponatraemia (? SIADH)
- iv. LFT's ~ 80% raised ALP
 - ~ 50% raised GGT
- d. *CXR* primary focus
 - Ghon complex
 - hilar adenopathy
 - apical fibrosis
 - diffuse infiltrates
 - miliary TB
 - "ARDS"

e. mantoux

- 5 IU s/c of tuberculin purified protein $\rightarrow \geq 10 \text{ mm}$ inducation after 48 hrs
- (+)'ve \rightarrow previous exposure
 - *no* information re current active infection
- (-)'ve \rightarrow no previous exposure, or *anergy*

• Causes of Anergy

- 1. disseminated TB
- 2. some elderly patients
- 3. renal failure
- 4. metastatic carcinoma
- 5. steroids / immunosuppresives / cytotoxics
- 6. AIDS
- 7. severe viral infections
- 8. sarcoidosis
- 9. syhpilis

Microscopy Results

a.	sputum	~ 40% Zeihl-Neelsen stain (+)'ve ~ 70% culture (+)'ve
b.	gastric asp.	~ 40% culture (+)'ve
c.	CSF pleural fluid ascitic fluid	~ 50% culture (+)'ve
d.	CSF	
	i. decreased	glucose
	ii. increased	protein ~ 30% (+)'ve
	iii. AFB by Z	eihl-Neelsen
e.	urine	 "sterile pyuria" common microscopy often negative * culture often (+)'ve, despite absence of urinary symptoms & (-)'ve sputum culture
f.	liver B _x	~ 90% have granulomas, 30% with caseation
g.	bone marrow	$< 90\%$ granulomas on B_X > 50% with aspirate
h.	node B _x	- useful if clinically involved

Life-Threatening Complications

a.	meningitis		% of disseminated TB % mortality
b.	"ARDS"	- CX - D _X	itum often (-)'ve R atypical for TB by open/transbronchial <i>lung</i> B _x C often associated
c.	pneumothorax		
d.	adrenal failure	~ 129	%
e.	acute fibrinous pericar	ditis	 Z-N stains (-)'ve cultures ~ 40% (+)'ve D_x by culture/micro of pericardial B_x
f.	thoracic/abdominal ao	rtic an	eurysm
g.	acute liver failure with	n encep	bhalopathy

■ <u>Treatment</u>

- 1. isoniazid
 - single oral dose ~ 300 mg/day
 - toxicity liver, kidney, epilepsy

2. rifampicin

- single oral dose ~ 600 mg/day
 - liver, bone marrow
- 3. *pyrazinamide*

• toxicity

• dose q8h

- ~ 8 mg/kg/day
- toxicity liver, hyperuricaemia
- 4. ethambutol
 - single oral dose ~ 20 mg/kg
 - toxicity
- kidney, liver - *eye*
- marrow

Enterococcal - Group D Streptococcal - Infections

1.	Enterococcal Gp.D Strep.	- Strep. faecalis - Strep. faecium - Strep. durans
2.	Non-enterococcal Gp.D Strep.	- Strep. bovis - Strep. equinis

NB: facultative anaerobes

■ Infections

a.	GIT origin septicaemia	
a.	GIT origin septicaenna	

- b. cholecystitis, cholangitis
- c. abscesses intra-abdominal, pelvic
- d. UTI
- e. endocarditis
- f. synergistic infections bacterial synergistic gangrene

Antibiotic Resistance

a.	penicillins	- oral penicillins, methicillin, flucloxacillin
b.	cephalosporins	* all

- c. lincomycin
- d. imipenem * Strep. faecium
- e. cotrimoxazole & "sulpha's"

Antibiotic Sensitivity

a.	penicillins	- high dose <i>amoxicillin</i> - benzylpenicillin - ticarcillin, piperacillin, azlocillin
b.	aminoglycosides	 gentamicin, tobramycin <i>synergistic</i> with penicillins
c.	vancomycin	
d.	teicoplanin	
e.	ciprofloxacin	
f.	imipenem	* Strep. faecalis
g.	chloramphenacol	

COMMUNITY ACQUIRED PNEUMONIA

• sensitivity of various diagnostic tests,

a.	sputum gram stain	~ 69%
b.	sputum culture	~ 60%
c.	blood culture	~ 16%
d.	serology	~ 84%
e.	pneumococcal antigen	~ 68% sputum
		~ 62% serum
f.	mycoplasmal antigen	~ 63%
g.	viral culture	~ 22%
h.	nasopharyngeal washing	~ 15%*
i.	sputum immunofluorescence	~ 15%*

NB: * useful for Legionella, influenza, parainfluenza, RSV, adenovirus

Incidence of Pathogens				
	MJA, Adelaide 1989	Lancet, UK 1987	Chest ¹ , France 1994	
No. of patients	106	236	132	
Pathogen identified	77%	55%	72%	
S. pneumoniae	42%	35%	33%	
H. influenzae	9%	10%	10%	
GN bacilli	8%		11%	
M. pneumoniae	8%	3%	0.7%	
Cl. psitticae	5%		0.7%	
S. aureus	3%		4%	
Legionella	3%	3%	3%	
ТВ	3%			
Viruses	18%	13%	5%	
(influenza)	?	(8%)		

■ Moine et al. Chest 1994

• 132 patients with *severe community acquired pneumonia* $(SAPS \ge$

 $(SAPS \ge 8, R_x \text{ in ICU})$

- a. frequent underlying conditions
 - i. CAL ~ 39%
 - ii. chronic alcoholism ~ 35%
 - iii. diabetes ~ 10%
- b. 27% were in *septic shock*
- c. 61% required mechanical ventilation
- d. aetiological diagnosis ~ 72%
- e. most common pathogens Streptococcus - Haemophilus - GNB's

f. *mortality* ~ 24%

- g. factors significantly associated with increased mortality
 - i. aetiology \rightarrow Strep pneumoniae, Enterobacteriaceae
 - ii. age > 60 years
 - iii. SAPS > 13 (*TQEH median SAPS ~ 15)
 - iv. septic shock at presentation
 - v. altered mentation
 - vi. requirement for mechanical ventilation
 - vii. bacteraemia ie. positive blood cultures
- h. recommended initial therapy
 - i. high dose *amoxicillin* plus a *macrolide*, or
 - ii. fluorinated quinolones, or
 - iii. 3rd generation cephalosporin & macrolide *QEH protocol
- CAP currently 5th most common cause of death in USA
- of those admitted to hospital ~ 18-36% require admission to ICU \rightarrow *mortality* ~ 47-76%
- gastrointestinal symptoms were infrequent in entire cohort, and absent from the 4 cases with

Legionella pneumophilia

- deterioration of conscious state *was not* related to the level of hypoxaemia on admission
 - *NB*: after comparing all clinical, laboratory and radiographic data, few differences were found between the different aetiologies
- the strongest associations were those for *pneomococcal pneumonia*,
 - 1. chest pain
 - 2. fever $> 39^{\circ}C$
 - 3. WBC's > 5% immature neutrophils
 - 4. alveolar consolidation in a *lobar* distribution

Diagnostic Yield	(Severe C	CAP - 132 Patients	s)
Test		Number	% Yield
Blood Cultures	BC	127	27%
Expectorated Sputum	ES	38	45%
Transtracheal Aspiration	TTA	22	59%
Distal Protected Aspiration	DPA	67	61%
Protected Telescoping Catheter	PTC	50	33%

• prior therapy with *antibiotics*, especially active against pneumococci, significantly reduced the rate of aetiological diagnosis

• only 7% of patients were found to have proven mixed infection

• DPA and PTC should give greater diagnostic yield, but results relatively poor cf. those obtained in *nosocomial pneumonia*

• postulated reasons for this lack of sensitivity,

- 1. high percentage of antibiotics prior to investigation $\sim 35\%$
- 2. that the innocculum is lower in CAP than in nosocomial infection \rightarrow the *quantitative threshold* of 10³ CFU may be inappropriate for CAP

• technique of Matthew (DPA), passing a catheter through an ETT and blindly wedging it in a distal bronchus had equal sensitivity to PTC, therefore may be useful in diagnosis of CAP

• *unable* to show correlation of mortality with factors previously shown by others,

- 1. underlying clinical condition *McCabe & Jackson
- 2. radiographic evidence of spread
- 3. WCC

