Abdominal Trauma

Aetiology

1. blunt trauma

i.	MVA's cause	~ 75%	
	 associated 	splenic damage	~ 46%
		hepatic damage	~ 33%
		mesenteric damage	~ 10%
ii.	direct blows	~ 14%	
	· some associated with CDD		

- some associated with CPR
- iii. falls ~ 10%
- 2. penetrating trauma
 - majority are stabbings or gunshot wounds
 - simultaneous involvement of the thoracic cavity $\sim 25\%$

Investigation

- 1. FBE, Hct
- 2. XRays
 - major trauma \rightarrow CXR, Cx spine, SXR, AXR, Tx spine, pelvis
- 3. peritoneal lavage
 - accuracy ~ **95%**
 - complication rate ~ 1%
- 4. CT scan
 - ideally should be performed *prior* to peritoneal lavage, so that interpretation is not obscured by introduced fluid/air
 - requires the patient to be haemodynamically stable prior to transport
 - allows diagnosis of organ damage prior to laparotomy
 - may provide additional diagnostic information \rightarrow chest, Cx spine, Tx spine, etc.
- 5. ultrasound
- 6. nuclear scan
- 7. contrast studies
 - i. gastrograffin
 - 250 ml and right lateral position may confirm gastric/duodenal perforation
 - ii. angiography
 - useful for continuous haemorrhage > 2 ml/min
 - · allows selective embolisation of the bleeding vessel
- 8. laparoscopy
- 9. diagnostic laparotomy

Management

- 1. ABC / resuscitation
- 2. laparotomy
 - < 20% of gunshot wounds *are not* associated with visceral injury
 - i. splenic injury
 - risks of overwhelming sepsis post-splenectomy, ∴ *do not* remove routinely
 - non-operative management of splenic trauma has a failure rate $\sim 70\%$
 - success rate for conservative management in children is higher
 - operation with *splenic conservation* \rightarrow R_x of choice
 - if repair not possible then require polyvalent *pneumococcal vaccine*
 - common infecting organisms Pneumococcus
 - Meningococcus
 - Haemophilus influenzae

- ii. hepatic injury
 - usually do not require operative repair
 - however, high incidence of associated injury and often require exploratory laparotomy to exclude other pathology
- iii. renal injury
 - usually presents with *haematuria*
 - usually do not require operative repair
 - check IVP, cystogram
- iv. hollow visceral injuries
 - more commonly follow penetrating trauma
 - require operative correction

Peritoneal Lavage

a.	sensi	itivity	~ 95%			
b.	spec	ificity	~ 85%			
c.	com	plications	~ 1%	*operator depend	dent	
d.	posit	tive result				
	i.	aspiration				
		• fresh blo	bod	$\geq 10 \text{ ml}$		
		• faecal so	oiling or veg	etable material		
		• bile	0 0			
	ii.	lavage				
		• appeara	nce of lavag	e fluid in intercost	al or u	rinary catheters
	iii.	analysis				
		• RBC co	unt	> 100,000/µl		
				> 50,000/µl	\equiv^{t}	eqivocal
				> 5,000/µl	\equiv^{t}	penetrating injuries
		• WCC		> 500/µl		
				> 200/µl	\equiv^{t}	eqivocal
		 ALP[§] 		> 3 IU/ml		
	 amylase[§] 		> 20 IU/ml			

NB: [§]specificity for these is lacking \rightarrow now rarely performed

• causes of *false positives* ~ 15%

- a. traumatic lavage
- b. retroperitoneal haemorrhage
- c. pelvic haematoma -2° fractures
- causes of *false negatives* ~ 5%
 - a. incorrectly performed
 - b. diaphragmatic rupture
 - c. retroperitoneal injuries haemorrhage
 - duodenum, pancreas
 - renal injury
 - d. isolated hollow viscus perforation

Indications

- a. multiple trauma patient in whom abdominal examination is,
 - i. equivocal

unreliable

- CHI, intoxication, cord injury
- iii. impractical prolonged XRays, angiography
 - requiring GA
- b. unexplained fluid requirements in resuscitation
- c. penetrating injuries including lower thoracic
- d. gunshot wounds

• Contraindications

ii.

- a. full bladder
- b. pregnancy
- c. recent abdominal surgery
- d. obvious signs of intraperitoneal haemorrhage/infection
- NB: ie., any indication for immediate laparotomy

• Complications

- a. haemorrhage
- b. intestinal perforation
- c. bladder perforation
- d. infection

Technique

- a. empty baldder, sterile technique, IV access
- b. dialysis catheter introduced into pelvis via sub-umbilical incision
- c. aspiration for frank blood | peritoneal fluid
- d. 1000 ml of normal saline introduced over 5 minutes + ballotment
- e. fluid drained sent for,
 - i. red & white blood cell counts
 - ii. urgent gram stain & culture
 - iii. amylase
 - iv. ? cytology

Acute Abdomen in ICU - Differential Diagnosis

a.	adynamic ileus	 paralytic ileus, acute gastric dilatation intestinal pseudo-obstruction toxic megacolon
b.	acalculous cholecystitis	
c.	pancreatitis	
d.	postoperative	anastomotic leakabscess formation
e.	peritonitis	
	i. secondary	- bacterial, chemical
	ii. primary	- Pneumococcal, Streptococcal, Enterobacteriaciae
f.	trauma	 visceral perforation laceration haemorrhage, haematoma post-CPR
g.	splanchnic hypoperfusion	- mesenteric ischaemia
h.	coincidental disease	 appendicitis, cholecystitis peptic ulcer volvulus diverticulitis carcinoma strangulated hernia

i. thoracic spinal trauma

• Medical Causes of the "Acute Abdomen"

a.	endocrine	 Addisonian crisis diabetic ketoacidosis
b.	cardiac	 acute visceral congestion (CCF, tamponade, PE etc.) lactic acidosis mesenteric thromboembolism
c.	neurological	- tabes dorsalis - herpes zoster - porphyria - epilepsy
d.	autoimmune	- polyarteritis nodosa, SLE
e.	metabolic	- hypercalcaemia - uraemia
f.	respiratory	lower lobe pneumoniaPTE

g.	other	 Familial Mediterranean fever lead & other heavy metal poisoning lactose intolerance haemolytic crisis Henoch-Schönlein purpura.
h.	allergy	 food allergy hereditary angioneurotic oedema

Investigation - Acute Abdomen

a.	history of illness	
b.	physical examination	- incl. temp., PR and PV
c.	white cell count	- nonspecific
d.	AXR	- supine & lateral decubitus
e.	ultrasound	
f.	abdominal CT scan	- with IV and enteral contrast
g.	peritoneal lavage	
h.	diagnostic laparotomy	

NB: untreated abdominal sepsis has a high mortality, whereas mortality is *unchanged* by a negative laparotomy

Acalculous Cholecystitis

• acute *necrotising* cholecystitis which may occur spontaneously in any critically ill patient

• multifactorial aetiology,

- 1. reduced cystic artery perfusion
- 2. \uparrow bile viscosity 2° dehydration
- 3. bile stasis TPN, use of octreotide
- 4. antibiotic precipitation $eg Ca^{++}$ -salt of ceftriaxone
- may present as a tender RUQ mass, or as progressive jaundice with "sepsis"
- ultrasound may show an enlarged, oedematous gall-bladder, or may be normal
- ie. a normal gallbladder and biliary tree ultrasound *does not* exclude the diagnosis
- high false positive rate for HIDA scans in ICU patients

• management is,

- 1. cholecystectomy
- 2. cholecystotomy, or
- 3. radiological tube drainage

- adverse renal, respiratory, and CVS effects

> 6 cm diameter

Intestinal Pseudo-Obstruction

- · cause of acute abdominal distension and acute abdomen in the ICU patient
- ${\boldsymbol{\cdot}}$? due to alteration in neuromuscular function of the bowel

Usual Presentation

- a. dilated loops of large *and* small bowel
- b. absence of signs of a site of mechanical obstruction
- c. may become grossly distended

• Complications

- a. splinting of diaphragms, respiratory embarrassment
- b. raised intra-abdominal pressure
- c. "toxic megacolon" and rupture
- d. septicaemia
- e. pain and distension
- f. intolerance of enteral feed

Aetiology *Multifactorial

a.	autonomic neuropathy	- any cause
b.	drugs	 opiates β-agonists, antihypertensives anticholinergics, tricyclics, phenothiazines purgatives, barium, aluminium iron supplements
c.	electrolyte abnormalities	- hypo-K ⁺ / Ca ⁺⁺ / HPO ₄ ⁼
d.	neuromuscular	Parkinson's diseasemyotonic dystrophyM.S.
e.	endocrinopathies	 myxoedema / hypothyroidism diabetes mellitus porphyria hypoparathyroidism amyloidosis
f.	autoimmune	 SLE, polyarteritis nodosa scleroderma, dermatomyositis
		1 1 1 1 0

g. ? IPPV causing reduced splanchnic blood flow

■ <u>Treatment</u>

a.	reverse potential causes	- eg. cease narcotics
b.	colonoscopy & decompression	 may need to be repeated daily ± flatus tube
c.	operative decompression	- caecostomy
d.	prokinetic agents	? cisapride

Differential Diagnosis

- a. adynamic / paralytic ileus
- b. toxic megacolon
- c. bowel obstruction- hernia, volvulus, adhesion, tumour
- d. ischaemic bowel

Adynamic Ileus

Def'n: any non-surgical impairment of the distal propulsion of intestinal contents

- traditional belief that all abdominal operations are followed by ~ 48 hr period of ileus
- SI is largely *unaffected* by laparotomy and may accommodate enteral feeding almost immediately
- · however, other factors delaying function
 - a. gastric emptying impaired ~ 24 hrs
 - b. colonic activity impaired ~ 48 hrs
- therefore, postoperative ileus is predominantly a *colonic* problem
- with prolonged ileus, mechanical obstruction (faecal impaction) must be excluded
- propulsion may be aided by,
 - a. cisapride 5-10 mg q8h
 - b. metoclopramide 10 mg q6h
 - c. domperidone 10 mg q8h

Metoclopramide

- structurally related to procainamide, but *no* LA activity
 - a. CNS
 - effects due to *dopaminergic blockade* \rightarrow
 - i. antiemesis
 - ii. hyperprolactinaemia
- galactorrhoea, breast tenderness
- menstrual irregularity in females
- used to promote milk production post-partum
- *no* antipsychotic activity
- may produce significant *extrapyramidal* symptoms Rx benztropine, diphenhydramine
- b. GIT
 - \uparrow smooth muscle activity, mainly stomach & proximal SI
 - \uparrow LOS tone & \downarrow pyloric tone
 - *no effect* on colonic activity or gastric acid secretion
 - mechanism of action not fully understood,
 - i. predominantly DA₂ receptor blockade
 - ii. ? stimulates release of ACh as 2° agonist
 - GIT effects blocked by *atropine*
- Domperidone
- both *prokinetic* and *antiemetic*
- also a dopaminergic blocking agent
- effects on GIT \rightarrow
 - a. same spectrum of activity cf. metoclopramide
 - but *not* blocked by atropine
 - efficacy for gastric motility equivalent
 - b. doesn't cross the BBB, :: CNS effects are supposedly less
 - c. less antiemetic activity

• <u>Cisapride</u>

- effects on GIT \equiv metoclopramide | domperidone
- however, also increases colonic motility
- mechanism poorly understood
- like metoclopramide activity is blocked by atropine, \therefore partially due to myenteric ACh

Body Fluids							
	Vol/day	Na ⁺	\mathbf{K}^+	Cl	HCO ₃	IVT	+ KCl
Plasma		136-144	3.5-5.0	95-110	25		
Gastric	1-51	30-120	10-15	140	pH ~ 1.5	N.Sal	~20-50
Bile	< 1000ml	145	5	100	35-70	Hart	20
Pancreas	< 1000ml	140	5	60	90	Hart	20
SI	1-31	120	5-10	105	25	Hart	20
LI	100-500ml	< 80	20-40	< 50	< 45	Hart	20-50
Sweat	~ 400ml	50	5-10	45		D_4 W-N/5 N/2 Sal.	20

Body Fluids

Diarrhoea

Def'n: ³ 3 watery bowel actions per day

- a common problem, occurring in ~ 25% of enterally fed patients
- often independent of feeding regimen, often culture/toxin negative
- common aetiology of diarrhoea in ICU patients,
 - a. part of primary illness
 - b. drug induced
 - c. recovery from ileus
 - d. acquired hypoalbuminaemic "protein losing enteropathy"
 - e. change in bowel flora bacterial overgrowth
 - f. hypo or hyper-osmotic feeds

Diarrhoea - Classification

a.

infe	infective				
i.	viral	 rotavirus, enteroviruses Hepatitis A & B, CMV 			
ii.	bacterial <i>toxins</i>	 enterotoxigenic E. coli Klebsiella sp. Enterobacter Staph. aureus Bacillus cereus Vibrio cholerae Cl. perfringens Cl. difficile (pseudomembranous colitis) Cl. botulinum 			
iii.	bacterial <i>invasion</i>	 enteropathogenic <i>E. coli</i> <i>Campylobacter sp.</i> <i>Vibrio parahaemolyticus</i> Salmonella Shigella Staphylococci 			
iv.	fungal	- Candidiasis			
v.	protozoal	- Giardiasis - Entamoeba histolyticum			

b.	non-infective					
	i.	drugs	 antibiotics Mylanta and other antacids osmotic agents, cathartics cholinergics antimetabolites chemotherapy common non-specific side effect 			
	ii.	bowel disease	 diverticulitis ulcerative colitis Crohn's disease enterocolic fistula ischaemic colitis pelvic abscess villous adenoma carcinoma faecal impaction + overflow incontinence 			
	iii.	malabsorption	 lactose intolerance hypoalbuminaemia (acquired "protein losing enteropathy") tropical sprue pancreatic insufficiency enteral feeds 			
	iv.	post-GIT surgery	 short bowel blind loop post-gastrectomy recovery from paralytic ileus, or obstruction 			
	v.	endocrine / metabolic	 thyrotoxicosis diabetes hypoparathyroidism carcinoid hypoadrenalism autonomic neuropathy heatstroke 			

• Causes of Antibiotic-Induced Diarrhoea

a.	direct irritation, decreased tr	ansit time
b.	altered microflora	 decreased anaerobes increased gram (-)'ves
c.	resistant organisms	 Candidiasis Staphylcoccal overgrowth
d.	pseudomembranous colitis	- Cl. difficile

Diagnosis

a.	history	- medical/surgical problems, drugs
b.	examination	fluid status, nature of feedingabdominal signs, PR, sigmoidoscopy
c.	serum electrolyte	s and albumin

d.	feces for microbiology	- M,C & S
		- ova & paracytes
		- <i>Cl. difficile</i> toxin

- AXR - erect and supine e.
- f. sigmoidoscopy / colonoscopy

Short Bowel Syndrome

- SI resection,
 - \leq 50% is usually tolerated without impairment a.
 - b. \geq 75% usually results in malabsorption of nutrients
 - with remaining bowel 15-20% (60-80 cm), refeeding should be progressive, with a c. view to attaining a normal dietary intake
- · clinical sequelae & management,
 - 1. diarrhoea - loperamide, codeine, H2-blockers, cholestyramine, octreotide
 - 2. malabsorption
 - calcium salts, 1,25(OH)₂-D₃ • calcium
 - magnesium, zinc, other trace elements
 - folate, B_{12} , iron
 - fat soluble vitamins
 - nephrolithiasis / hyperoxaluria- cholestyramine 3.
 - hyperoxaluria $2^{\circ} \uparrow$ colonic absorption with extensive ileal loss
 - gastric acid hypersecretion - H₂-blockers, omeprazole, octreotide, ketanserin 4.
 - peptic ulceration
 - diarrhoea
 - 5. metabolic acidosis
 - SI bacterial overgrowth
 - d-lactic acidosis - metronidazole, vancomycin \rightarrow
 - HCO₃ losing diarrhoea

- sodium citrate / acetate
- gall stones 6.
 - \downarrow bile salt pool & \uparrow lithogenicity of bile

UPPER GASTROINTESTINAL HAEMORRHAGE

Aetiology

- 1. oesophageal
 - i. varices
 - ii. Mallory-Weiss syndrome
 - iii. oesophagitis
- 2. gastric & duodenal
 - i. peptic ulceration / acute stress ulceration
 - ii. gastritis
 - iii. hiatus hernia
 - iv. tumours benign, malignant
 - v. AV malformation, telangectasia
- 3. aorto-enteric fistula
- 4. coagulation disorders

Investigation

- 1. laboratory investigation
 - i. FBE/Coags [Hb], platelets, INR/APTT
 - ii. EC&U, LFT, CaP, BSL, Mg
 - *urea:creat. ratio* > 100 in 87% with upper GI bleeding < 100 in 95% with lower GI bleeding
- 2. endoscopy
 - potential bleeding site identified ~ 90%
 - multiple potential bleeding sites ~ 33%
 - performed within 12 hrs, active bleeding ~ 45%

3. contrast studies

- less sensitive / specific cf. endoscopy
- Gastrograffin / barium swallow will only detect bleeding site in ~ 50%
- 4. angiography
 - may be of value with continued bleeding > 0.5-2 ml/min

Management

- 1. ABC / resuscitation \rightarrow priority
- 2. **85%** will stop bleeding *spontaneously*
- 3. specific management per lesion

Stress Ulceration

- distinguish stress erosions (75-100%), stress ulcers and stress haemorrhage (~ 5%)
- stress ulcers occur within minutes to hours \rightarrow sign of *splanchnic ischaemia*
- incidence in the 1970's,

a.	erosions	~ 75-100%	

- b. ulcers ~ 50%
- c. macroscopic bleeding $\sim 25\%$
- d. serious bleed ~ 5% \rightarrow ~ 50-70% mortality
- e. perforation rare
- *NB*: markedly reduced with antacids / H_2 blockers \rightarrow universal use

• overt bleeding occurred with,

a.	placebo	~ 15%
b.	antacids	~ 3.3%

c. H_2 blockers ~ 2.7%

• the incidence in the 1980's,

a.	erosions	~ 40-50%			
b.	ulcers	~ 5%	∝	10x	\downarrow incidence
c.	macroscopic bleeding	~ 5%	\propto	5x	\downarrow incidence

d. serious bleed \rightarrow rare but still a *high mortality*

NB: Reusser *et al.* CCM 1990

RCT of endoscopically detected stress ulceration in neurosurgical patients (n = 40) prophylaxis and non-prophylaxis groups \rightarrow *no significant difference* therefore queried whether antacids / H₂ blockers are still necessary !!