Causes of Infective Pneumonias

 b. bacteria gram (+)'ve cocci aerobic Staphlococci, Streptococci anaerobic Micrococci ii. gram (-)'ve cocci Branhamella, Acinetobacter gram (-)'ve rods Bacillus, Clostridia Lactobacillus, Nocardia iv. gram (-)'ve rods aerobes Haemophilus, E. coli, Klebsiella Enterobacter, Proteus, Serratia Pasteurella, Yersinia, Citrobacter salmonella, Shigella anaerobes Bacteroides, Pseudomonas, Fusobacterium obligate aerobes Legionella, Bordetella, Brucella v. acid fast bacilli Mycobacterium tuberculosis, M. kansii c. cell wall deficient bacteria voligate intracellular parasites Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci d. fungi Aspergillus niger, A. fumigatus g. protozoa Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 	a.	viru	ses	 - influenza A & B, par - CMV, RSV, rhinovir - enteroviruses, varice 	ruses, adenoviruses
 aerobic anaerobic Micrococci gram (-)'ve cocci Branhamella, Acinetobacter gram (-)'ve rods Bacillus, Clostridia Lactobacillus, Nocardia gram (-)'ve rods aerobes Haemophilus, E. coli, Klebsiella Enterobacter, Proteus, Serratia Pasteurella, Yersinia, Citrobacter Salmonella, Shigella anaerobes acid fast bacilli Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci fungi Aspergillus niger, A. fumigatus grans; Grandia albicans, Cryptococcus dimorphic Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 	b.	bact	eria		
 anaerobic Micrococci gram (-)'ve cocci Branhamella, Acinetobacter iii. gram (-)'ve rods Bacillus, Clostridia Lactobacillus, Nocardia gram (-)'ve rods aerobes Haemophilus, E. coli, Klebsiella Enterobacter, Proteus, Serratia Pasteurella, Yersinia, Citrobacter Salmonella, Shigella anaerobes obligate aerobes Legionella, Bordetella, Brucella obligate aerobes Legionella, Bordetella, Brucella Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci fungi Aspergillus niger, A. fumigatus Sporotrichium, Blastomyces Sporotrichium, Blastomyces Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 		i.	gram (+)'ve cocci		
 ii. gram (-)'ve cocci Branhamella, Acinetobacter iii. gram (+)'ve rods Bacillus, Clostridia - Lactobacillus, Nocardia iv. gram (-)'ve rods aerobes Haemophilus, E. coli, Klebsiella Enterobacter, Proteus, Serratia Pasteurella, Yersinia, Citrobacter Salmonella, Shigella anaerobes obligate aerobes Legionella, Bordetella, Brucella obligate aerobes Legionella, Bordetella, Brucella obligate aerobes Cell wall deficient bacteria % obligate intracellular parasites Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci Gamorphic Histoplasma, Coccidioides Sporotrichium, Blastomyces g. protozoa Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 			• aerobic	- Staphlococci, Strepto	ococci
 iii. gram (+)'ve rods Bacillus, Clostridia Lactobacillus, Nocardia iv. gram (-)'ve rods aerobes Haemophilus, E. coli, Klebsiella Enterobacter, Proteus, Serratia Pasteurella, Yersinia, Citrobacter Salmonella, Shigella anaerobes Bacteroides, Pseudomonas, Fusobacterium obligate aerobes Legionella, Bordetella, Brucella v. acid fast bacilli Mycobacterium tuberculosis, M. kansii c. cell wall deficient bacteria Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci d. fungi Aspergillus niger, A. fumigatus e. yeasts Candida albicans, Cryptococcus f. dimorphic Histoplasma, Coccidioides Sporotrichium, Blastomyces g. protozoa Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 			• anaerobic	- Micrococci	
 Lactobacillus, Nocardia iv. gram (-)'ve rods aerobes Haemophilus, E. coli, Klebsiella Enterobacter, Proteus, Serratia Pasteurella, Yersinia, Citrobacter Salmonella, Shigella anaerobes obligate aerobes Legionella, Bordetella, Brucella obligate aerobes Legionella, Bordetella, Brucella acid fast bacilli Mycobacterium tuberculosis, M. kansii c. <i>cell wall deficient bacteria</i> * obligate intracellular parasites Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci d. <i>fungi</i> Aspergillus niger, A. fumigatus e. <i>yeasts</i> Candida albicans, Cryptococcus f. <i>dimorphic</i> Histoplasma, Coccidioides Sporotrichium, Blastomyces g. <i>protozoa</i> Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides		ii.	gram (-)'ve cocci	- Branhamella, Acinet	obacter
 aerobes Haemophilus, E. coli, Klebsiella Enterobacter, Proteus, Serratia Pasteurella, Yersinia, Citrobacter Salmonella, Shigella anaerobes Bacteroides, Pseudomonas, Fusobacterium obligate aerobes Legionella, Bordetella, Brucella v. acid fast bacilli Mycobacterium tuberculosis, M. kansii c. cell wall deficient bacteria * obligate intracellular parasites Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci d. fungi Aspergillus niger, A. fumigatus e. yeasts Candida albicans, Cryptococcus f. dimorphic Histoplasma, Coccidioides Sporotrichium, Blastomyces g. protozoa Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 		iii.	gram (+)'ve rods		dia
 Enterobacter, Proteus, Serratia Pasteurella, Yersinia, Citrobacter Salmonella, Shigella anaerobes obligate aerobes Legionella, Bordetella, Brucella Mycobacterium tuberculosis, M. kansii c. cell wall deficient bacteria * obligate intracellular parasites Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci d. fungi Aspergillus niger, A. fumigatus e. yeasts Candida albicans, Cryptococcus f. dimorphic Histoplasma, Coccidioides Sporotrichium, Blastomyces g. protozoa Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 		iv.	gram (-)'ve rods		
 Pasteurella, Yersinia, Citrobacter Salmonella, Shigella anaerobes obligate aerobes Legionella, Bordetella, Brucella Legionella, Bordetella, Brucella Mycobacterium tuberculosis, M. kansii c. cell wall deficient bacteria * obligate intracellular parasites Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci d. fungi Aspergillus niger, A. fumigatus e. yeasts Candida albicans, Cryptococcus f. dimorphic Histoplasma, Coccidioides Sporotrichium, Blastomyces g. protozoa Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 			• aerobes	_	
 Salmonella, Shigella anaerobes obligate aerobes obligate aerobes acid fast bacilli Mycobacterium tuberculosis, M. kansii cell wall deficient bacteria * obligate intracellular parasites Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci fungi Aspergillus niger, A. fumigatus Candida albicans, Cryptococcus f. dimorphic Protozoa Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 					
 anaerobes obligate aerobes obligate aerobes Legionella, Bordetella, Brucella Mycobacterium tuberculosis, M. kansii cell wall deficient bacteria * obligate intracellular parasites Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci fungi Aspergillus niger, A. fumigatus Candida albicans, Cryptococcus f. dimorphic Protozoa Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 					, Citrobacter
 obligate aerobes Legionella, Bordetella, Brucella Mycobacterium tuberculosis, M. kansii cell wall deficient bacteria obligate intracellular parasites Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci fungi Aspergillus niger, A. fumigatus g. protozoa Protozoa Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 			• anaerobes	-	nonas Fusobacterium
 v. acid fast bacilli - Mycobacterium tuberculosis, M. kansii cell wall deficient bacteria * obligate intracellular parasites - Mycoplasma pneumoniae - Coxiella burnetti, Chlamydia psittaci fungi - Aspergillus niger, A. fumigatus yeasts - Candida albicans, Cryptococcus dimorphic - Histoplasma, Coccidioides - Sporotrichium, Blastomyces protozoa - Pneumocystis (?) - Toxoplasma - Entamoeba, Strongyloides, Ascaris lumbricoides 					
 c. <i>cell wall deficient bacteria</i> * obligate intracellular parasites Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci d. <i>fungi</i> - Aspergillus niger, A. fumigatus e. <i>yeasts</i> - Candida albicans, Cryptococcus f. <i>dimorphic</i> - Histoplasma, Coccidioides Sporotrichium, Blastomyces g. <i>protozoa</i> - Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 		v.	-	•	
 Mycoplasma pneumoniae Mycoplasma pneumoniae Coxiella burnetti, Chlamydia psittaci fungi Aspergillus niger, A. fumigatus Yeasts Candida albicans, Cryptococcus dimorphic Histoplasma, Coccidioides Sporotrichium, Blastomyces protozoa Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 	C	coll	wall deficient hacteria	-	
 Coxiella burnetti, Chlamydia psittaci fungi Aspergillus niger, A. fumigatus yeasts Candida albicans, Cryptococcus dimorphic Histoplasma, Coccidioides Sporotrichium, Blastomyces protozoa Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 	с.		wan acjietent bacteria	U	-
 e. yeasts - Candida albicans, Cryptococcus f. dimorphic - Histoplasma, Coccidioides g. protozoa - Pneumocystis (?) - Toxoplasma - Entamoeba, Strongyloides, Ascaris lumbricoides 				• • •	
 f. dimorphic - Histoplasma, Coccidioides - Sporotrichium, Blastomyces g. protozoa - Pneumocystis (?) - Toxoplasma - Entamoeba, Strongyloides, Ascaris lumbricoides 	d.	fung	ri	- Aspergillus niger, A.	fumigatus
 g. protozoa g. protozoa Pneumocystis (?) Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 	e.	yeas	ts	- Candida albicans, Cr	yptococcus
 Toxoplasma Entamoeba, Strongyloides, Ascaris lumbricoides 	f.	dimo	orphic	-	
	g.	prot	070 a	ToxoplasmaEntamoeba, StrongylToxocara carnis	(visceral larva migrans)
 Echinococcus (hydatid disease) Schistosomiasis (blood fluke) 					
- Paragonomiasis (lung fluke)					

Environmental Factors

a.	minerals	 silicon, asbestos coal, bauxite, beryllium, diatomaceous earth, talc iron, barium, silver, tin, manganese, vanadium
b.	fumes	 nitrogen monoxide chlorine, bromine, ammonia phosgene, sulphur dioxide acetylene, kerosene, carbon tetrachloride, hydrogen fluoride hydrochloric, nitric, picric acids
c.	antigens	 Farmer's lung pigeon fanciers lung humidifiers, air-conditioners maple bark, wood pulp, oak mushroom, malt, sugar cane furrier's detergents, vineyard sprayers fish, cheese, wheat weevil
d.	drugs	 hydrallazine busulphan, bleomycin, methotrexate nitrofurantoin, sulphas methysergide amiodarone

Investigation Stage 1

a. *history*

- age, family history, smoking
- occupation, pets/animals, environment
- personal contacts, friends/relatives
- overseas travel
- nature, severity & time course of symptoms
- exacerbating / relieving factors
- past medical history especially drugs

- CVS

b. *examination*

- i. general vital signs
 - nutrition, wasting
 - liver / spleen size, lymph nodes
 - fundi
 - skin manifestations (purpura, erythema, nodules)
 - respiratory upper & lower respiratory tracts
 - hands / nails / clubbing / HPOA
 - amount & type of sputum
 - presence / severity of respiratory failure
- iii. cardiac cardiac bruits | failure
 - loud | split S₂, RV heave, pulmonary SEM
 - cor pulmonale, RV failure

Investigation Stage 2

ii.

a.	FBE & ESR	+ blood film
	• RBC's	- anaemia, haemolysis
	• WBC's	- left shift, eosinophilia, blasts

- b. CXR
- c. sputum M,C&S, immunofluorescence
 - cytology
 - AFB micro and culture
- d. blood cultures
- e. urine M,C&S
- f. U&E's
- g. liver function tests
- h. ECG

Investigation Specialized

1.	bloo	od	
	i.	paired serology for	- viruses - Legionella, Q fever, Chlamydia - Mycoplasma - fungi/parasites
	ii.	cold agglutinins	
	iii.	HIV Ab titre	
	iv.	autoantibodies	- RF, ANA, ENA, Anti-Bm, cANCA
	v.	coagulation profile	- INR, APTT, FDP's, fibrinogen
	vi.	protein electrophoresis	- immune complexes, myeloma - α_1 -antitrypsin
2.	sput	tum	
	i.	Ziehl-Neilson stain & cultur	e for AFB's
	ii.	wet preparation	 parasites (ova, cysts, larvae) yeasts (hyphae)
	iii.	immunoflorescence microsc	opy - Legionella - Influenza
	iv.	silver stain	Pneumocystis* 3% saline induced sputum
3.	naso	opharyngeal washings	- viruses
4.	man	ntoux skin test	
5.	vira	l cultures	 throat swabs faecal and sputum samples
6.	faec	al specimens (x3-6)	micro (protozoan cysts, ova)culture (bacterial, viral)
7.	PA e	catheter	- exclude/confirm LVF
8.	echo	ocardiogram	 SBE (low sensitivity) atrial myxoma LV function, valvular lesions
9.	ultro	asound	 liver / spleen / kidneys fluid collections, abscesses tumours
10.	CT	chest & abdomen	 abscess, tumour lymphadenopathy CT directed biopsy
		+ fine cut	interstitial lung diseasesalveolar proteinosis

11. bro	nchoscopy
---------	-----------

11.	bronchoscopy			
	i.	brushings	- M,C&S- cytology, immunofluorescence- differential WCC	
	ii.	washings	- as above	
	iii.	bronchioalveola	 lavage - M,C&S effector cell type & count lipid / haemosiderin laden macrophages 	
	iv.	biopsy	- tumours - asthma - transbronchial lung biopsy	
			suggests increased yield without increased risks in immunocompromised pneumonia patients	
12.	oper	n lung biopsy, if	biopsy, if	
	i.	diagnosis remain	ins unclear after the above	
	ii.	the condition de	eriorates despite empirical treatment	
	iii.	prior to a trial of	immunosuppressives or steroids	
	iv.	no other (more a	ccessible) organ is involved in the disease	
		\rightarrow	 - M,C&S - M&C for AFB's - histopathology & frozen section - silver stain for Pneumocystis - immunoflorescence for Legionella 	
13.	pleu	ral fluid	- M,C&S - cells, pH, LDH, protein	
14.	rena	ıl biopsy	 autoimmune diseases Goodpasture's 	
15.	bon	<i>e marrow biopsy</i> - metastatic carcinoma - myeloma leukaemia, lymphoma		

- TB culture

Pneumococcal Infections

a.	pulmonary	 lobar pneumonia, pleural effusion 1% empyema lung abscess epiglottitis, adult or children often have chest pain, pleurisy
b.	neurological	- meningitis ± cranial nerve palsy (VIII)
c.	cardiovascular	- pericarditis, endocarditis
d.	systemic	- septicaemia, septic shock - <i>purpura fulminans</i>
e.	GIT	spontaneous peritonitishepatic impairmentintestinal pseudo-obstruction
f.	skin	- herpes labialis

• *high mortality* ~ 10-18%, poor prognostic signs being,

a.	patient factors	 age < 1 yr, or > 55 yrs previous splenectomy pre-existing severe illness 	(not in French study)
b.	pathogen factor	- pneumococcus type 3	
c.	disease factors	 multilobar involvement extrapulmonary infective focus bacteraemia / septicaemia leukopaenia 	

• indications for *pneumococcal vaccine*,

1.	post-splenectomy	- anatomical or functional
2.	epidemic contacts	≥ 55 yrs old - chronic systemic illness
3.	sickle cell anaemia	≥ 2 yrs old * effective ~ 80-90% for age ≥ 3 yrs