Risk Factors

- a. previous ulcer disease
- b. coagulopathy
- c. mechanical ventilation > 48 hrs
- d. previous factors \rightarrow now questioned
 - i. head injury, multiple trauma
 - ii. severe burns
 - iii. sepsis / SIRS
 - iv. hypotension, hypovolaemia
 - v. renal failure
 - vi. hepatic failure

• Prophylaxis

- proven measures,
 - a. gastric pH control \rightarrow antacids > H₂-blockers
 - b. cytoprotective drugs \rightarrow sucralfate \equiv^{T} antacids / PG-analogues
 - c. nutrition \rightarrow enteral > TPN
- the reduced incidence is also probably due to,
 - a. better ICU management
 - b. better O_2 & fluid management
 - c. early NG feeding
 - d. improved analgesia
 - e. R_x of coagulopathy
 - f. ? dopamine \rightarrow improved gut blood flow

Pathology

- the site is usually the *fundus* and body
- rarely in the antrum, duodenum, or oesophagus
 - 1. mucosal ulceration
 - superficial, eroding through to the muscularis mucosae only \rightarrow results in little bleeding & heals rapidly
 - 2. acute peptic ulceration
 - deep, through the muscular layer where the larger arteries reside \rightarrow greater bleeding and slower to heal
- damage to mucosal defences is caused by,
 - a. alcohol
 - b. aspirin, NSAID's
 - c. vasoconstrictors
 - d. steroids
- factors which increase the risk of haemorrhage,
 - a. aspirin, NSAID's
 - b. anticoagulants
 - c. dextrans
 - d. antibiotics \rightarrow vit K deficiency, platelet defect

- local defence mechanisms include,
 - a. the mucus barrier
 - b. surfactants & HCO_3^- secreted by mucosal cells
 - c. H^+ reabsorbed by the mucosa is neutralised by blood derived $HCO_3^$ and washed away by rich mucosal blood flow
- shock states result in,
 - a. mucosal ischaemia
 - TNF results in thrombosis within gastric mucosal vessels
 - sympathetic redistribution of blood flow away from the splanchnic bed
 - b. H^+ / pepsin / bile seep in and damage intracellular components
 - c. mucosal necrosis \rightarrow ulcer formation
- *pepsin* is still active unless pH > 7
 - 1. $pH \sim 5-7 \rightarrow pepsin still$ *dissolves*clot, and
 - 2. $pH < 5.4 \rightarrow pepsin prevents clot formation$
 - *NB:* but alkaline gastric contents are *not* necessary for prevention, and there is *no evidence* that hypersecretion *per se* is responsible for erosions
- *intracellular pH* is probably more important than intra-gastric pH
- prostaglandins result in,
 - a. \uparrow blood flow
 - b. ↑ mucus production, and ? mucus secretion
 - c. \downarrow ulcer incidence and promotion of healing

• *bile salt* disruption of the mucosal barrier occurs, and prevention of duodenal reflux is associated with a significant reduction in gastric ulceration

Acid/Pepsin Production <i>reduced</i> by	Mucosal Resistance <i>increased</i> by
enteral feedsprostaglandins	enteral feeds? prostaglandins
 antacids H₂ blockers 	• sucralfate

Prevention

c.

- a. treat stress factors \rightarrow improve gut O₂ delivery
 - normovolaemia, adequate O₂ / ventilation
 - maximise cardiac output & GIT perfusion pressure
- b. NG feeds ASAP
 - especially high risk groups head injury, major trauma, burns
 - prolonged IPPV
 - renal failure, hepatic failure
 - sepsis
 - sucralfate | H₂-blockers where NG aspiration of blood / "coffee grounds"
 - no NGT and "at risk"
 - previous peptic ulcer disease

- d. omeprazole
 - clinical bleed on H₂-blockers
 - endoscopically proven ulceration not healing with H₂-blockers

Treatment: Mild Bleed

- a. maximise coagulation status / remove precipitants
 - i. vit K
 - ii. stop heparin, NSAID's etc
 - iii. blood transfusion, FFP, platelets etc
 - iv. DDAVP for patients on aspirin, or with liver or renal failure
- b. antacids -pH > 3.5 (ideally > 7)
- c. sucralfate
- d. H₂-blockers
 - cimetidine, *ranitidine* and famotidine are *competitive* antagonists
 - 1 GI gram negative colonisation *does not* increase nosocomial pneumonia ??

e. *omeprazole*

- absorbed in SI, short plasma $t_{_{12B}}$ but effective for 24 hrs
- binds *irreversibly* to fundic parietal cell H⁺/K⁺-ATPase
 - $20 \text{ mg} \rightarrow 65\%$ inhibition at 4-6 hrs

25% inhibition at 24 hrs

- + 40 mg \rightarrow 100% inhibition of mean 24 hr gastric acid secretion
- results in hypergastrinaemia & potential enterochromafin hyperplasia
- f. prostaglandins PGE_{1-2-3}
- g. aminocaproic acid 5g stat & 1 g/hr for 24 hrs IV
 - ~ 20-30% reduction in rebleeding
 - ~ 40% reduction in mortality

h. *endoscopy* for assessment

NB: if major bleed then proceed with,

- 1. octreotide infusion $\sim 100 \ \mu g$ stat, then 12.5-25 $\ \mu g/hr$
 - some data now to say 50 μ g stat, then 50 μ g/hr equally effective to *sclerotherapy*
- 2. pitressin infusion *questionable benefit
- 3. endoscopic haemostasis laser coagulation, electrocoagulation *questionable benefit in stress ulceration
- 4. surgery
 - partial or total gastrectomy in the setting of uncontrolled GI haemorrhage

 \rightarrow mortality ~ 70%

• Cushing's Ulcer

• lesions in the oesophagus, stomach & duodenum, initially described by Cushing in association with *coma* from any cause

- now accepted as acute peptic ulceration in association with severe *head injury* and raised ICP
- results from increased vagally mediated gastric acid secretion & responds to H2-blockade

• Curling's Ulcer

- circumscribed (≤ 2 cm) duodenal ulcer in patients with $\geq 35\%$ *burns*
- also results from gastric acid hypersecretion & responds to H₂-blockade

Ulcer Prophylaxis

- early 1970's $R_x \rightarrow$ hourly gastric pH, plus mylanta 30 ml/hr to keep pH > 5
- this resulted in a large reduction in GIT bleeding
- problems with high dose Mylanta included,
 - 1. diarrhoea / constipation
 - 2. electrolyte abnormalities \rightarrow hypo-PO₄⁼ hyper-Mg⁺⁺ / hyper-Al⁻
 - 3. \downarrow drug absorption
 - 4. bowel obstruction
- following the introduction of H_2 -blockers, $R_X \rightarrow$
 - 1. hourly gastric pH
 - 2. if pH < 5 add antacids

• problems of H₂-blockers (*cimetidine*),

- 1. CNS side effects
- 2. drug interactions $-P_{450}$ inhibition
- 3. thrombocytopaenia, leukopaenia
- 4. bradycardia, hypotension
- 5. jaundice, renal failure
- 6. GIT side effects
- 7. rash / fever
- 8. endocrine effects
- NB: cimetidine >> ranitidine, famotidine
- very few proper studies comparing the efficacy of *antacids* vs H_2 blockers
- faecal occult blood test useless,
 - a. cimetidine \rightarrow false (+)'ve
 - b. antacids \rightarrow false (-)'ve

• problems of antacids and H₂ blockers,

- 1. diarrhoea
- 2. drug interactions
- 3. microaspiration ? gram (-)'ve pneumonia
- 4. sepsis

■ Sucralfate

- Sucrose-Al(OH₃)-sulphate, with added $H^+ \rightarrow$ paste formation which results in,
 - a. coating of cells
 - b. \downarrow *back-diffusion* of H⁺
 - c. \uparrow *prostaglandin* secretion
- therefore, must avoid simultaneous use of antacids and H_2 -blockers
- problems of Sucralfate include,
 - 1. blockage of NG tube
 - 2. nausea, vomiting, constipation rarely obstruction with high dose
 - 3. hypo-PO₄⁻ and increase Al⁻
 - 4. prevents drug absorption
 - 5. overt bleeding same incidence as antacids and H₂-blockers
 - 6. nosocomial pneumonia $cf H_2$ blockers
 - i. German \rightarrow 10% vs 34%
 - ii. Boston \rightarrow 9% vs 23%
 - *NB: enteral feeds* partially buffer gastric acid, the increased energy supply to the mucosa improves defences, ∴ sucralfate is not necessary

• <u>Cook et al.</u> JAMA 1996

• *metanalysis* of 63 PRCT's assessing efficacy of sucralfate, H_2 -antagonists and antacids in the *prevention* of,

- 1. overt bleeding
 - H₂-antagonists \rightarrow significant \downarrow cf. placebo | no therapy | antacids
 - sucralfate \rightarrow significant \downarrow cf. no therapy
 - *no evidence* for differential efficacy of sucralfate versus antacids | H₂-antagonists
- 2. clinically significant bleeding
 - H_2 -antagonists \rightarrow significant \downarrow cf. placebo | no therapy
 - sucralfate no difference from antacids | H₂-antagonists
- 3. pneumonia *diagnostic criteria variable & suspect
 - sucralfate was associated with a *trend* toward lower incidence cf. H₂-antagonists
- 4. mortality
 - sucralfate was associated with reduced mortality cf. antacids | H₂-antagonists
 - OR = 0.73 (CI: 0.54-0.97)

Peptic Ulceration

Duodenal Ulceration

- 95% occur in 1st part
- chronic and recurrent disease
- approximately 2x the normal *parietal cell* mass & secrete ≤ 40 mmol/hr of H⁺
- seen with increased frequency in,
 - a. smoking
 - b. NSAID use
 - c. chronic renal failure / renal transplantation
 - d. alcoholic cirrhosis
 - e. hyperparathyroidism
 - f. COPD

• *Helicobacter pylori* (GN spiral bacterium) produces a *urease*, which splits urea producing *ammonia* which neutralises H^+ in the stomach, blocking the negative feedback on the antral production of *gastrin*

• colonisation has been reported in up to 100% of DU patients

- all H₂-blocking agents are equally efficacious,
 - a. 75% healed at 4 weeks
 - b. 90% at 8 weeks
 - c. high 12 month recurrence rate \rightarrow ~ 33% without symptoms
 - d. .: all should receive 12 months maintenance therapy 150 mg ranitidine nocte

• omeprazole 20 mg/day is efficacious in 5-10% of DU patients not responsive to H₂-blockers

- if not healed at 8 weeks, then 2-4 weeks of omeprazole 40 mg/day
- while more efficacious, omeprazole induced *hypergastrinaemia* results in
 - 1. hypertrophy of enterochromafin-like cells
 - 2. carcinoid tumours in animals
- levels of gastrin are generally less than those found in *pernicious anaemia*
- however, therapy is generally limited to 4-8 weeks, followed by maintenance ranitidine
- *pirenzipine* is a selective M_1 -antagonist $\rightarrow \downarrow$ acid secretion ~ 50-60%
- minimal anticholinergic side-effects (blurred vision, dry mouth, constipation, urinary retention)
- equally effective to H_2 -blockers in healing, but slower resolution of ulcer pain
- sucralfate shows similar rates of ulcer healing to H2-blockers

- colloidal bismuth subcitrate promotes healing as a cytoprotective agent, cf sucralfate
- also inhibits *H. pylori* and has a lesser relapse rate cf. H_2 -blockers & sucralfate
- surgery is indicate for,
 - 1. patients > 60 years of age
 - 2. bleeding ulcer not controlled by medical therapy
 - *NB*: truncal vagotomy & oversew of ulcer \pm pyloroplasty

• Gastric Ulceration

- peak incidence ~ 60 years, cf. DU at 40-50 years
- requires endoscopy & *biopsy* to exclude carcinoma
- other therapy is cf. DU

Oesophageal Varices

• systemic / splanchnic anastomoses occur at,

- 1. gastro-oesophageal junction
- 2. retroperitoneal space, between kidneys & spleen
- 3. mesenteric / gonadal veins
- 4. diaphragm
- 5. umbilicus
- 6. rectum
- portal venous pressure,
 - a. normal ~ 5-10 mmHg
 b. *portal hypertension* > 12 mmHg
 - c. bleeding varices ~ 12-40 mmHg
- of patients with *cirrhosis*,
 - a. 60% develop oesophageal varices
 - b. 66% of these bleed $\rightarrow \sim 40\%$ of cirrhotics develop bleeding varices

<u>Poor Prognostic Factors</u>

a.	severity of liver disease	≥ Child's grade C - ascites, encephalopathy
b.	severity of haemorrhage	≥ 2000 ml, or $\ge 5^{U}$ transfusion - continuing / recurrent haemorrhage
c.	age > 60	
d.	associated disease - IH	ID, respiratory or renal disease - coagulopathy - malignancy

Treatment Aims

- 1. resuscitation
- 2. control of haemorrhage
- 3. prevention of encephalopathy
- 4. correction of complications

Therapy Options

a. endoscopic *variceal sclerosis*

cf.

- R_x of choice for acute haemorrhage and control of rebleeding
- greater efficacy ~ **80-90%** *control* of haemorrhage
 - cf. $\sim 60\%$ for balloon tamponade
- better survival ~ 84% at 6 months
 - ~ 45% for balloon tamponade
- gastric varices also regress following eradication of oesophageal varices
- *prophylactic* sclerotherapy, in those who have not bled,

is of no value and is associated with increased mortality

- complications
 retrosternal pain, strictures, dysphagia
 fever, bacteraemia, mediastinitis, empyema
 - aspiration, pneumonia, ARDS

b. variceal banding

• some suggest more effective than sclerotherapy, ∴ procedure of choice if experienced operator

c. Vasopressin - 0.2-0.8 U/min

- reduces portal pressure and temporary control of bleeding
- efficacy $\rightarrow \equiv^{T}$ placebo ~ 30-50% controlled
- ± GTN for systemic effects
 ~ 20% side effects, 3% mortality
 hypertension, coronary & bowel ischaemia

- diarrhoea, colic

d. Somatostatin - 250-500 µg/hr

- controlled trial vs vasopressin showed *more effective* & less complications Jenkins *et al.* BMJ 1985
- no trials with *octreotide* (12.5-25 μ g/hr) but probably equally effective
- e. *balloon tamponade* ~ 80-90% control of haemorrhage

\rightarrow but **50%** *rebleed*

- · reserved for acute haemorrhage not controlled by sclerotherapy
- i. Linton-Nachlas single gastric lumen
- ii. Sengstaken-Blakemore oesophageal & gastric balloons, gastric suction
- iii. *Minnesota* 4 lumens, 2 balloons, gastric & oesophageal suction
 - intubate if required, tube may be inserted nasally or orally to 60 cm
 - inflate gastric balloon with 250-500 ml of air & apply traction (≤ 1 kg)
 - seldom necessary to inflate oesophageal balloon if gastric correctly placed
 - continuously aspirate stomach to assess bleeding control
 - if required, inflate oesophageal balloon with air to a pressure $\leq 40 \text{ mmHg}$
 - check position on CXR
- f. TIPS transjugular intrahepatic porta-systemic shunt
 - successful in reducing portal presssure \rightarrow <12 mmHg
 - · likely to become procedure of choice, irrespective of patient's Child's classification

porta-systemic shunt g.

~ 90% control

- $\sim 20-40\%$ mortality
- 4 RCT's showing PSS reduces rebleeding, but no decrease long-term mortality
- high incidence *encephalopathy*
- distal / selective shunts h. - spleno-renal (Warren)
 - effectively divides the splanchnic circulation into portomesenteric and gastrosplenic
 - incidence of post-shunt encephalopathy is greatly reduced
 - does not prevent later liver transplantation
 - no difference in mortality cf central shunts •
- transhepatic embolisation i.
- j. oesophageal transection
- k. orthoptic liver transplantation

Current Recommendations

- resuscitate 1.
- 2. early endoscopy, if ongoing bleeding, then
 - Minnesota tube ~ 150-200 ml air in gastric balloon i. ~ 0.75-1.0 kg traction \pm 30-40 mmHg in oesophageal balloon variceal sclerosant \pm variceal banding ii. octreotide infusion
- 3.
- 4. TIPS
- β-blockade in *contraindicated* in the acutely bleeding patient
- however, does reduce portal pressure and rebleeding once bleeding is controlled

HEPATIC DISORDERS

Functional Anatomy

i.

1.	hepatic lobule	- central hepatic venule sinusoids peripheral portal triad
		- traditional unit

2. *hepatic acinus*

- zone 1 portal vein & hepatic artery supplying sinusoids
- ii. zone 2 follows sequentially
- iii. zone 3 drains to hepatic venule
- arrangement produces gradient of all nutrients, etc from zone 1 to 3
- zone 3 is most susceptible to *hypoxic injury*
- 3. blood flow ~ 1500 ml/min

i.	hepatic artery	$\sim 33\%$ of flow	&	~ 60% of DO_2
ii.	portal vein	~ 66% of flow	&	~ 40% of DO ₂

Liver Functions

bile production ~ 500 ml/day secreted
 → - fat digestion & excretion of drugs, toxins and bilirubin
 - bile salts, lecithen, cholesterol, bilirubin & electrolytes

i. bile salts

- Na⁺/K⁺-salts of cholic & chenodeoxycholic acids
- ~ 95% reabsorbed in terminal ileum
- daily synthesis ~ 0.2-0.4g of total pool of ~ 3.5g
- absence results in ~ 25% fat malabsorption & ADEK deficiency

ii. bilirubin

- ~ 7.5g of Hb are catabolised per day \rightarrow 250 mg (440µmol)/day
- ~ 80% old RBCs, remainder from young RBCs, myoglobin, enzymes
- liver capacity ~ 15g Hb/day
- conjugated in microsomes in 2-step process
 - normal excretion \rightarrow ~85% diglucuronide / 15% glucuronide
 - energy dependent and *rate limiting* step

2. protein synthesis

- albumin, some globulins
- coagulation & fibrinolytic factors
- prekallikrein, kininogen
- serum proenzymes / enzymes
- carrier proteins
 - *acute phase reactants* C-reactive protein, complement, coagulation
 - haptoglobins, plasminogen
 - α_1 -antitrypsin, α_2 -macroglobulin, caeruloplasmin

CHO and intermediary metabolism 3.

i.	amino acids	- protein synthesis
		- gluconeogenesis
		- transamination
ii.	glucose	- production and storage
		- conversion to fat, AA's
		- glucuronidation
		- energy source
		- NADPH production
iii.	fat	- metabolism
		- lipoprotein for transport
		- cholesterol, ketones
hor	mone synthesis &	& metabolism
hiat	ransformation	

5. biotransformation

- i. ammonia & urea cycle
- ii. drugs & toxins

6. storage

4.

- i. glycogen ~ 80-100g
- ii. fat \leq hepatic weight
- Fe⁺⁺, B₁₂, folate, Cu iii.
- 7. immune defence - against agents entering the portal circulation

Post-operative Jaundice Aetiology

increased bilirubin load a.

- i. haemolysis
- ii. haematoma - reabsorption
- transfusion - old cells, incompatibility, sepsis iii.

hepatocellular dysfunction b.

i. congenital

•

- Gilbert's disease - *ligandin* deficiency \downarrow uptake \rightarrow
 - low or absent glucuronyl transferase
- Crigler-Najjar Type I & II • Rotor's & Dubin-Johnson
- low biliary excretion
- acquired **see hepatitis* ii.
 - hypoxia/ischaemia, infective, sepsis, drugs, trauma, etc • hepatitis
 - cholestasis - hypoxia/ischaemia, drug-induced, TPN, pregnancy •
- obstructive c.
 - i. bile duct trauma, oedema, ligation
 - ii. cholangitis
 - cholelithiasis iii.