Haemophilus Infections

- a. facultative, aerobic, gram negative bacillus
- b. difficult to culture
- c. *pleomorphic*, variable shape & colour on gram stain, easily missed
- d. important pathogenic subtypes,

	i.	influenzae	
	ii.	parainfluenzae	 otitis, chronic sinusitis pneumonia cerebral abscess
	iii.	pertussis	 synon. Bordetella pertussis whooping cough acute bronchitis
	iv.	aegypticus	- conjunctivitis
	v.	aphrophilus	- sinusitis, abscesses - pneumonia
	vi.	vaginalis	 septic abortion, vaginitis puerperal fever
	vii.	parapertussis, ducreyi	- chancroid
e.	lipos	saccharhide capsule	- 6 antigens, "a" - "f"
f.	varia	able degree of capsulation	 affects pathogenicity <i>encapsulated, type ''b''</i> most common (~ 90%)
g.	~ 80	% carriage rate in humans	- no other source

Clinical Presentation

a.	upper respiratory tract	- otitis media - sinusitis - <i>epiglottitis</i> (1-5 yrs, adult)
b.	lower respiratory tractlobar pneumoniabronchopneumonia	 ~ 10% of community acquired <i>pneumonia</i> ± <i>empyema</i> in ~ 50% - CAL, elderly, smokers, ETOH, etc.
c.	neurological	- <i>meningitis</i> , 1-4 yrs
d.	CVS	- pericarditis, 2° pneumonia
e.	<i>septicaemia</i> , 1° unknown	 children immunocompromised, chemotherapy post-splenectomy hypogammaglobulinaemia
f.	pyogenic arthritis	
g.	facial cellulitis	 - 6-24 months - usually 1 cheek, red/blue ± meningeal spread/septicaemia
h.	purpura fulminans	- H. haemolyticum

■ <u>Treatment</u>

a.	Cefotaxime	~ 200 mg/kg/day q6h \leq 1g q6h, or
b.	Ceftriaxone	~ 100 mg/kg/day q12h \leq 1g q12h, or
c.	Chloramphenacol	~ 100 mg/kg/day q6h \leq 750 mg q6h, or
NB:	R _x contacts	- Rifampicin 600 mg bd 4 days

Pneumocystis carinii Pneumonia

- History
 - a. 1909 first described by Chagas in the lungs of guinea pigs
 - b. 1912 recognised as separate organism
 - c. 1952 recognised as cause of interstitial plasma cell pneumonia - predominantly malnourished & premature infants
 - d. 1967 the first outbreak in malnourished children in Hungary
 - e. 1976 routine prophylaxis introduced
 - f. 1980's adjuvant corticosteroids used
- definitive *taxonomy* remains uncertain \rightarrow ? *protozoan*, 1-2 µm diameter
 - 1. antibiotic susceptibility
 - 2. ultrastructure
 - *NB: but*, recent rRNA studies link it to *fungal phylogeny*, & more success using fungal culture mediums

Transmission

a.	reactivation	~ 85% seroprevalence - subclinical cases
b.	de novo	outbreaksanimal studieslow autopsy yield (PCR)

c. ? vertical

Susceptibility

- a. infants
- b. malnutrition
- c. severe anaemias
- d. renal failure
- e. steroids, immunosuppressives
- f. autoimmune diseases
- g. malignant reticular disorders ALL, CML, NHL
- h. cyclic neutropaenia

NB: defective *T*-cell immune function \rightarrow congenital | acquired | iatrogenic

• most common opportunistic infection in AIDS patients,

- a. 60% of first infective presentations
- b. 80% of all AIDS patients will develop PCP during their disease course
- c. 25% of all AIDS *deaths*

NB: in AIDS patients the *onset* is insidious and prolonged $\rightarrow \sim 1-2$ *months* incubation period

Clinical Features

- a. *fever* is common
- b. some may complain of only fever, weight-loss and malaise
- c. dyspnoea, tachypnoea, cyanosis, hypoxia, dry cough
- d. CXR features usually *severe*
 - widespread alveolar opacities
 - perihilar or peripheral nodular opacities
- e. δP_{A-aO2} & CXR much *worse* than clinical examination
- f. high LDH
- g. complications
 - i. respiratory failure
 - ii. pneumothorax emphysematous bleb
- h. CEA may be used as a disease marker
- *NB: non-HIV* associated disease onset over ~ 5 days \rightarrow *fulminant*, and associated with a *worse prognosis*

Hospital Mortality Rates			
Total ARF Ventilated			
Non-AIDS	50%		
AIDS 10-15% 20-40% ¹ 80-90%			
¹ survivors of AIDS + ARF + PCP \sim 15% at 4 years			

Diagnosis

• PCP can only be diagnosed by demonstrating *pneumocysts* in sputum, BAL fluid, or lung biopsy specimen

• *P. carinii* cannot be cultured and there are *no* reliable serological tests (? new PCR)

1.	induced sputum sample	~ 60-70% positive - 3% saline aerosol & fractionate sample
2.	brochoalveolar lavage	~ 85-90% positive
3.	transbronchial biopsycombined with BAL	~ 85% ~ 97%
4.	open lung biopsy	* effectively last resort and should not be required

NB: 1 & 2 \rightarrow reduced *sensitivity* with aerosolised pentamidine prophylaxis & AZT

• because PCP in AIDS tends to be recurrent, and many patients do not tolerate bronchoscopy well, indirect methods *suggestive of PCP* include,

- 1. CXR diffuse reticulo-nodular pattern
 - however, may show cysts, cavitation, pleural effusion, pneumothorax, or may be entirely normal
- 2. gallium scanning ~ 100% sensitive, *but* specificity ~ 40%
 - may show uptake for months after acute infection
- 3. ABG's high $A-aDO_2$
- 4. single breath diffusion capacity

■ <u>Treatment</u>

- a. *Bactrim* ~ 19% mortality
 - ~ 30% toxicity (folate)
 - ~ 36% relapse
 - 2 weeks in non-AIDS, 3 weeks in AIDS patients
- b. Pentamidine IV, aerosol
- c. *adjuvant corticosteroids*
 - reduced mortality in AIDS patients
- d. Dapsone
- e. Pyrimethamine

f. *prophylaxis*

- any patient with a history of PCP, or a CD4 count $< 200 \ / \ mm^3$
- i. Pentamidine aerosol 60-150 mg biweekly
- ii. Bactrim 1 DS tablet 5/7 days/week
- iii. Dapsone

NOSOCOMIAL INFECTION

- J-L Vincent, *et al.* EPIC International Advisory Committee JAMA 1995
- 1 day point-prevalence study to determine,
 - 1. the *prevalence* of ICU acquired infections
 - 2. the *risk factors* for these infections
 - 3. the predominant infecting *organisms*
 - 4. the relationship between ICU-acquired infection and *mortality*
- 1,417 ICUs in Western Europe, excluding CCUs, pediatric and special care infant units
- 10,038 patients (age > 10 yrs) occupying an ICU bed over a 24-hour period
- outcome measures,
 - 1. rates of ICU-acquired infection
 - 4501 patients were infected ~ 44.8% "½ → infected"
 2064 had *ICU-acquired* infection ~ 20.6% "½ → ICU acquired"
 - 2. prescription of antimicrobials
 - 3. resistance patterns of microbiological isolates
 - 4. potential risk factors for ICU-acquired infection and death
- most frequent types of ICU infection,

a.	pneumonia	~ 46.9%	" $\frac{1}{2} \rightarrow \text{pneumonia}$ "
b.	lower respiratory tract infection	~ 17.8%	
c.	urinary tract infection	~ 17.6%	
d.	bloodstream infection	~ 12%	

• most frequently reported micro-organisms were,

Enterobacteriaceae	~ 34.4%	
Staphylococcus aureus	~ 30.1%	(*60% MRSA)
Pseudomonas aeruginosa	~ 28.7%	
coagulase-negative staphylococci	~ 19.1%	
fungi	~ 17.1%	
	<i>Staphylococcus aureus</i> Pseudomonas aeruginosa coagulase-negative staphylococci	Staphylococcus aureus~ 30.1%Pseudomonas aeruginosa~ 28.7%coagulase-negative staphylococci~ 19.1%

- risk factors for ICU-acquired infection were,
 - 1. increasing length of ICU stay > 48 hrs
 - 2. mechanical ventilation
 - 3. diagnosis of trauma
 - 4. central venous, pulmonary artery, and urinary catheterization
 - 5. stress ulcer prophylaxis

• increased the risk of ICU death,

1.	clinical sepsis	- odds ratio ~ 3.50
2.	ICU-acquired pneumonia	- odds ratio ~ 1.91

3. bloodstream infection - odds ratio ~ 1.73

• Conclusions

- 1. ICU-acquired infection is common and often associated with microbiological isolates of resistant organisms
- 2. the potential effects on outcome emphasise the importance of specific measures for infection control in critically ill patients
- not clear from study how they discriminated between *colonisation* and *infection*
- eg. the 30% incidence of *Pseudomonas sp.* may represent many cases of colonisation

Nosocomial Pneumonia

NB: USA, CDC Definitions....

■ <u>Nosocomial</u>

- 1. no evidence that infection was present, or incubating at the time of hospital admission
- 2. special exceptions
 - i. infection acquired in hospital and becoming evident post-discharge
 - ii. newborn infection that results from passage through the birth canal
- 3. no specific *time-frame* is set for during admission or after discharge
 - ie. each infection must be assessed on individual merits
 - LIGW states > 48-72 hrs is a general rule if the incubation period is unknown

Pneumonia

ii.

NB: must meet *one of* the following 4 criteria:

- 1. rales or dullness to percussion on *physical examination*, plus *any* of the following
 - i. new onset of purulent sputum, or change in character of sputum
 - ii. organism isolated from blood culture
 - tracheal aspirate, bronchial brushing, or biopsy
- 2. examination shows new or progressive *CXR infiltrate*, consolidation, cavitation, or pleural effusion, plus *any* of the following
 - i. new onset of purulent sputum, or change in character of sputum
 - organism isolated from blood culture
 - tracheal aspirate, bronchial brushing, or biopsy
 - iii. isolation of virus, or detection of viral antigen in respiratory secretions
 - iv. diagnostic single Ab (IgM) titre, or
 - 4-fold increase in paired samples (IgG) for pathogen
 - v. histopathological evidence of pneumonia
- 3. patient \leq **12 months** has *two of* apnoea, tachypnoea, bradycardia

- wheezing, ronchi, cough

plus any of the following

- i. increased production of resiratory secretions
- ii. any factor in (2) above
- 4. patient \leq **12 months** with CXR examination shows new or progressive infiltrate, consolidation, cavitation, or pleural effusion, plus *any* of the following
 - i. increased production of resiratory secretions
 - ii. any factor in (2) above

Risk Factors for Gram Negative Colonisation

- a. *patient* factors
 - i. elderly

•

- ii. past history of chronic disease
 - respiratory chronic bronchitis, emphysema, smoking
 - bronchiectasis, cystic fibrosis
 - other diabetes, CRF/uraemia, Cushing's
 - autoimmune diseases

b. *disease* factors

- i. altered reflexes ETT, tracheostomy
 - coma, CNS depressants
- ii. treatment antibiotic therapy
 - steroids / immunosuppressants
 - surgery
 - NG tube
 - gastric acid neutralisation
 - ? blood transfusion
- iii. other hypotension, shock
 - acute lung injury

c. *institution* factors

- i. admission to ICU
- ii. local infection control practices
- iii. local antimicrobial prevalence / distribution
- from McLaws, MJA 1988, looking at general hospital populations
 - a. nosocomial infections occur in ~ 6-7% of patients
 - b. 15-35% of these are *pneumonia* with a mortality rate of 50-70% (Chastre)
 - c. most are endogenous *gram negative* bacteria, many are polymicrobial
 - d. a higher proportion occur in ICU patients

• from Daschner, ICM 1982, ICU patients

• the overall *incidence* of nosocomial infections in ICU patients ~ 12-20%

c.	pneumonia	~ 16%	
		1.00/	
b.	septicaemia	~ 20%	
a.	UTI	~ 40%	

NB: patients with ARDS \rightarrow incidence ~ 70%

this spectrum differs from European point prevalence survey, but these are infections acquired post-hospital admission, not total infection numbers

ICU Pneumonias

- Def'n: "For practical purposes, an infection is commonly defined as nosocomial when diagnosed 48-72 hrs following admission. However, infections not immediately apparent at the time of admission, but incubating at that time, are not included in a more precise definition, and should not be mixed with ICU pneumonias occurring later." Brun-Buisson, Current Opinion, 1995
 - 1. early onset, EOP ≤ 4 days
 - 2. *nosocomial*, late onset, or VAP
- the *incidence* of ICU acquired pneumonia ~ 21% (published range 9-70%)
- \bullet and ~ 54% of these occur within the first 4 days
- risk factors include,
 - 1. duration in ICU $\sim 1\%$ / day (Fagon *et al.*)
 - 2. shock on admission
 - 3. surgical ICU admission
 - 4. steroid or chemotherapy
 - 5. serum creatinine $> 130 \mu mol/l$
 - 6. impaired airway reflexes
 - 7. severity of underlying pathology

Early Onset Pneumonia

- 1. occurs within 4 days
- 2. very common
- 3. unrelated to age
 - type of illness
 - immune suppression
- 4. frequently oropharyngeal pathogens, "community-acquired sensitivities"
- 5. mainly in intubated patients, more common following trauma
- 6. little affected by antibiotic prophylaxis

Late Onset Pneumonia

- 1. usually gram (-)'ve pathogen
- 2. frequently impaired airway reflexes
- 3. should (?) be influenced by antibiotic prophylaxis

Aetiology

a.	gram negative bacilli	~ 70% - E. coli, Pseudomonas, Enterobacter, Klebsiella
b.	gram positive cocci	~ 15-25% - Staphlococci - Enterococci
c.	fungal	~ 5% - Candida

Mortality

a.	Pseudomonas	~ 70%
b.	Klebsiella Serratia Enterobacter	~ 40%
c.	E. coli	~ 30%
d.	gram positives	~ 5-25%
e.	viruses	~ 7%

NB: overall mortality ~ 50-56%

mortality appears proportional to severity of *underlying disease*, ie. organisms with highest mortality require greater immunosuppression & susceptibility

Risk Factors		
Host Factors	Therapeutic Factors	
• newborn	• ICU or SCN	
• elderly > 60	• systemic antibiotics	
• multiple trauma	• invasive catheters	
• severe 1° disease	• large transfusion	
• granulocytopaenia	• need for haemodialysis	
 immunosuppression 	• corticosteroids	

Meduri Chest 1990

- 1. diagnosis of nosocomial pneumonia in an intubated patient is difficult
- 2. *tracheal aspirate* in ventilated patients is often *inaccurate* & misleading
- 3. *colonisation* rate > 60%
- 4. risk factors for colonisation and infection are similar
- 5. other conditions can simulate pneumonia and may go untreated
- 6. recognition of a *specific pathogen* is important for effective treatment
- 7. a large number of patients *do not* have pneumonia
- 8. inappropriate antibiotics ↑ colonisation risk, superinfection
 side effects
- 9. many diagnostic techniques * histology + culture = "gold standard"

Technique	Sensitivity	Specificity	
Clinical	64%	80%	
Tracheal Aspirate	80-95%	40-60%	
LRS	100%	40%	
Bronchio-Alveolar Lavage	75-100%	30-75%	
Protected Sputum Brushings	40-100%	40-100%	
* these figures are from different studies, animal and patient, with different diagnostic criteria for pneumonia			

Andrews Chest 1981

• histology at PM versus *clinical diagnosis* in 24 patients,

- 1.fever2.leukocytosis*sensitivity ~ 64%3.purulent tracheal aspirate*specificity ~ 80%
- 4. *pulmonary infiltrate* on CXR
- of 24 patients, 14 were diagnosed with pneumonia, 10 with DAD
- overall 29% of cases were misdiagnosed,
 - a. 36% in the pneumonia group
 - b. 20% with DAD
- pathogenic bacteria were isolated in TA of 86% in pneumonia group & 70% in DAD
 - *NB*: ARDS patients with a new infiltrate frequently do have pneumonia; non-ARDS patients with a new infiltrate frequently *do not* have pneumonia

Definition for Diagnosis Andrews

- 1. fever $> 38.3^{\circ}C$
- 2. WCC $> 10 \times 10^9 / 1$ $< 5 \times 10^9 / 1$?> 10% band forms
- 3. pathogenic bacteria in pulmonary secretions / pulmonary wedge specimens
- 4. new and persistent radiographic abnormality
- 5. *response to therapy* with antibiotics

■ Fagon, Chastre ARRD 1989

- nosocomial pneumonia in 567 ICU patients ventilated > 3 days
- diagnosed with PSB with *semiquantitative culture* \rightarrow sequential incidence,
 - a. day 10 6.5%
 - b. day 20 19%
 - c. day 30 28% \rightarrow overall incidence ~9%

NB: ie. approximate incidence ~ 1% / day

- i. 40% of these were *polymicrobial*
- ii. mortality was 70% cf. 29% in the non-pneumonia group
- iii. use of *prophylactic antibiotics* selects out resistant Pseudomonas, Acinetobacter and MRSA

Salata ARRD 1987

• 51 intubated ICU patients, looking at the effectiveness of *tracheal aspirate* to distinguish colonisation from infective pneumonia

	Nosocomial pneumonia	Colonisation
PMN's	> 1+ > 10/hpf > 30,000/µ1	< 2+
Bacteria	> 1+ > 1-10/oil field	< 2+
CFU	> 100,000 10 ⁵	< 100,000 10 ⁵
Elastin Fibres	+'ve 52% gram(-)	+'ve 9%
IC organisms	> 1-5% of PMNs	< 1%
Squamous cells	< 10/hpf	< 10/hpf

Johanson ARRD 1982

• ventilated animal study of diagnostic tools

Investigation	Sensitivity	Specificity
ТА	80%	60%
BAL	74%	?30%
PSB	40%	?60%
needle Bx	50%	?50%

• Multiple Studies

Investigation	Sensitivity	Specificity		
LRS ¹	~ 100%	40%		
PSB^1	80%	~ 100%		
PSB^2	70%	~ 100%		
PSB ³	~ 100%	60%		
BAL^4	~ 100%	75%		
BAL ⁵	86%			
¹ Richard, ICM 1988, comparison of bronchoscopic samples suction samples (LRS) versus PSB				
² Higuchi, ARRD 1982, primate model of acute lung injury \pm pneumonia				
³ Chastre, ARRD 1984, PSB versus immediate post-mortem histology				
⁴ Gassorgues, ICM 1989, BAL vs PM in 13 intubated patients				
⁵ Mann, Chest 1987, BAL in 18 HIV pneumonia patients				

• <u>Kirkpatrick</u> ARRD 1988

• 8 "normal" subjects studied with BAL & PSB looking at the sterility of the samples, ie. contamination of the specimen

- 1. PSB = 7/8 but < 10^4 CFU
- 2. BAL = 1/8

• Chastre AJM 1988

- BAL vs. PSB in 21 intubated ICU patients,
 - 1. WCC and semi-quantitative cultures less useful
 - 2. BAL \rightarrow (+)'ve gram stain with *intracellular bacteria* rapid and useful
 - 3. PSB \rightarrow > 10³ CFU useful in diagnosis but results delayed 48 hrs
 - 4. PSB gives some *false negatives*
 - NB: "both useful and complimentary" in diagnosis

Papazian AJRCCM 1995

- prospective post-mortem study of diagnostic tool efficacy in diagnosis of VAP
- histology & culture performed within 30 min of death in 38 patients ventilated > 72 hrs

a.	histology (+)	- 18/38 patients	~ 47%	
b.	culture (+)	- 12/18 patients	~ 32%	definite VAP

	Threshold ¹	Sensitivity %	Specificity %
CPIS	> 6	72	85
mini-BAL	$> 10^3$ cfu/ml	67	80
BAL	$> 10^4$ cfu/ml	58	95
PSB	$> 10^3$ cfu/ml	42	95
BBS	$> 10^4$ cfu/ml	83	80
¹ Figures for <i>definite VAP</i> , ie histology & culture positive			

• conclusions,

- 1. as BBS is more sensitive & non-invasive, ∴ preferrable to PSB
 - lower specificity, but this is probably more acceptable
- 2. due to *low sensitivity*, results of a negative PSB should be viewed with caution
- 3. overall diagnostic *accuracy* was greatest for BBS/BAL at 81%

• CPIS, Pugin et al., ARRD 1991

- (Clinical Pulmonary Infection Score)
- 1. clinical temp., quantity & character of tracheal asp.
- 2. biological WCC, P_{aO2}/F_1O_2 ratio
- 3. radiographic CXR
- 4. microbiological

Bonten et al. AJRCCM 1995

• evidence for a causal relationship between *gastric colonization* and VAP based on studies relating colonization to species causing pneumonia Torres *et al.*, ARRD 1993

- 1. VAP diagnosed by *clinical criteria* *poor sensitivity/specificity
- 2. no chronological relationship established
- 3. gastric pH values determined only once daily by indicator slide test
- 4. no studies used double-blind PRCT study
- PRCT of 141 patients, of whom 112 had continuous gastric pH monitoring
 - a. group 1 58 antacids, (Al/Mg-OH), 30 ml q4h
 - b. group 2 54 sucralfate 1g q4h
 - NB: no significant differences in median pH values
- stratifying patients by *colonization*,
 - a. median pH values were higher in patients with gastric bacterial colonization
 - b. *no difference* seen for oropharyngeal or tracheal colonization
- ventilator associated pneumonia,
 - a. diagnosed by BAL (> 10^4 CFU) / PSB (> 10^3 CFU)
 - b. occurred in ~ 22% \rightarrow same in both groups
 - c. polymicrobial in 19/31 episodes \rightarrow 51 isolates
 - i. prior tracheal isolation ~ 96%
 - ii. prior oropharyngeal isolation ~ 75%
 - iii. prior gastric isolation ~ 31%
 - *NB*: in *one case* the organism resulting in VAP initially colonized the stomach, in five cases, colonization occurred *simultaneously*

• this is supported by Inglis *et al.*, Lancet 1993, who showed *chronological* colonization from stomach to trachea in only 6/100 ventilated patients

- enteral feeding,
 - a. did not alter gastric acidity
 - b. *increased* gastric colonization with *Enterobacteriaceae*
 - c. no change in oropharyngeal or tracheal colonization
 - d. confounding factor of \uparrow *gastric volume* controlled
 - *NB: gastric acidity* influenced gastric colonization, bot *not* colonization of the upper respiratory tract or the incidence of VAP

Nosocomial Infections CDC

Sources of Bacteraemia

1.	surgical wound, intra-abdominal	~ 35%
2.	urinary tract	~ 17%
3.	respiratory tract	~ 15%
4.	IV catheter	~ 10%
5.	skin, burns	~ 5%
6.	other vascular lines	< 3%

CDC Survey 1956-1979				
Pathogen	Hos	pital		
	Endemic	Epidemic		
E. coli	19%	5%		
Enterococci	10%	1%		
Pseudomonas	9%	4%		
Klebsiella	8%	3%		
Proteus	8%	1%		
Enterobacter	4%	7%		
Serratia	2%	8%		
Salmonella	-	11%		
Staph. aureus	10%	12%		
Strep. group A	2%	3%		
Site				
Urinary tract	38%	10%		
Surgical wound	27%	9%		
Respiratory	16%	12%		
Skin	6%	11%		
Bacteraemia	4%	6%		
GIT	-	17%		
Liver	-	12%		
Meninges	-	5%		

EPIGLOTTITIS - ADULT

- a. *H. influenzae* type B, *H. parainfluenzae*
- b. Strep. pneumoniae, Strep. pyogenes
- c. other bacteria Staph., Fusobacterium, Pseudomonas ?? commensals
- d. viruses

• differences from childhood illness,

1.	more often culture (-)'ve		~ 70% vs. 20%
2.	higher mortality		~ 7% vs. < 1%
3.	rapid or insidious course	\rightarrow	diagnostic delay
4.	underlying pathology		 hypertrophied mucosa carcinoma

5. occasionally recurrent

■ Frantz et al. JAMA 1994

• case analysis of 129 patients aged > 18 years with laryngoscopically confirmed epiglottitis

a.	mean age		~ 47 years	
b.	mos	t common symptoms		
	i.	sore throat	~ 95%	
	ii.	odynophagia	~ 94%	
	iii.	muffled voice	~ 54%	
c.	micı	robiology		
	i.	blood cultures	~ 15%	(8/52 tested +'ve)
		• <i>H. influenzae</i> (6)		
		• <i>S. aureus</i> (2)		
	ii.	pharyngeal swab	~ 18%	(9/48)
d.	man	agement		
	i.	artificial airway		(19/129)
	ii.	2 nd /3 rd cephalosporin	~ 75%	
	iii.	corticosteroids	~ 73%	(94/129)
	iv.	mean hospital stay	~ 4.1 days	
e.	outc	ome		
	i.	major complications	~ 5%	(6)
	ii.	motrality	- nil	

NB: concluded that conservative management of adult epiglottitis is safe and effective

• Acute Upper Airway Obstruction

- anaphylaxis | anaphylactoid reaction a.
- angioneurotic oedema b.
- peritonsillar c. abscess - retropharyngeal
- carcinoma \pm oedema d.
- foreign body e.
- laryngealfacial f. trauma
- hypocalcaemia g.