Hyperbilirubinaemia

Predominantly Unconjugated

1. overproduction

- i. haemolysis
- ii. reabsorption of haematoma
- iii. ineffective erythropoeisis

2. decreased hepatic *uptake*

- i. sepsis
- ii. prolonged fasting
- iii. RV failure
- iv. drugs rifampicin, probenecid

3. decreased *conjugation*

- i. hepatocellular disease hepatitis, cirrhosis
- ii. sepsis
- iii. drugs chloramphenicol
- iv. inherited glucuronyl transferase deficiency
 - Gilbert's syndrome actually *ligandin* deficiency
 - Crigler-Najjar types II & I

Predominantly Conjugated

1. impaired hepatic excretion i. sepsis ii. post-operative state hepatocellular disease iii. • hepatitis - viral, ischaemic, drug-induced cirrhosis drug-induced cholestasis - OCP, methyltestosterone iv. inherited disorders - Dubin-Johnson, Rotor syndrome v. - benign familial recurrent cholestasis vi. cholestasis of pregnancy 2. biliary obstruction i. biliary cirrhosis - primary | secondary ii. sclerosing cholangitis - stone, tumour, stricture iii. extrahepatic obstruction

Intrahepatic Cholestasis

Def'n: severe form

- ~ "ICU liver" mild form ~ "benign postoperative intrahepatic cholestasis"
- common after major, abdominal, or emergency surgery
- especially if associated with *hypotension & hypoxia*

Pathogenesis

- liver hypoxia / ischaemia a.
- b. sepsis
- inflammatory mediators c. - endotoxin, TNF, IL-1, free radicals
- ↑ bilirubin load d. - haematoma, transfusion
- TPN induced hepatic steatosis e.
- f. \downarrow renal excretion
- drugs g.
 - flucloxacillin, rifampicin, erythromycin estolate
 - chlorpromazine, phenytoin, carbamazepine, valproate
 - steroids. OCP •

• *hyperbilirubinaemia* ($\geq 100 \,\mu$ mol/l) disproportionate to enzyme levels, common at 2-14th day

- usually > 80% *conjugated* and may rise as high as $600 \mu mol/l$
- mild ALP elevation 3-10x increase "obstructive jaundice" pattern (ie. biliary stasis) \rightarrow
- this is often delayed 5-10 days after the rise in bilirubin
- mild increase in AST/ALT
- prolonged form also has severe *hypoalbuminaemia* \rightarrow INR \geq 1.4
- associated reduction in protein synthesis, reduced AA clearance, & low redox potential
- differential diagnosis,
 - 1. acalculous cholecystitis
 - 2. calculous colecystitis
 - 3. hepatic abscess
 - 4. drug induced cholestasis

Liver Function Tests

- 1. albumin
 - spectophotometric absorption of bromocresol green at pH = 4.2
 - BCG also bound to acute phase reactants, : Alb actefactually elevated (up to 10g/l)
 - ~ 50% resides in intravascular space
- 2. globulins
 - usually not measured, but calculated from total protein albumin
 - increases either,
 - i. polyclonal cirrhosis, infection, autoimmune diseases
 - ii. monoclonal myeloma, lymphomas
 - · decreased with malignancy, malnutrition, plasmapheresis
- 3. gamma-glutamyl transferase
 - resides in cells of the bile canaliculi, responsible for AA transport
 - also present in the pancreas and brush border of renal tubules
 - *nonspecific* indicator of hepatic dysfunction
 - levels usually highest with *obstructive* disorders
 - most common causes for elevation chronic ethanol abuse

- antieplieptic medication

- 4. alkaline phosphatase
 - originates from liver, bone, placenta, and intestine (? brain)
 - occasionally from malignancies indistinguishable from placental isoenzyme
 - normal plasma ALP ~ 80% liver / 20% GIT
 - in children/adolescents, major source is growing bone (osteoblasts)
 - resides on luminal surface of bile canalicular cells
 - elevated in obstructive/cholestatic disorders
 - however ~ 20% of patients with a cholestatic disorder \rightarrow < 250 IU/l
 - i. hepatic cholestatic disorders
 - ii. bone physiological
 - Paget's disease
 - recent fracture(s)
 - carcinoma, primary / secondary
 - hyperparathyroidism, 1°, 2°, 3°
 - osteomalacia, 2° calcium/phosphorus deficiency
 - \rightarrow Vit.D, malabsorption, RTA
 - iii. placenta 3rd trimester pregnancy

5. lactic acid dehydrogenase

•	exists as 5 isoenzymes	- LDH ₁₋₂	\rightarrow	haemolysis, myocardial damage
		- LDH ₃₋₄₋₅	\rightarrow	hepatic, skeletal muscle

- also produced by lung (LDH_{2,3}) and kidney (LDH_{1,2}) but these are rare causes > 1 in
 - myocardial infarction
 - renal infarction
 - haemolysis

6. transaminases

i. aspartate amino-transferase

normal LDH₁:LDH₂ < 1 \rightarrow

- AST, cytosolic & mitochondrial - also called SGOT
- liver, kidney, cardiac & skeletal muscle
- ii. alanine amino-transferase
 - ALT, cytosolic - also called SGPT
 - predominantly liver, some skeletal m., brain & pancreas
- both elevated in hepatocellular disorders *see hepatitis
- degree of elevation *does not* correlate well with the degree of liver damage ie. they have no predictive value \rightarrow
 - infective / toxic hepatitis \rightarrow \uparrow lasting weeks
 - ↑ AST:ALT ~ 1.5:1 \rightarrow
- \uparrow lasting days ischaemic hepatitis \rightarrow
 - ↑ AST:ALT ~ 1.5:1 \rightarrow
- \uparrow AST:ALT > 2:1 • alcoholic hepatitis \rightarrow (rarely > 500 IU/l)

false lowering of the AST may occur with azotaemia

- 7. prothrombin
- 8. < 30 mmol/l normal ammonia
 - absolute elevation correlates poorly with encephalopathy, but may be used as a guide to therapy response in an individual patient

9. urobilinogen

- formed by intestinal bacteria acting on conjugated bilirubin
- 80% excreted in feces, 20% reabsorbed in terminal ileum
- 90% of reabsorbed urobilinogen re-excreted in bile, $10\% \rightarrow$ urine (~ 2%)
- complete absence in urine suggests absence of intestinal bilirubin & obstruction
- ↑ urinary urobilinogen - liver in unable to excrete absorbed urobilinogen
 - increased excretion of bilirubin, haemolysis

10. urinary bilirubin

- normally absent
- excretion occurs in conjugated hyperbilirubinaemia

Liver Function Tests			
Test	Hepatocellular injury	Obstruction	
Aspartate transaminase ¹ AST / SGOT Alanine transaminase ALT / SGPT	\uparrow to $\uparrow\uparrow\uparrow$	Ŷ	
Alkaline Phosphatase ² ALP	\uparrow	$\uparrow \uparrow \uparrow$	
Gamma-glutamyl transpeptidase GGT	N to $\uparrow\uparrow\uparrow$	$\uparrow \uparrow \uparrow$	
5-Nucleotidase	N to ↑	\uparrow to $\uparrow\uparrow\uparrow$	
Albumin	\downarrow to $\downarrow\downarrow\downarrow\downarrow$	Ν	
Prothrombin time	\uparrow to $\uparrow\uparrow\uparrow^3$	N to \uparrow^4	
Bilirubin	N to $\uparrow\uparrow\uparrow$	N to $\uparrow\uparrow\uparrow$	
 AST also in heart, rbc's, muscle ALT is more specific for liver, enzyme rise reflects extent & acuteness of cellular injury, but <i>does not</i> correlate with <i>prognosis</i> ariging of ALP include: liver hone intesting placente & lung 			
 ² origins of ALP include: liver, bone, intestine, placenta & lung ³ increase does have worse <i>prognosis</i> shorter half-life & more rapid change cf. albumin ⁴ correctable with vitamin K 			

• Sequelae of Liver Dysfunction

a.	hypoalbuminaemia	- low COP, increased tendency to <i>oedema</i> formation
b.	coagulopathy	 ↓ vit K dependent factors * may bleed or have thromboses
c.	septicaemia	- immune dysfunction
d.	toxaemia	- metabolites, bacteria, toxins
e.	amino-acid imbalance	- low branched-chain / high aromatic
f.	drugs	- altered pharmacodynamics & kinetics, $\uparrow t_{_{1\!2\!\beta}}$
g.	hyperammonia	- not cleared
h.	severe hypoglycaemia	- impaired glucose & AA metabolism
i.	citrate toxicity	 impaired metabolism with large volume transfusions especially the anhepatic phase of transplantation R_x CaCl₂

Hepatitis

1.	infective	Hepatitis A, B, C, Delta, E, NANBNCEBV, CMV, HSV, Coxsackie, Yellow fever
2.	drugs	
	i. cholestasis	 alcohol chlorpromazine, chloramphenicol, chlorpropamide tetracyclines, erythromycin, rifampicin oestrogens, OCP, androgens
	ii. hepatitis	$\begin{array}{rcl} & -\alpha \text{-methyl-dopa} & \rightarrow & 5\% & \text{abnormal LFT's} \\ & & 1\% & \text{hepatitis} \\ & 0.15\% & \text{CAH} \end{array}$ $\begin{array}{rcl} & - \text{ paracetamol, phenytoin, isoniazid, rifampicin} \\ & - \textbf{halothane}, \text{ enflurane, } \& ? \text{ isoflurane} \end{array}$
3.	toxins	 - CCl₄, vinyl chloride, chloroform - Amanita phalloides (mushroom)
4.	cardiovascular	
	i. ischaemic	- hypovolaemic shock, ischaemia
	ii. congestive	 - cor pulmonale, RV failure, CCF - Budd-Chiari syndrome
5.	metabolic	 alcohol parenteral nutrition Wilson's disease (hepatolenticular degeneration) Haemochromatosis α₁-antitrypsin deficiency
6.	autoimmune	 chronic active hepatitis drug induced vasculitis, SLE, UC, PN 1° biliary cirrhosis
7.	pregnancy	- acute fatty liver of pregnancy
8.	hyperthermia	

• Ischaemic Hepatitis

• centrilobular necrosis (acinar zone 3) secondary to liver ischaemia, hypotension, hypoxia, sepsis, MODS, pancreatitis, etc.