Gonnococcal Infections

Def'n: gram negative intracellular diplococci

Clinical Presentation

- 1. gonnococcal urethritis
- 2. epididymitis
- 3. acute salpingitis, pelvic inflammatory disease
- 4. bilateral Bartholin's gland abscesses
- 5. cystitis
- 6. conjunctivitis (children)
- 7. disseminated gonococcal septicaemia \equiv^{t} *meningococcaemia*
 - \rightarrow fever, rash
 - petechiae, purpura, skin necrosis
 - polyarthralgia
- 8. septic arthritis, acute polyarthritis arthritis-dermatitis syndrome
 - *most common septic arthritis worldwide
- 9. myopericarditis, endocarditis
- 10. meningitis
- 11. perihepatitis Fitz-Hugh-Curtis syndrome
 - salpingitis \rightarrow RUQ tenderness, pain, friction rub
- 12. "toxic" hepatitis
- 13. purpura fulminans

■ <u>Treatment</u>

- 1.3rd generation cephalosporin- ceftriaxone- cefotaxime
- 2. spectinomycin
- NB: also Rx non-gonococcal urethritis doxycycline

HEPATITIS

Aetiology

1.	infective	Hepatitis A, B, C, Delta, non-A-B-CEBV, CMV, HSV, Coxsackie
2.	drugs	
	i. cholestasis	 alcohol chlorpromazine, chloramphenicol, chlorpropamide tetracyclines, erythromycin oestrogens, OCP, androgens
	ii. hepatitis	 - α-methyl-dopa → 5% abnormal LFT's 1% hepatitis 0.15% CAH - paracetamol, phenytoin, isoniazid, rifampicin, flucloxacillin - <i>halothane</i>, enflurane, & ? isoflurane
3.	toxins	- CCl ₄ , vinyl chloride - <i>Amanita phalloides</i> (mushroom)
4.	cardiovascular	
	i. ischaemicii. congestive	 hypovolaemic shock, ischaemia cor pulmonale, RV failure, CCF Budd-Chiari syndrome
5.	metabolic	- Wilson's disease(hepatolenticular degeneration)- Haemochromatosisalcohol- parenteral nutrition α_1 -antitrypsin deficiency
6.	autoimmune	 chronic active hepatitis drug induced vasculitis, SLE, UC, PN 1° biliary cirrhosis

HEPATITIS				
Parameter	Α	В	С	Delta
Virus	27 nm	42 nm, DNA	togavirus, RNA	defective RNA
Incubation	2-6 wks (~ 4)	6-24 wks (~ 10)	2-24 wks (~ 7)	
Onset	acute	insidious	insidious	
Seasonal	winter	no	no	
Age	children, young adults	any	adults	IV drug users
Transmission	faecal/oral	haematogenous, percutaneous, placental, STD	haematogenous percutaneous	coinfection, or superinfection with HBV
Severity	mild	often severe	mod-severe	
Prognosis	good	B&C worse with <i>a</i>	ige & debility	poor
Chronicity	rare	occasional ~ 5-10%	common ~ 10-50%	common
IgG-Ab	good	needle stick	none	none
Carrier	rare	0.1-1.0% (< 30% O/S)	~ 1.0%	common
Mortality	rare	~ 1%	?	~ 2%
Diagnosis	IgM/anti-HAV	HBsAg anti-HBs,c,e	anti-HCV	anti-HDV

• Complications of Hepatitis B

a.	cirrhosis with portal hypertensionprobably less than this, some of these	~ 15-30% were HCV in the past
b.	carrier state (HBsAg / HBcAb)	~ 5%
c.	chronic active hepatitis	~ 3-5%
d.	massive hepatic necrosis	\pm encephalopathy
e.	primary hepatic carcinoma	
f.	immune complex syndromes	 serum sickness polyarteritis glomerulonephritis urticaria

Hepatitis D - Delta Hepatitis

- 35 nm, double shelled external coat of HBsAg
- inside is the HDV-Ag and HDV-RNA
- always occurs in association with HBV, may be either acute or chronic,

1.	coin	<i>ifection</i>	-	M (acute inf self limiting	fection) + HDV-Ag
2.	sup	erinfection	- HBsAg	(carrier) +	HDV-Ag
	i.	of acute ca	ases	~ 80%	\rightarrow chronic hepatitis
	ii.	of chronic	infection	~ 70-80%	\rightarrow cirrhosis

• diagnosis is by clinical examination and radioimmunoassay of *anti-HDV Ab*

• titres > 1:100 are found in chronic infection

Epidemiology

- a. endemic in HBsAg carriers
- b. occasionally epidemic in HBsAg carriers
- c. isolated cases in high risk groups drug users - haemophiliacs, etc.
- d. commoner in Mediterranean & Middle eastern peoples
- treatment is with *interferon A*
- · actual benefit derived from interferon is not precisely determined, cf. HCV

HIV INFECTION AIDS

Def'n: infection with HIV virus, usually with (+)'ve anti-HIV Ab

• HTLV III, or HIV is a 100nm RNA retrovirus (lentivirus) with reverse transcriptase

• highly *mutagenic* during the course of infection, : immunisation impracticable

- other retroviruses of the group,
 - 1. HTLV I
 - endemic in Japan, Brazil and Carribbean, also IV users in USA
 - modes of transmission identical to HIV
 - longer incubation period ~ 20 years
 - implicated in 2 distinct disease entities
 - i. adult *T-cell lymphoma* aggressive T_4 -cell NHL
 - survival usually < 1 year
 - ii. tropical spastic paraparesis neurologically similar to MS
 - 2. HTLV II
 - indistinguishable from HTLV-I by ELISA or Western Blot
 - associated with *hairy cell leukaemia*
 - 3. HTLV-III \rightarrow HIV type 1
 - 4. HTLV-IV \rightarrow HIV type 2
 - is a second cause of AIDS, though may be a milder form of the disease
 - same modes of transmission and possible to have *dual infection*
 - base sequence homology between HIV-1 / HIV-2 $\sim 40\%$
 - more closely resembles Simian T-lymphotrophic virus STLV
 - predominantly found in Western Africa

Modes of Spread

1.

- sexual contact i. homosexual/bisexual contacts ~ 60% ii. heterosexual contacts ~ 4%
- 2. parenteral exposure
 - i. drug addicts, shared instruments $\sim 20\%$
 - both IV users and homosexual ~ 7%
 - ii. blood transfusion, haemophiliacs ~ 1%
 - iii. recipients of infected tissue
 - iv. accidental, needle stick injury
- 3. perinatal infection
 - may occur prenatally, during birth, or by breast feeding
- 4. undetermined
 - many of this group when re-questioned actually fall into 1-2 above

~ 3%

• High Risk Groups

- a. homosexual, bisexual males
- b. IV drug users
- c. haemophiliacs
- d. Haitians, people of central African origin
- e. children of infected mothers
- f. sexual partners of carriers

Non-Transmission Modes

• HIV has been isolated from tears, saliva, urine and CSF, however these *have not* been implicated in transmission of HIV

• modes not at risk of infection include,

- 1. non-sexual household contacts
- 2. mosquito bites
- 3. human bites

Classification

- 1. Group I
 acute infection

 may be subclinical or influenza-like illness
- 2. Group II asymptomatic, anti-HIV (+)'ve
- 3. Group III persistent generalized lymphadenopathy
- 4. Group IV other disease
 - i. subgroup A constitutional disease
 - ii. subgroup B neurological disease
 - iii. subgroup C secondary infectious disease
 - category C_1 specific secondary infectious diseases listed by the CDC
 - category C_2 other non-specific secondary infectious diseases
 - iv. subgroup D secondary malignancies
 - v. subgroup E other conditions
- NB: classification has neither prognostic significance, nor does it signify severity

it is *hierarchial*, in that once categorised at a level, patients should not be reclassified if clinical imrovement occurs, as this may *not* reflect change in the underlying disease severity

Associated Diseases

a.	viral infections	 disseminated CMV chronic mucocutaneous herpes papova-virus progressive multifocal encephalopathy
b.	bacterial	 disseminated TB disseminated Mycobacterium avium-intracellulare Salmonella spp.
c.	fungi	 - oesophageal / disseminated <i>Candida</i> spp. - meningeal / extrapulmonary <i>Cryptococcus neoformans</i>
d.	protozoa	 <i>Pneumocystis carinii</i> pneumonia cryptosporidial gastroenteritis strongyloides pneumonia toxoplasmosis, disseminated / encephalitis
e.	malignancies	- Kaposi's sarcoma, often multicentric - Non-Hodgkin's lymphoma, high grade, ± CNS

Pathogenesis

- a. viral gp120 envelope → CD-4 receptor cells, mainly T-lymphocytes
 other cells can also be infected, but mechanism uncertain
- b. CD-4 T-lymphocytes (helper cells) are progressively depleted during infection
 - there is also evidence for defective function of remaining cells
 - CD-4 counts $< 200 / \text{mm}^3 \rightarrow \uparrow$ risk of opportunistic infection
- c. monocytes / macrophages
 - infected either by CD-4 receptor or by phagocytosis of mature virion
 - serve as both a haven and as a *reservoir* for ongoing infection
 - may introduce virion into the brain, contributing to AIDS dementia complex
 - glial cells may either be activated, or infected
- d. bone marrow cells
 - HIV infects myeloid monocyte progenitor cells, ? mechanism
 - contributes to pancytopenia
- e. B-cells
 - demonstrate impaired function, however, direct infection has not been demonstrated
 - coinfection with EBV or CMV may contribute to this

Clinical Features

• Acute Primary Infection

- a. sudden onset of infectious mononucleosis type syndrome
- b. incubation period $\sim 1-12$ weeks (mean 2-4/52)
- c. duration of illness ~ 3-14 days (range 3-49/7)
- d. signs / symptoms * non-specific
 - i. fever, sweats, lethargy, malaise, photophobia, arthralgia, myalgia
 - ii. truncal maculopapular rash
 - iii. oral aphthous ulcers, or diffuse enanthema of the oral cavity
 - iv. lymphadenopathy
 - v. neurological manifestations meningoencephalitis
 - peripheral neuropathy, GBS
- e. laboratory investigation
 - i. lymphopenia
 - ii. \uparrow ESR
 - iii. 1 ALP, AST / ALT
 - iv. post-infection, may have a typical lymphocytosis, with inversion T_4/T_8 ratio
 - this is due to an eleveted T_8 count, the T_4 count is *normal*
 - v. seroconversion
 - HIV-Ab usually detected within 2 months
 - conversion as early as 2 weeks has been documented
 - prolonged Ag-positive / Ab-negative states well documented
 - core p24 Ag detectable in serum & CSF within 2 weeks

Asymptomatic HIV Infection

- frequency unable to be determined
- estimated > 1,000,000 cases in USA

• approximates *rates of progression*,

- a. 3 years ~ 80-90% develop some degree of immune dysfunction
- b. 7 years ~ 36% progress to AIDS
 - ~ 40% have manifestations of infection (ARC see over)
- NB: thus, by 7 years ~ 75% of persons develop some symptoms of disease, currently thought that *all* infected persons will develop progressive disease

Persistent Generalised Lymphadenopathy

- a. definition
- ≥ 2 *extrainguinal* sites > 1.0 cm diameter
- > 3 months duration
- *not* attributable to other causes
- *not* associated with constitutional symptoms
- b. incidence ~ 5-70% of HIV infected persons
- c. pain & tenderness are uncommon
- d. mediastinal & hilar adenopathy are unusual
- e. mesenteric & retroperitoneal sites are common
- f. histology shows nonspecific *follicular hyperplasia*
 - associated with T_8 cell proliferation
 - cf. patients with severe disease (AIDS) have follicular depletion

• AIDS Related Complex

NB: obsolete term \rightarrow Group III, Group IV.A, Group IV.B

- 1. fever, weight loss, fatigue, sweats, diarrhoea
- 2. unexplained generalized lymphadenopathy
- 3. thrombocytopaenia
- 4. oral candidiasis
- 5. herpes zoster infection
- 6. constitutional wasting syndrome

Haematological Abnormalities

- a. marrow depression reduction in 1 or more elements
 - i. normochromic, normocytic anaemia
 - ii. neutropaenia
 - iii. lymphopaenia
 - iv. thrombocytopaenia
- b. immune thrombocytopaenic purpura
 - usually asymptomatic when platelets > 50,000
 - similar to classical ITP, *no splenomegaly* & hyperplastic marrow suggesting *peripheral destruction*
 - AZT may produce anaemia & leukopaenia, but rarely thrombocytopaenia
- c. thrombotic thrombocytopaenic purpura

• AIDS

- only a small number of those infected actually have AIDS Groups IV.C-1 and IV.D
- defined by the various opportunistic *infections* and *neoplasms* characteristic of AIDS
- CDC divides these diseases into 3 groups, and subclassifies AIDS accordingly

Neurological Disease

- a. AIDS dementia complex ~ 40-60% of patients
- b. peripheral neuropathy, myelopathy
- c. cryptococcal meningitis, CNS toxoplasmosis
- d. primary CNS lymphoma
- e. progressive multifocal leucoencephalopathy
- f. CMV
- g. aseptic meningitis

■ <u>Neoplasms</u>

- 1. Kaposi's sarcoma
 - occurs in ~ 30% of AIDS patients
 - may present as multifocal vascular nodules in skin and viscera
 - may involve the lung with interstitial opacities, or rarely massive haemorrhage
 - like neurological disease, tends to occur *before* the onset of immunosuppression
- 2. non-Hodgkin's lymphoma
 - may involve brain, lymphoid tissue, GIT, skin, or bone marrow
 - usually aggressive with high mortality

Laboratory Features

a.	T-cells	- <i>anergy</i> - \downarrow total T ₄ count ~ 700/µl - \downarrow T ₄ helper cells < 300/µl - \downarrow T ₄ :T ₈ ratio < 0.9 (N > 1.5) - \downarrow T-cell proliferation, cytotoxicity - \downarrow cytokine response (IL ₂ , interferon, lymphokines)
b.	B-cells	 <i>polyclonal activation</i> ↑ Ig's (viral Ab's, auto-Ab's, immune complexes) impaired 1° Ab response
c.	other	- $\uparrow \alpha$ -interferon, thymosin-a ₁ and β_2 -microglobulin - production of serum "IL ₂ inhibitor" - impaired natural killer cell function

HIV Screening Tests

a.	ELIS	SA	 screening, result in hours false (+) ~ 0.04-0.15% of normal population positive to other HTLV viruses
b.	Western blot		 confirmatory, research, expensive result in days false (-) in "window period" & terminally
	• co	ombining (a)	$(b) \rightarrow false \ positive \sim 1:135,000$
c.	HIV	Ag tests	
	i.	free virus	- can be cultured in newly infected patients & in advanced disease
	ii.	core p24	 appears in acute infection & with advanced disease can be used in the <i>individual</i> to track response to therapy interpatient variability makes it unreliable as a disease marker
	iii.	PCR	 direct detection of viral Ag using gene amplification may be useful in "window period" for blood screening

■ Treatment

- 1. azidothymidine AZT
 - nucleoside analogue
 - readily crosses the BBB, with CSF levels ~ 50-60% of plasma
 - side effects bone marrow suppression
 - myositis
 - headaches
 - N&V
- 2. specific therapy of opportunistic infections
- 3. radiotherapy for Kaposi's sarcoma

Infectious Mononucleosis

- *Def'n:* an acute, self-limiting infectious disease of children and young adults resulting from *Epstein-Barr virus* (double-stranded DNA *herpesvirus*); producing the classical features
 - 1. fever & sore throat
 - 2. lymphadenopathy, splenomegaly
 - 3. lymphocytosis, with "atypical" changes in mononuclear elements
 - 4. presence of *heterophil antibodies* in peripheral blood
 - agglutinates sheep (Paul-Bunnell) or horse (monospot) rbc's
 - nonspecific serological test
 - Ab levels may take 3 weeks to rise & remain high for 3-6 months

Typical Clinical Features

1. exudative tonsillitis & pharyngeal inflammation

2.	lymphadenopathy	- predominantly posterior cervical
3.	splenomegaly	~ 75% of cases - associated with spontaneous rupture
4.	hepatomegaly	~ 50% ~ 80% show abnormal LFT's
5.	maculopapular rash	~ 5% *virtually all if given <i>amoxicillin</i>

6. petechial exanthem on the soft palate

Heterophil Negative IM

- 1. CMV
- 2. viral hepatitis HAV, HBV, HIV
- 3. T. gondii
- 4. leptospirosis
- 5. rubella
- 6. lymphoma / leukaemia
- 7. drugs phenytoin, PAS, isoniazid

• Life Threatening / Rare Complications

- a. hepatitis, massive hepatic necrosis \pm encephalopathy
- b. splenomegaly & spontaneous / traumatic rupture
- c. GBS[§]
- d. viral myositis[§] [§]respiratory failure \pm bulbar palsy
- e. glomerulonephritis acute/chronic renal failure
- f. myocarditis, pericarditis
- g. encephalitis, meningitis
- h. thrombocytopaenia
- i. overwhelming 2° bacterial infections / septicaemia
 - · depressed CMI and lymphocyte function
- j. association with Burkitt's lymphoma & other tumours
- k. concurrent Streptococcal infection ~ 20%
 - possibility of rheumatic fever, scarlet fever, Sydenham's chorea, etc.
- 1. chronic mononucleosis syndrome

CMV Infection

NB: member of the *Herpesvirus* group large intracellular inclusion bodies in infected cells

• Clinical Manifestations

- a. congenital CMV
- b. acquired subclinical infection in children \rightarrow ~ **30-80%** of the adult population are CMV Ab (+)'ve
- c. acquired clinical CMV
- d. reactivated CMV infection
- e. disseminated CMV in immunocompromised patients

• Congenital CMV

- occurs with an incidence $\sim 0.5\%$
- complication rate ~ 10-15%, especially neurological involvement
- presentation,
 - a. failure to thrive
 - b. hepatitis
 - c. pneumonitis
 - d. encephalitis
 - e. haemolysis
 - f. chorio-retinitis
 - g. purpura
 - h. pathological fractures

• Acquired Infection - Children & Adults

- a. asymptomatic, or "flu-like" illness
- b. pneumonia
- c. hepatitis
- d. encephalitis
- e. GBS ?? ~ 30% of GBS occurs post-CMV infection
- f. thyroiditis
- g. ulcerative GIT disease
- h. thrombocytopaenic purpura

• CMV - Mononucleosis Syndrome

a. spontaneous, or following blood transfusion

b.	acute febrile illness with	 lymphocytosis atypical lymphocytes
c.	"flu-like" symptoms	- rashes - arthralgias and myalgia
d.	viral hepatitic picture	\pm hepatomegaly
e.	splenomegaly	
f.	ulcerative involvement of the	e intestinal mucosa
g.	haematological involvement	 haemolytic anaemia thrombocytopaenia
h.	pneumonitis	

i. pericarditis

Disseminated CMV - Immunocompromised

- a. similar to CMV mononucleosis but severe & often fatal
- b. atypical lymphocytosis usually *not* a prominent feature
- c. common organ involvement liver & GIT
 - lungs
 - CNS
 - eyes

• CMV - Transplant Recipients

a.	potential sources \rightarrow	~ 60% 1° infection ~ 30% superinfection	
	i. transplant		
	ii. transfusion		
	iii. reactivation	- very low	
b.	graft reactions may	 intensify 1° inf reactivate laten 	
c.	sero(+) donor / sero(-)	recipient \rightarrow	greatest risk
d.	<pre>sero(+) donor / sero(+)</pre>	recipient \rightarrow	~ 30%
e.	sero(-) donor / sero(+)	recipient \rightarrow	very low %
f.	bone marrow recipient	s at higher risk, e	ven if sero (+'ve)

g. clinical manifestations

- i. severe progressive pneumonitis
- ii. hepatitis fever - elevated LFT's
 - elevate
- iii. ulcerative GIT disease
- iv. marrow suppression
- v. disseminated CMV ~ 100% mortality
- vi. graft rejection
- vii. CMV mononucleosis syndrome
- h. accounts for ~ 50% of *interstitial pneumonias* in transplant patients
- i. incidence rises in the first 15 weeks $\sim 0.2\%$ per patient day $\sim 25\%$ mortality ?