- a. mild to moderate hyperbilirubinaemia
- b. \uparrow liver enzymes \rightarrow ratio AST:ALT < 1.5:1
 - cf. ETOH hepatitis, AST:ALT > 2:1
 - often rapid rise to high levels (10x) followed by dramatic fall with recovery
- *NB*: DD_x viral hepatitis (Hepatitis A/B/C, CMV, EBV) drug induced hepatitis

Hepatitis C Infection

- positive stranded RNA virus of classified within the *Flaviviridae* family (heterogeneous group)
- the most widely used nomenclature comprises six major genetic groups and a number of recognised subtypes that are more closely related
- numbered from 1 and the subtypes a, b, and c in order of discovery
- possibility that different genotypes may respond differently to *interferon alfa*

Diagnosis

- no tests for HCV-Ag
- · diagnosed by HCV-Ab based immunoassay
- · HCV-IgM antibody doesn't differentiate persistent viraemia from an episode of resolved viraemia
- supplemental tests \rightarrow recombinant immunoblot assay
- · confirmatory tests are invariably positive in HCV-Ab positive patients with chronic hepatitis
 - a. serum ALT
 - b. HCV antibody tests
 - c. HCV RNA, genotypes, and HCV RNA concentrations
- · infection is usually monitored by serum ALT, but nonspecific
- young patients without evidence of cirrhosis have a generally indolent course of the infection
- with development of *cirrhosis* \rightarrow frequently complicated course
- older patients may present with complications of cirrhosis or *hepatocellular carcinoma*
- there is evidence that *alcohol* and HCV may synergistically aggravate hepatic injury
- there are *no vaccines* available
- · sexual transmission has been described but is a comparatively infrequent
- mother to infant transmission of HCV has been recorded but seems to be unusual
- transmission of HCV from infected surgeons to patients has been verified by molecular epidemiological evidence

Interferon Alfa

- 1. acute HCV
 - acute icteric HCV has become comparatively rare
 - HCV infection is clinically mild and *subclinical* disease is common
 - only 25% of cases are icteric, and the peak serum ALT activities are less than those in acute hepatitis A or B
 - the mean incubation period of HCV is 6-12 weeks
 - diagnosis in these cases requires confirmation by HCV RNA testing
 - severe or fulminant HCV is rare but may occur, especially in immunosuppressed
- 2. chronic HCV
 - i. advantages
 - inhibits HCV replication in some patients with chronic disease
 - sustained response in some patients
 - important component of combined antiviral treatment
 - can improve histological hepatitis
 - ii. disadvantages
 - given by injection
 - low sustained response rates in many patients with type 1 hepatitis and higher levels of viraemia
 - high relapse rates
 - side effects
 - neutralising antibodies in some patients
 - relative expense
- 3. *ribavirin* and combination antiviral therapy
- several therapeutic trials of interferon alfa for acute HCV have been completed

• most indicate that amelioration of the severity of the chronic hepatitis lesion or even a reduction in the rate of chronic disease is possible with at least *six months* of treatment

• require HCV confirmation and exclusion of other causes \rightarrow \uparrow ALT,

- a. obesity
- b. alcoholism, drug induced hepatotoxicity
- c. biliary tract disease
- d. *autoimmune hepatitis* *treated differently, : test autoantibodies
 - · dividing line between this and chronic HCV is not always clear
 - a high proportion of HCV patients have low titres of anti-Sm & ANA
- e. thyroid disease must be excluded \rightarrow T_{3/4}, TSH, and antithyroid antibodies
- f. inborn errors of metabolism

Side Effects of Interferon Alfa

- 1. early
 - i. flu-like illness, chills, fever, malaise, muscle aches, headache
 - ii. poor appetite
- 2. later common
 - i. weight loss
 - ii. increased need for sleep
 - iii. psychological side effects irritability, anxiety, depression
 - iv. hair loss
 - v. thrombocytopenia,leucopenia
- 3. unusual or severe
 - i. seizures
 - ii. acute psychosis
 - iii. bacterial infections
 - iv. autoimmune reactions
 - v. hyperthyroidism or hypothyroidism or transient thyroiditis
- 4. rare
 - i. proteinuria
 - ii. myocardiopathy
 - iii. rashes
 - iv. interstitial lung disease
 - v. retinal changes
 - vi. ototoxicity

Summary Points

- 1. the natural course of chronic HCV is not fully defined
- 2. a range of disease exists
 - from mild asymptomatic infection to serious disease with dire sequelae
- 3. assessment of viral load and genotype/serotype may help in predicting response
- 4. difficult to indicate the prognosis for younger patients with mild disease
 - they may need to be considered for treatment, so that the opportunity to avoid later disease is not forfeited
- 5. it is not yet clear whether patients who are more responsive to interferon have a better prognosis

HEPATIC FAILURE

- *Def'n: fulminant hepatic failure*, is a clinical syndrome resulting from massive hepatic necrosis, in an individual with previously normal liver function, characterised by,
 - 1. severe progressive *encephalopathy*
 - 2. *jaundice*, hepatic foetor, asterixis
 - 3. *hypotension*, tachycardia, oliguria
 - 4. coagulopathy, hypoglycaemia
 - 5. high mortality $\sim 80\%$ with grade 4 coma

• Classification King's

1.	hyperacute	- encephalopathy within 7 days of the onset of jaundice
2.	acute hepatic failure	- 8-28 days from jaundice to encephalopathy

3. subacute hepatic failure - 29-72 days from jaundice to encephalopathy

• Causes

a.	viral hepatitis*	 Hepatitis A, B, C, D, E CMV, EBV, HSV, ? HIV yellow fever virus, echovirus
b.	drugs	 paracetamol* anti-TB drugs, rifampicin, isoniazid MAOI, α-methyl dopa halothane ± enflurane
c.	chemicals	 - carbon tetrachloride, vinyl chloride - hydrocarbons, chloroform, phosphorus - mushroom poisoning (<i>Amanita</i>)
d.	acute steatosis syndromes	fatty liver of pregnancytetracyclinesReye's syndrome
e.	ischaemic liver necrosis	 Budd-Chiari, CCF hypoxia, shock, sepsis syndrome, MODS*
f.	massive infiltration	 lymphorecticular tumours acute leukaemia transplant rejection

NB: *commonest causes

note differences cf. chronic liver failure / cirrhosis later

• Acute-on-Chronic Liver Disease

- a. alcoholic cirrhosis
- b. primary biliary cirrhosis
- c. chronic active hepatitis
- d. chronic persistent hepatitis
- e. Wilson's disease
- f. haemochromatosis
- g. α_1 -antitrypsin deficiency

<u>Child's Classification</u> ¹ Severity of Chronic Liver Disease			
Class	А	В	С
albumin	> 35 g/l	> 30 g/l	< 30 g/l
• total bilirubin	< 35 µmol/l	35-60 µmol/l	$> 60 \ \mu mol/l$
• ascites	absent	controlled	uncontrolled
• encephalopathy	absent	absent	present
nutrition	good	fair	poor
surgical risk	5%	10%	50%
prothrombin time ²	+ 1 1-4 s	+ 2 4-6 s	+3 > 6 s
¹ Child <i>et al.</i> 1964 surgical cohort undergoing <i>portasystemic shunting</i>			unting
² Pugh <i>et al.</i> 1973 increased risk for <i>each</i> group, according to \uparrow PT			

Prognostic Factors

- 1. age
- 2. severity of 1° illness
- 3. underlying cause
- 4. complications
 - i. sepsis
 - ii. cerebral oedema
 - iii. renal failure
 - iv. ARDS
- 5. duration and severity of *coma*

• <u>Shellman</u> CCM 1988

1.	Child's classification	- severity
2.	mechanical ventilation	- respiratory failure
3.	high creatinine	- renal failure
4.	other significant factors	 coagulopathy hypo/hyper-Na⁺ sepsis

• Bihari, 1987, tissue hypoxia important

• Gazzard, 1975, causes of death,

a.	neurological (cerebral oedema)	~ 67%
b.	GIT haemorrhage	~ 13%

- c. haemodynamic (shock) ~ 8%
- d. respiratory failure
- e. renal failure

Organ System Involvement

Liver

a.	hypoalbuminaemia	- low COP, increased tendency to oedema formation
b.	coagulopathy	- \downarrow vit K dependent factors
c.	septicaemia	- immune dysfunction
d.	toxaemia	- metabolites, bacteria, toxins
e.	amino-acid imbalance	- low branched-chain / high aromatic
f.	drugs	- prolonged effect
g.	hyperammonia	- not cleared
h.	severe hypoglycaemia	- impaired glucose metabolism

<u>Central Nervous System</u>

Def'n: hepatic encephalopathy: a neuropsychiatric syndrome in a patient with advanced liver disease or porta-systemic shunting, characterised by,

- 1. early frontal area impairment (behaviour/motor/sensory) with *brainstem sparing*
- 2. followed by varying degrees of *coma*, with brainstem dysfunction resulting in
 - i. respiratory failure
 - ii. vasomotor imbalance vasodilatation, arrhythmias
- 3. Wernicke-Korsakoff syndrome
- 4. \uparrow muscle tone early
- 5. very high sensitivity to sedatives, narcotics, general anaesthetics
- 6. EEG slowing of rhythm
 - low frequency theta rhythm
 - high amplitude delta waves (deep coma)

7. asterixis

- flapping tremor usually found in grade 2-3 coma
- nonspecific finding, also seen in hypercarbia, hypokalaemia
 - severe CCF, polycythaemia
- 8. *cerebral oedema* often without clinical or CT signs
 - NB: CT is *unreliable* for diagnosis, ∴ require pressure monitoring
 - predominantly cytotoxic and responds to mannitol & STP
 - recent work suggests also a vasogenic component 2° endothelial dysfunction