Transplant type	Seroconversion	Clinical infection
cardiac	100%	30%
bone marrow	100%	15%
renal	60%	15%

- problems associated with CMV for the transplant recipient,
 - 1. CMV infection *per se*
 - 2. transplant rejection
 - 3. immunosuppression
 - 4. superinfection

Diagnosis CMV

- a. serology C' fixation Ab rise > 4-fold
- b. indirect fluorescent Ab to surface Ag of CMV infected cells > 4-fold rise
- c. immunoflourescence IgM-Ab to CMV titre > 1:16
- d. culture

NB: heterophil (P-B) & monospot tests will be *negative*

• prophylactic measures for transplant recipients,

- 1. seronegative organ donor
- 2. improved, more specific immunosuppressive therapy \rightarrow cyclosporin A
- 3. reduce blood sources seronegative blood donor - WC filters

• Complications

NB: uncommon in normal hosts, but the following have been reported

- 1. hepatitis occasionally with clinical jaundice
- 2. interstitial pneumonitis
- 3. corioretinitis
- 4. immune phenomena
 - i. amoxicillin-induced rash
 - ii. haemolytic anaemia
 - iii. thrombocytopaenia
- 5. neurological syndromes
 - i. GBS
 - ii. polyneuritis
 - iii. aseptic meningitis, encephalitis

■ <u>Treatment</u>

a.	Gancyclovir	~ 5 mg/kg / q12h for 2 weeks + anti-CMV IgG
	\rightarrow	~ 52% improve
b.	anti-CMV IgG	
	\rightarrow	~ 15-20% improve (not very effective)
c.	Acyclovir	 most studies show <i>no benefit</i>, even in high doses 2 studies show some benefit in bone marrow transplants
1	. • 1	

- d. steroids
- e. foscarnet

Problems Gancyclovir/Acyclovir

- 1. resistance with prolonged prophylaxis
- 2. reversible neutropaenia esp. gancyclovir
- 3. CNS toxicity

Candida Infection

- numerous species, common agents C. albicans, C. parapsilosis
- commensal organism in the mouth, large bowel and vagina

• Common Sites

- a. skin
- b. urinary tract
- c. mouth
- d. distal oesophagus
- e. endocarditis
- f. systemic candidaemia
- g. endophthalmitis

Predisposing Factors

- a. poor skin hygiene, obesity
- b. steroids | immunosuppressive therapy
- c. broad spectrum antibiotics

d.	indwelling catheters	 urinary catheters CVC, PA, IA catheters PD catheters
e.	immunocompromised patients	 diabetes mellitus malignancy renal failure * AIDS

f. IV drug abusers

Laboratory Diagnosis

- a. wet prep pseudohyphae
- b. culture smooth, shiny colonies
 - hyphae, pseudohyphae on some media
- c. serology Candida Ag (+)'ve
 - limited sensitivity / specificity for invasive infection

Treatment Candidal Infection

- a. remove \pm treat predisposing factors
- b. antifungal therapy

currerr	angur morupy	
i.	topical	- oral Nystatin - antifungal creams
ii.	Amphotericin bla	adder washouts ~ 50-100 mg/100 ml - q8h with 30 min dwell time
iii.	Amphotericin B	~ 0.5-0.7 mg/kg/day IV for 6 weeks
iv.	Flucytosine	~ 25 mg/kg q6h + Amphotericin 0.3 mg/kg/day
	• synergistic for	r most fungal infections
	• don't use com	bined therapy in AIDS patients
v.	Fluconazole	~ 200-400 mg/day IV
vi.	Ketoconazole	~ 400 mg/day - oesophageal disease - resistant GUS infection

NB: criteria for treatment with systemic antifungal agents,

→ *systemic inflammatory response syndrome*, plus

- i. negative cultures for bacteria, plus Candida grown from *two* different sites, or
- ii. micro shows heavy growth with hyphae/pseudohyphae

ENDOCARDITIS

Non-Infective Endocarditis

• Causes

- 1. rheumatic fever
- 2. SLE
- 3. non-bacterial, thrombotic endocarditis 'merantic'
- found in ~ 1% of all autopsy specimens from patients with,
 - 1. neoplastic disorders
 - 2. DIC / sepsis
 - 3. burns
 - 4. central venous cannulae

• 50% have pulmonary emboli if right-sided endocarditis exists

Infective Endocarditis

- *Def'n:* infection by micro-organisms of a platelet/fibrin vegetation on the endothelial surface of the heart
- a. incidence ~ 1:200-6,000 hospital cases, or ~ 1:17,000 normal population
- b. mortality
 - i. overall ~ 20-30% ii. elderly ~ 40-70% $\uparrow 2x$ iii. severe CCF ~ 100%
- **NB:** the later may be reduced to ~ 30% with surgery

Acute Bacterial Endocarditis

- rapid, severe, destructive infection often with virulent bacteria
- often occurs on normal valves and has a high associated mortality
- causative organisms include,
 - a. *Staphylococcus aureus*
 - b. Strep. pneumoniae & Strep. pyogenes
 - c. Neisseria gonorrhoeae

• Causative Organisms SBE

NB: = "just about any"

a.	Streptococci		~ 60%
	i.	S. viridans	~ 30%
	ii.	S. faecalis	~ 10%
	iii.	other	~ 15-30%
b.	Stap	hlococci	~ 25-35%
	i.	S. aureus	~ 20-30%
	ii.	S. epidermidis	~ 5%
c.	gran	n negatives	~ 1.5-13%
	i.	E. coli	
	ii.	P. aeruoginosa	
	iii.	H. influenzae	
d.	anae	robes	~ 4%
e.	fung	i	~ 4%
	i	Candida	
	1.		
		Aspergillus	
f.		Aspergillus	
f.	ii. ricke	Aspergillus	
	ii. ricke i.	Aspergillus ettsia	
	ii. ricke i.	Aspergillus ettsia Q-fever	~ 60%
	ii. ricke i. in IV	Aspergillus ettsia Q-fever ⁷ drug abusers, Staphylococci	~ 60%
	ii. ricke i. in IV i. ii.	Aspergillus ettsia Q-fever ⁷ drug abusers, Staphylococci	

Predisposing Factors

a.	none found	~ 20-40%	
b.	<i>rheumatic</i> valvular disease	~ 25-60%	
	 used to be most frequent cause 		
	• more recent studies	≤ 15%	
c.	mitral valve prolapse	~ 10%	
	• up to 50% and most frequent cause in	n some studies	
d.	congenital valvular disease	~ 10-20%	
e.	prosthetic valves & cardiac surgery	~ 10-20%	
f.	other cardiac risk factors [§]		
g.	nosocomial endocarditis		
	i. peripheral AV fistulae / chronic ha	aemodialysis, prosthetic aortic grafts	
	ii. pacemakers, IV or IA lines		

- iii. postoperative wound infections
- iv. genitourinary manipulation
- h. immunosuppression
 - therapeutic
 - IV drug abuse, severe burns, alcoholism
- i. Marfan's syndrome

■ Cardiac Risk Factors[§]

1. high risk

- i. prosthetic valves
- ii. mitral regurgitation rheumatic
- iii. aortic valve disease rheumatic or bicuspid
- iv. Fallot's tetralogy, other complex CHD
- v. patent ductus arteriosus, VSD, coarctation of the aorta

2. intermediate risk

- i. mitral valve prolapse, isolated mitral stenosis
- ii. tricuspid / pulmonary valve disease
- iii. calcific aortic stenosis, idiopathic subaortic stenosis
- iv. right heart catheterisation
- 3. low risk
 - i. ASD
 - ii. pacemakers
 - iii. arteriosclerotic plaques, syhilitic aortitis

Predisposition

a. S. viridans - dental procedures ~ 20%
b. S. faecalis - GIT, bowel surgery ~ 50%
c. Staphylococci - skin lesions, IV drug abuse ~ 40%

• Causes of Culture Negative Endocarditis

a.	usual organism	 false negative prior treatment with antibiotics
b.	unusual organism	 Coxiella burnetti Clamydia psittaci pyridoxine requiring Streptococci fungi

Clinical Findings

a.	murmur	~ 90%
	changing murmur	~ 12%
	• acute valvular dysfunction / rup	ture
b.	fever $> 38^{\circ}C$	~ 77%
c.	embolic episodesbrain, spleen, kidney, heartmycotic aneurysms	~ 50%
d.	skin changes	~ 50%
	• petechiae	~ 20%
	• splinter haemorrhages	~ 15%
	• Osler's nodes	~ 10%
	Janeway lesions	~ 10%
	• jaundice	
e.	splenomegaly	~ 25%
f.	metastatic infection	~ 20%
g.	clubbing	~ 12%
h.	Roth spots	~ 5%
i.	<i>immune complex</i> phenomenonarthritisacute GN	~ 15%
j.	negative cultures	~ 5-40%

Laboratory Investigations

- FBE / ESR a.
 - normochromic, normocytic, low reticulocyte anaemia ~ 50%
 - ↑ ESR/CRP ~ 90%
 - \uparrow WCC ~ 75%
- blood cultures x 1 ~ 80% b.
 - **x 3** ~ 90% sensitivity (ARD disc positive)
 - IV adequate, IA unnecessary ~ 10 ml/btl
 - sensitivities with MIC, MBC essential
- Q fever, Clamydia, and Mycoplasma serology c.
 - 10% culture negative - more likely false negative than unusual organism
- features of GN & renal involvement ~ 50% d.
 - haematuria, proteinuria, RBC casts
- ~ 50% sensitivity (LIGW says up to 80%, ? TEE) e. echocardiography
 - may confirm diagnosis
 - most lesions need to be > 5 mm before reliably detected
 - assesses risk of emboli, degree of valvular dysfunction, LV function

Clinical Management

- always consult microbiologist & cardiac surgeon a.
- b. empirical therapy - *all* for 4/52 i. penicillin - 1.2g IV q4h - penicillin 1.8g if MIC > 0.2 mg/l
 - ii. - 2.0g IV q4h flucloxacillin
 - iii.
 - 1.5 mg/kg IV q8h gentamicin
 - single daily dosage in SBE/synergistic roles not established
- known organism - *all* for 4-6/52 с.
 - Strep viridans - penicillin & gentamicin i.
 - ii. Strep. faecalis - amoxicillin 2g q6h & gentamicin
 - flucloxacillin & gentamicin Staph. aureus iii.
 - iv. MRSA - vancomycin 1.0g IV q12h 6/52
 - cefotaxime 1-2g q6h & gentamicin gram (-)'ve v.
 - pseudomonas - timentin 3.1g q4h & tobramycin 1.5mg/kg q8h vi.
- patient allergic to penicillin \rightarrow d. vancomycin

• persistence of *fever* beyond 4-7 days may represent myocardial or embolic abscess, or drug sensitivity

• monitor with serial CRP and echocardiography

Prophylaxis

- 1. dental, oral, or upper respiratory tract surgery
 - i. standard regimen
 - oral penicillin V 2g prior & 1g 6 hrs post-procedure, or
 - IM or IV benzyl penicillin 2 MU 30 mins prior & 1 MU 6 hrs post-procedure
 - ii. maximal therapy options
 - amoxicillin 2g & gentamicin 1.5 mg/kg IV/IM 30 min prior, & either penicillin V 1g orally or benzyl penicillin 1 MU 6 hrs post-procedure
 - iii. penicillin allergy
 - oral erythromycin 1g 1 hr prior & 500mg 6 hrs post-procedure
 - IV vancomycin 1g over 60 minutes prior to procedure
- 2. gastrointestinal & genitourinary
 - i. standard regimen
 - amoxicillin 2g & gentamicin 1.5 mg/kg 30 min prior & 8 hrs post-procedure
 - ii. low risk procedure/patient
 - oral amoxicillin 3g 1 hr prior & 1.5g 6 hrs post-procedure
 - iii. penicillin allergy
 - vancomycin 1g over 60 minutes & gentamicin 1.5 mg/kg prior to procedure
 - this may be repeated at 6-8 hrs post-procedure
- 3. prosthetic valve insertion
 - vancomycin 1g over 60 minutes prior & 500 mg q12h x2 doses post procedure

Indications for Valvular Surgery

- 1. native valve infection, plus
 - i. acute valvular incompetence / worsening cardiac failure
 - ii. fever > 6/52
 - iii. persistent large vegetations
 - iv. significant embolic phenomena
- 2. prosthetic valve infection, plus
 - i. signs of valve dehiscence
 - ii. continuing embolic manifestations
 - iii. worsening cardiac failure

LEGIONNAIRE'S DISEASE

Def'n:	acute respiratory infection caused by Legionella pneumophila
--------	--

- J		,	
a.	organism	- several sero/su	
b.	epidemiology	 incubation per respiratory tran all age groups high risk group 	nsmission but more common in middle & elderly persons
		~ 15-50% morte	
с.	diagnosis	- serological	
		- direct fluoresco - Dieterle stain	> 1:256 initial titre ent Ab stain of sputum, Bx, BAL etc.
 Clinica 	l Features		
-	symptomatic duration 2/52		
a.	respiratory		
	i. "influenza	like" syndrome	- fever, myalgias, headache
	ii. pneumonia	a	 non-productive cough high fever, tachypnoea, tachycardia pleuritic pain 20-30% respiratory failure 20% haemoptysis, mucopurulent sputum
b.	- mi	ld hepatitis, jaund	ptoms, pain, N&V ice, infective hepatitis h 3-5 cases each but <i>no</i> GIT symptoms
с.	CVS - hyj	potension, fever, t	achycardia
d.	acute reversible	renal dysfunction	
		-	

e.	septic syndrome	- acute renal dysfunction
		- liver dysfunction
		- acute respiratory failure
	C11C	

f. CNS - confusion, agitation, obtundation * *not* correlated with degree of hypoxaemia