Renal / Electrolytes

NB: hyponatraemia, hypokalaemia, hypophosphataemia, hypomagnesaemia & hypoglycaemia

a.	2° hyperaldosteronism	 hypokalaemia <i>hypo</i>natraemia cf. expected hypernatraemia
b.	renal failure	 hypotension / hypovolaemia, haemorrhage sepsis hepatorenal syndrome
c.	respiratory alkalosis	- central hyperventilation
d.	later metabolic alkalosis	- renal 2° aldosterone, vomiting

e. metabolic acidosis with hypoxia, hypoglycaemia

Respiratory System

- a. foetor hepaticus \propto *methylmercaptan* and present in all grades of coma
- b. central hyperventilation \rightarrow respiratory alkalosis
- c. vasodilatation / \downarrow HPV \rightarrow \uparrow *shunt fraction* & hypoxaemia / cyanosis
- d. aspiration, infection
- e. intra-abdominal hypertension due to ascites
 - i. \downarrow chest wall compliance
 - ii. \downarrow FRC / TV
 - iii. may result in pleural effusion
- f. central respiratory failure occurs late
- g. rarely *hepatopulmonary syndrome*

• Cardiovascular System

- a. initially high cardiac output with *peripheral vasodilatation*
- b. central *vasomotor depression* *low HR, CO and SVR
- c. arrhythmias hypo-K⁺, hypoxia - cerebral oedema

• Coagulation Disorders

- a. fall in production of coagulation factors
 - i. **VII** shortest $t_{1/2} \sim$
 - ii. vit K dependent factors II, VII, IX, X
 - iii. low *factor* V implies liver impairment *other* than vit K lack
 - iv. fibrinogen falls last $* \downarrow FI \rightarrow$ probably DIC
- b. also fall in coagulation inhibitors protein C & S
- c. **DIC** is usually secondary to sepsis, severe hypovolaemia and rarely to the liver failure

Gastrointestinal Tract

- a. gastric erosions ~ 50%
- b. oesophageal, gastric or duodenal haemorrhage
- c. bacterial breakdown of protein \rightarrow \uparrow encephalopathy
- d. enteric bacteria are (? maybe) a source of septicaemia
- e. spontaneous bacterial peritonitis

Reticuloendothelial

- a. pneumonia
- b. spontaneous gram negative septicaemia
- c. often associated with hypothermia, low WCC, hypodynamic circulation

Treatment Principles

- a. remove precipitating cause where possible
- b. manage / prevent infection
- c. manage / prevent respiratory failure
- d. normalise vasomotor instability
- e. maintain urine output * central hypovolaemia / arterial underfilling
- f. minimise and treat cerebral oedema
- g. prevent hypoglycaemia
- h. identify high risk patients early \rightarrow liver transplantation

<u>Treatment</u> Hepatic Encephalopathy

- a. minimise protein load
 - i. dietary protein restriction
 - ii. avoid GIT bleeding
 - iii. *lactulose* ~ 30 mg q8h
 - synthetic nonabsorbable disaccharide \rightarrow large bowel
 - metabolised by GI bacteria \rightarrow lactate, formate, acetate & CO_2
 - \downarrow GIT pH \rightarrow inhibits gram (-)'ve bacteria (proteolytic) favours the growth of *lactobacilli*, traps *NH*₃ in the gut, and cathartic
 - iv. neomycin ~ 1 g q6h
 - additive effect with lactulose
 - may be absorbed in patients with chronic encephalopathy, ∴not used
 → nephrotoxic & ototoxic effects
 - FMC use enteral *gentamicin* & claim added efficacy to lactulose
 - v. $MgSO_4$ enema
- b. treat and prevent electrolyte disturbances
 - i. Na⁺, K⁺, osmolality
 - ii. pH, especially alkalosis
- c. avoid narcotics, sedatives, etc.

d. experimental

- i. alter amino-acid balance in favour of *branched-chain* amino-acids
- ii. infusion of neurotransmitter precursors (L-dopa)
- iii. charcoal haemoperfusion / haemofiltration * no survival benefit
- iv. flumazenil
 - improves EEG & clinical markers of encephalopathy, but effects are short-lived & has no effect in patients with cerebral oedema

<u>Treatment</u> Cerebral Oedema

- a. regular neurological assessment
- b. early institution of controlled ventilation to maximise P_{aO2} & lower P_{aCO2}
- c. ICP monitoring * all patients with grade 4 coma \rightarrow CPP > 50 mmHg
- d. diuretics i. mar

mannitol	~ 0.25 g/kg q2h
• ICP	> 25 mmHg for > 15 min
	> 30 mmHg for > 1 min

- ii. ± frusemide
- iii. fluid restriction however, often intravascularly deplete
- iv. ultrafiltration if in ARF and on CVVHD
- e. *thiopentone* ~ 10 mg/kg over 30 mins ~ 5 mg/kg/hr for 5 hrs ~ 1 mg/kg/hr
 - may be used in cases of CSF hypertension refractory to all other therapy
- f. ? cranial decompression for resistant cases
- g. ? CVVHF to clear middle-molecules
- h. high dose steroids of *no benefit*

■ <u>Treatment</u> <u>Nutrition</u>

a.	low total protein		
	• with high ratio of branched-chain amino-acids	? no benefit	
b.	high glucose intake, no fats / intralipid		

c. vitamin supplements

i.	Vit K	~ 15-20	mg/day	
ii.	thiamine	~ 200	mg/day	
iii.	folate	~ 1-2	mg/day	\pm <i>folinic acid</i> for coagulopathy
iv.	Vit C	~ 500	mg/day	

■ <u>Treatment Liver</u>

- a. maintain adequate oxygen and blood supply
- b. minimise complications
- c. ? insulin/glucagon infusion to stimulate hepatic regeneration
- d. orthoptic liver transplantation

• <u>Keays King's College J-Hepatol. 1993</u>

- 36 of 68 consecutive patients with FHF progressing to grade 4 encephalopathy
 - \rightarrow extradural ICP monitors inserted
- only minor complications were encountered,
 - 1. local wound bleeding at the burrhole site in 4 patinets
 - 2. a small cerebral hemorrhage in relation to the monitor in one patient
 - 3. no significant long-term sequelae were related to the operative procedure

• monitoring identified rises in ICP unaccompanied by clinical signs and treatment was given to the monitored patients more often than the non-monitored group (p < 0.01) • survival from the onset of grade 4 encephalopathy was significantly greater in the ICP monitored group (median 60 vs. 10 h, p < 0.01) although overall survival was unchanged • monitoring also provided important prognostic information since the peak ICP was higher in non-survivors than in survivors (median 45 vs. 35 mmHg, p = 0.051)

■ *N*-Acetylcysteine

• will prevent paracetamol-induced FHF if given within 8 hrs in most cases

• lower efficacy at > 8 hrs, and generally ineffective if > 15 hrs

• however, even though it does not prevent FHF, it does improve the *outcome* of patients by reducing encephalopathy & renal failure associated with paracetamol FHF

• Forbes et al Hepatology 1989

- FHF & intracranial hypertension in the presence of renal failure \rightarrow mortality > 90%
- incremental IV thiopental in 13 patients until ICP (extradural) fell to within normal limits or adverse hemodynamic changes occurred
- 5 patients made a complete recovery, there were 3 deaths from intracranial hypertension
 - *NB*: "the response of otherwise intractable intracranial hypertension and the 38% survival rate was remarkable for a group of patients with such a poor prognosis"

• Other Therapies

- therapies *not* altering mortality in FHF,
 - 1. heparin
 - 2. corticosteroids
 - 3. exchange transfusion / plasmapheresis
 - 4. BCAA
 - 5. bromocriptine
 - 6. charcoal haemoperfusion / polyacrylonitrile-membrane haemodialysis
 - 7. L-dopa
 - improves conscious level temporarily
 - however, both L-dopa & carbidopa are no better than placebo in PRCT

• Orthoptic Liver Transplantation

- 1 year survival ~ 80% in non-FHF cases
- grade 4 coma,
 - 1. medical therapy $\rightarrow ~ \sim 20\%$
 - 2. OLT $\rightarrow \sim 60\%$ survival at 1 year

Hepatic Encephalopathy

Def'n: complex organic brain syndrome characterised by,

- 1. evidence of advanced hepatocellular failure
- 2. disturbance of CNS function esp. mentation, awareness, memory
- 3. fluctuating neurological signs tone, reflexes, extensor plantar response
 - occasionally seizures
- 4. EEG symmetrical high-voltage, slow-wave (2-5Hz)

NB: exclusion of the differential causes below essential

Differential Diagnosis

- a. acute alcoholic intoxication
- b. other drug overdose esp. sedatives, narcotics
- c. Wernicke's encephalopathy
 - nystagmus, ataxic gait, confusion ± peripheral neuropathy
 - · later cranial nerve III & VI paralysis, conjugate gaze abnormalities
 - seen in alcoholics & AIDS patients $\propto \downarrow$ *thiamine*
 - IV glucose prior to thiamine may worsen symptoms
- d. Korsakoff's psychosis defect of retentive memory * same disease process, stages of evolution
- e. subdural haematoma
- f. meningitis | sepsis
- g. hypoglycaemia
- h. respiratory failure hypercapnia | hypoxaemia
- i. uraemia

Hepatic Encephalopathy Grading				
Grade Asterixis Foetor		Foetor	Conscious state	
1	rare	moderate	 minor lapses in attention impaired coordination of fingers, hands impaired arithmetic and complex functions 	
2	occasional	severe	lethargy, disorientationbehaviour or irregular personality change	
3	frequent	severe	 confused or very drowsy respond to stimuli, or bizarre behaviour	
4	continuous	severe	 coma, unresponsive to stimuli decerebrate or decorticate posturing	

<u>Summary of Coma Grades</u>

- 1. confused, speech alteration
- 2. drowsy
- 3. sleeps but rousable
- 4. coma with response to pain
- 5. deep coma without response to pain $\sim 80-90\%$ mortality
- 6. coma with flat EEG

Investigations

- a. neurological examination exclude focal lesion
- b. serum chemistry
 - i. glucose
 - E,C&U exclude other metabolic disturbances
 - iii. LFTs, CaP
 - iv. blood gases
- c. blood picture

ii.

ii.