Investigations

- a. CXR
 - usually *worse* than clinical signs
 - diffuse patchy lobar infiltrates
 - poorly marginated rounded opacities
 - $\sim 65\%$ unilateral lobar involvement early, eventually bilateral in 75%
 - ~ 30% have pleural effusions
- b. laboratory

i.	FBE	 neutrophilia, toxic changes high ESR
ii.	biochem	- abnormal LFT's - renal impairment
iii.	AGA's	- hypoxaemia with high AaDO ₂

■ <u>Treatment</u>

NB: Erythromycin ~ 15 mg/kg (\leq 1g) q6h

- later generation macrolides may be equally/more effective
- some data to suggest quinolones equally effective

Meningococcal Infection

a.	organism- gram (-)'ve, intracellular diplococci, oxidase positive - warm choc. agar at 37°C - serological subgroups: A, B, C, D, & others - most common epidemic subtypes → A, C & Y - nasopharynx is only known habitat ~ 2-15% of general population are carriers - carriage is transient & confers immunity
b.	presentation ~ 20-40% meningitis alone ~ 30-50% meningococcaemia without meningitis ~ 5% other presentations
c.	complications of <i>meningococcaemia</i>
	i. CNS - meningitis, acute diffuse encephalitis
	ii. CVS - myocarditis, pericarditis, septic shock
	iii. purpura fulminans - non-thrombocytopaenic- limb & digit ischaemia (~ 10% requiring surgery)
	iv. Waterhouse-Friedrichsen syndrome
	\rightarrow meningococcaemia + septic shock + haemorrhagic <i>adrenal necrosis</i>
	v. septic arthritis $\sim 2-10\%$
	vi. chronic meningococcaemia - fever, rash, arthritis, splenomegaly
d.	 complications of meningococcal <i>meningitis</i> cerebral oedema, obstructive hydrocephalus long-term neurological/psychological sequelae seizures, deafness

- thrombosis of cerebral venous sinus
- herpes labialis

■ <u>Treatment</u>

a.	ABC	- treat septic shock	
b.	Penicillin G	~ 2-4 MU q4h, or	Ceftriaxone/Cefotaxime
c.	dexamethazone	~ 0.15 mg/kg ? 2	or 4 days
d.	unproven	plasmapheresis, haemofilFFP, protein C concentra	
e.	contacts	- Rifampicin 400mg bd for	· 4 days
f.	Meningovax	 group A & C antigens, ∴ delayed effect & not 100⁶ 	1
g.		l oedema management & IC na or obtunded, no LP	P monitoring \rightarrow CAT scan

• if CT evidence of hydrocephalus \pm cerebral oedema \rightarrow ICP monitoring

Normal Flora

a.	<u>skin</u>		
	i.	aerobic	 Staph. aureus, epidermidis Strep. pyogenes Candida
	ii.	anaerobic	- gram (+)'ve cocci - Eubacterium
b.	<u>phai</u>	<u>ynx</u>	
	i.	aerobic	 Staph. aureus Strep. viridans, pyogenes, pneumoniae Haemophilus Klebsiella Candida occ. gram (-)'ve bacilli
	ii.	anaerobic	 gram (+)'ve cocci Bacteroides melano Fusobacterium Actinomyces Bifidobacterium Eubacterium
c.	<u>colo</u>	<u>n</u>	
	i.	anaerobic	 gram (+)'ve cocci, esp. Enterococci Bacteroides melano, fragilis Fusobacterium Clostridia Bifidobacterium Eubacterium
	ii.	aerobic	 gram (-)'ve coliform bacilli Staphlococci Strep. viridans Pseudomonas

PSEUDOMEMBRANOUS COLITIS

Def'n: infective colitis due to Clostridium difficile cytopathogenic toxin

- uncommon but reversible cause of infective diarrhoea
- causative agents
 - a. cephalosporins = most common cause
 - b. Clindamycin ~ 2-10%
 - c. Lincomycin
 - d. Amoxicillin
 - e. Chloramphenicol[§]
 - f. tetracyclines[§]
 - g. Cotrimoxazole[§] [§]rarely
- Clinical Features

• onset within 2-25 days of antibiotic use,

- a. profuse watery diarrhoea, bleeding uncommon
- b. cramping abdominal pain
- c. dehydration, hypoalbuminaemia
- d. dilated bowel, toxic megacolon
- e. sigmoidoscopy
 - oedematous friable mucosa
 - white-yellow raised plaques fibrin, cells, polymorphs, mucus
 - ± ulceration or sloughing
- f. barium study dilated bowel
 - distortion of haustra
 - ulcers
 - thumb-printing
 - cobblestone appearance

■ <u>Treatment</u>

- a. removal of causative antibiotic
- b. correction of fluid and electrolyte deficiencies
- c. *vancomycin* or metronidazole orally
- d. ? cholestyramine binds toxin.
- *NB*: steroids no use recovery usual within 3 weeks

PSEUDOMONAS INFECTIONS

a. *pathogen*

- gram (-)'ve, motile, *aerobic* bacillus
- cryophilic, not gas producing
- common in soils and plants
- ~ 6-10% of population faecal carriers
- skin of some individuals (axillae, groin)
- high inpatient colonisation rate ~ *normal flora*
- common contaminant in wounds and respiratory tract (esp. ETT + antibiotics)

b. bacterial factors

- i. propensity for moist environments
 - patients, hands of staff, foodstuffs
 - ventilators, nebulisers, humidifiers, etc.
 - mops, sinks, soaps, buckets, vases, urinals
 - endoscopes, antiseptic solutions, ophthalmic ointments
- ii. development of bacterial resistance
 - mutation, induction, plasmid formation

iii. exotoxin formation

- exotoxin A inhibits protein synthesis
- phospholipase surfactant breakdown
- antiphagocytic components
- lipid A gram (-)'ve *endotoxin*
- iv. cryophilic

c. *predisposing factors*

vi.

- i. antibiotic use
- ii. invasive procedures, catheters
- iii. elderly, very young
- iv. immunocompromised
- v. immunosuppressants
- steroids, cytotoxics
- endemic sources aqueous environments
 - sinks, circuits, etc.

d.	sites	of	infection
----	-------	----	-----------

vii.

i.	skin	- wounds, burns
1.	SKIII	- wounds, burns

- ii. GUS catheter associated UTI
- iii. septicaemia haemorrhagic nodules
 - erythema gangrenosum*
 - 1cm purple/black nodules in groin/axillae
 - rarely also green urine (verdoglobin)
- iv. bone abscess, penetrating wound
- v. meningitis instrumentation, LP, skull #
- vi. endocarditis prostheses
 - respiratory ETT, tracheostomy, IPPV, antibiotics
 - change in "normal" flora
 - bronchopneumonia
- viii. GIT bacterial ulcerative colitis
- e. factors necessary for *normal host defence*
 - i. Ab formation to cell wall and toxins
 - ii. complement activation
 - iii. neutrophil function
- NB: cell mediated immunity less/not important

Treatment

- a. remove predisposing factors
- b. drain collections
- c. antibiotics
 - silver sulphadiazine
 - aminoglycosides gentamicin, tobramycin
 - synthetic broad spectrum penicillins ticarcillin, piperacillin
 - 3rd generation cephalosporins ceftazidime
 - Imipenem, Ciprofloxacin, Aztreonam
- d. hyperimmune gamma globulin (from vaccinated patient)
- e. polyvalent vaccine
- *NB*: from TQEH isolates ~ 40-50% *timentin resistant*

TOXIC SHOCK SYNDROME

Def'n: syndrome due to the production, absorption and widespread distribution of a toxin, or toxins, from *Staphylococcus aureus* infection

1.	menstrual TSS	~ 99% of cases
		- young menstruating women
2.	nonmenstrual TSS	~ 1%

Diagnostic Criterea

- 1. *hypotension* < 90 mmHg systolic, or 30% decrease
- 2. *fever* $\geq 38.9^{\circ}$ C
- 3. erythematous rash, followed by *desquamation*
- 4. involvement of ≥ 4 organ systems
- 5. absence of other known causes
 - i. meningococcaemia
 - ii. streptococcal scarlet fever
 - iii. Rickettsia, leptospirosis
 - iv. erythema multiforme
 - v. scalded skin syndrome
 - vi. Kawasaki's disease

Clinical Features

- a. sudden onset of marked *pyrexia*
- b. malaise, nausea, vomiting and watery diarrhoea
- c. sore throat, or very tender mouth
- d. headache, fatigue, irritability, disorientation
- e. myalgia, muscle tenderness
- f. abdominal distension & pain which may suggest peritonitis
- g. erythematous *rash*
- h. *desquamation* occurs ~ 10 days following the disease onset
 especially on the palms and soles
- i. acute illness phase lasts ~ 4-5 days
- j. convalescent phase lasts several weeks
- *NB*: recurrence rate is ~ 30% in women who continue to use tampons

Investigations

a.	FBE		- neutrophilia
b.	EC&	٤U	- ↑ creat/urea - hypokalaemia, hyponatraemia, hyperglycaemia
c.	LFT	"s	- ↑ AST, ALT, bilirubin, lactate
d.	↑ CI	PK	
e.	MC&S		
	i.	vagina	~ 98% are culture positive for <i>Staph aureus prior</i> to antibiotics - most are negative, ie. treated prior to presentation
		.1 . /	

ii. throat / nasopharynx

Management

- 1. remove all foreign material
- 2. ABC
- 3. antibiotics
 - *no improvement* in outcome
 - reduction in recurrence rate

PANTON-VALANTINE TOXIN (PVL)

- first described in 1932 by Panton & Valentine
- present in only ~ 2% of *S. aureus* isolates
- encoded by mobile phage (Φ SLT) which can transfer PVL to other strains
- predisposition for young adults, often in clusters
- associated with:
 - 1. furuniculosis
 - 2. severe haemorrhagic pneumonia *poor prognosis
 - *NB*: clinical presentation of a young adult with recurrent boils & new onset pneumonia should raise suspicion & alert due to high mortality

Malaria

- Species
 - 1. Plasmodium vivax
 - 2. Plasmodium falciparum
 - 3. Plasmodium ovale
 - 4. *Plasmodium malariae*
- transmitted by bite of female *Anopheles* mosquito
- initiation is via attachment to specific *RBC receptors*
- most West Africans are resistant to P. vivax
- drug resistant P. falciparum is seen in S-E Asia, W. Pacific, Central America etc.
- parasitaemia is limited in,
 - a. sickle cell trait
 - b. thalassaemia
 - c. G6PD deficiency
- Clinical Features
 - 1. P. vivax | P. ovale
 - incubation period ~ 10-14 days
 - myalgia, fever, chills preceding rigors, sudden high fever & defeverescence
 - relapsing fever alternate days in synchronized infection
 - 2. P. malariae
 - mildest & most chronic form
 - relapsing fever every 3rd day
 - may present with immune-complex nephropathy
 - 3. Plasmodium falciparum
 - insidious onset with irregular fever
 - headache, confusion, encephalopathy
 - hypotension, oedema
 - GI symptoms, splenomegaly
 - renal dysfunction
 - complications,
 - i. acute pulmonary insufficiency 3-4th day of therapy aspiration
 - ii. blackwater fever
 - massive intravascular haemolysis & haemoglobinuria, ARF
 - iii. cerebral malaria
 - iv. hypoglycaemia
- Diagnosis

- 1. FBE
 - \downarrow WCC may be normal
 - \uparrow ESR
 - thin & thick blood smears
- 2. culture

Management

- a. chloroquine
- b. primaquine
- c. severe *P. falciparum* infection
 - i. ABC
 - ii. exchange transfusion
 - iii. steroids, mannitol & heparin should be avoided