- i. Hb evidence of GIT bleeding
 - WCC may be low with infection
- iii. platelets ETOH associated thrombocytopaenia / hypersplenism
- d. septic screen
 - i. blood cultures
 - ii. T/Aspirate \pm BAL
 - iii. ascitic culture
 - iv. lumbar puncture * exclude raised ICP first
- e. drug screen
- f. CT head scan

Precipitating Factors

- a. acute fulminating hepatic failure
- b. GIT bleed
- c. high protein load
- d. sedatives, narcotics, general anaesthesia, alcoholic binge
- e. acute infections / sepsis
- f. electrolyte disturbance, esp. alkalosis

Pathogenesis

a. hyperammonaemia

- ~ 40-50% from GIT organisms degrading protein/urea
- ~ 50-60% from deamination/deamidation of AA's
- urinary excretion ~ 460 mmol/d, 400 as urea, 40 as ammonia, 20 as other
- urinary ammonia excretion may increase up to 300 mmol/d in acidosis
- in CNS: $\alpha KG + NH_3 \rightarrow glutamate + NH_3 \rightarrow glutamine$
- results in CNS depletion of citric acid cycle intermediate αKG
- · clinical picture of hyperammonaemia differs from hepatic encephalopathy
- also, *poor correlation with coma level ??
- FFAs and mercaptans enhance the encephalopathic effects of ammonia
- alkalosis & hypokalaemia $\rightarrow \uparrow [NH_3]_{ICF}$

b.	α-ketoglutarate	 - can 'mop up' excess NH₃ - may be toxic in its own right - serum & CSF levels ≡^T coma level
c.	<i>glutamine</i> (α KG + NH ₃)	 CSF levels high with encephalopathy degree of correlation reasonably good neurotoxic in animals
d.	amino-acid imbalanceammonia liberates <i>glucag</i>	* aromatic > branched-chain fon \rightarrow \uparrow gluconeogenesis \uparrow skeletal muscle catabolism & plasma AA's
	• •	\uparrow uptake of BCAA by skeletal muscle plasma aromatic:BCAA's \rightarrow \uparrow CNS aromatic AA's
e.	tryptophan / serotonin	- CNS toxic - CSF level \equiv^{T} coma level
f.	false neurotransmitters• animal studies	 GABA, glycine, octopamine, 5HT histamine, catechols, phenylethylamine
g.	• an endogenous benzodia	ora and are normally cleared by the liver <i>zepine</i> has been postulated (GABA receptor facilitator) unoreactivity is increased in CSF in encephalopathy redictable \uparrow CNS state
h.	methionine (mercaptan)	- serum level \equiv^{T} coma level
i.	short-chain FA	poor correlationdisplaces tryptophan
j.	impaired BBB	- becomes 'leaky' with HE

• Management of Proven Benefit

- a. prevention
- b. empty gut
 - lactulose \rightarrow osmotic agent, cathartic, acidification, NH₃ trapping
 - and/or Neomycin/Gentamicin (oral or rectal)
 - MgSO₄ enema
- c. protein restriction
- d. α -keto-analogues of non-essential amino-acids
- e. branched-chain AA's effective nutrition, costly - *no* decrease in mortality
- f. Bromocryptine, Levodopa increase arousal but side effects
- g. charcoal haemoperfusion / CVVHF
 - improves early haemodynamics, but *no* alteration in mortality
- h. cross-circulation
- i. minimise complications
 - i. hypoglycaemia
 - ii. hyper/hypo-Na⁺, hypo-K⁺
 - iii. coagulopathy / haemorrhage
 - iv. infection / sepsis
 - v. renal failure hepatorenal syndrome, ATN
 - vi. sedatives / narcotics
 - vii. alkalosis

Ascites

Def'n: generalized swelling of abdomen, especially in the flanks, which gives a *fluid thrill* and *shifting dullness*

Aetiology

g.

h.

- a. cirrhosis \pm portal hypertension
- b. congestive cardiac failure
- c. nephrotic syndrome
- d. pancreatitis ± pseudocyst
 e. Budd-Chiari hepatic vein thrombosis
- f. infective pyogenic, TB (with or without AIDS)
 - malignancy lymphoproliferative, metastatic, Kaposis sarcoma, DXRT
 - lymphatic leiomyomatosis, vagotomy, sarcoidosis
 - Bechéts syndrome, trauma, retroperitoneal vascular surgery
 - lympatic cyst rupture, lymph node biopsy
- *NB*: poor prognostic indicator ~ 40% 24 month survival

Pathophysiology Cirrhosis

rare causes

- 1. portal hypertension / raised sinusoidal pressure
- 2. hypoalbuminaemia
- 3. renal retention of salt & water*cause unknown (?? not hyperaldosteronism)
? peripheral arteriolar vasodilatation
 - studies have shown *increased* intravascular volumes in these patients
 - · however, head-out water immersion still produces natriuresis
- 4. excess hepatic lymph formation "overflow" phenomenon

Investigation

a.	histo	ry	- alcohol, IHD
b.	examination		
	i.	periphery	 chronic liver disease CCF (JVP, heart size, oedema, etc.)
	ii.	abdominal	- liver/spleen, pelvic tumour, pancreatitis
	iii.	nephrotic syndrome	- kidney size, hypertension, urinalysis
c.	inves	tigations	 ascitic tap urinalysis U+E's, LFT's, FBE, INR/APTT CXR

■ Management

- 1. bed rest
- 2. fluid/salt restriction \sim 10-20 mmol of Na⁺/day
- 3. spironolactone ~ 100-600 mg/day
 - urine Na:K *ratio* > 1
 - > 1 generally respond to smaller doses (100-150 mg)
 - < 1 require higher doses (ie. \uparrow plasma aldosterone)
- 4. frusemide
 - risks of volume depletion and renal failure
 - diversis should be \leq rate of absorption of abdominal lymph ~ 600-900 ml/d
 - weight-loss of ~ 0.5 kg/day is generally satisfactory
- 5. NSAIDs are *contraindicated*
- 6. paracentesis & IV albumin replacement
- 7. peritoneovenous (LeVeen) shunt if intractable
 - shunt malfunction, peritonitis, endocarditis, DIC, SVC obstruction

Budd-Chiari Syndrome

Def'n: acute liver disease secondary to hepatic vein thrombosis

Clinical Features

- a. sudden or gradual onset
- b. grossly enlarged liver
- c. splenomegaly
- d. portal hypertension
- e. intractable ascites
- f. *absence* of right heart failure

Aetiology

- a. polycythaemia
- b. hyperviscosity syndromes
- c. renal carcinoma invading IVC
- d. rarely congenital fibrous webs in hepatic veins
- e. ? association with OCP in women
- *NB:* biopsy \rightarrow centrilobular congestion, necrosis & sinusoidal dilatation

Spontaneous Bacterial Peritonitis

- classically develops in patients with *cirrhosis & ascites*
- may also occur in ascites with,
 - 1. nephrotic syndrome
 - 2. cardiac failure
 - 3. peritoneal carcinomatosis
 - 4. immunosuppression
- organisms,
 - 1. E.coli, Klebsiella pneumoniae
 - 2. other *Enterobacteriaciae*
 - 3. Pneumococcus
 - 4. Streptococci
- diagnosis,
 - 1. WCC > 500 / mm³ PMN > 250 / mm³ \rightarrow high suspicion of bacterial infection commence antibiotic therapy
 - 2. positive culture
 - 3. absence of a primary source of infection

NB: WCC > 500/mm³ & negative culture may \rightarrow

- i. peritoneal carcinomatosis
- ii. pancreatitis
- iii. perforated ulcer
- mixed aerobic/anaerobic infections $do \ not$ normally occur without visceral perforation
- initial antibiotic therapy,
 - 1. amoxicillin 1g tds IV
 - 2. gentamicin 3.5 mg/kg/d IV

Cirrhosis

Def'n: chronic disease of the liver, characterised by,

- 1. fibrosis
- 2. disorganisation of the lobar and vascular architecture
- 3. nodular regeneration of hepatocytes

Aetiology

a. alcohol*

b.	congestive cardia	ac failure*	* most common causes
c.	infection	HBV*, HCV*, CMVbrucellosistoxoplasmosis, schist	
d.	drugs / toxins	 pyrrolidizine alkaloid α-methyldopa isoniazid halothane, enflurane 	S
e.	autoimmune	 chronic active hepatit primary biliary cirrho inflammatory bowel c 	sis
f.	metabolic	 glycogen storage dise α₁-antitrypsin deficien haemochromatosis Wilson's disease Fanconi syndrome 	
g.	cystic fibrosis	??	
h.	familial		

- i. idiopathic
- **NB:** differences cf. acute hepatic necrosis

many *idiopathic* cases were probably HCV

• Clinical Signs

NB:	great variation in severity	\rightarrow	from asymptomatic to fulminant hepatic failure
			~ 10% diagnosed incidentally at laparotomy

- a. jaundice
- b. ascites
- c. tender hepatomegaly, or a firm nodular liver
- d. encephalopathy
- e. splenomegaly
- f. clubbing of the fingers
- g. palmar erhythema
- h. Dupuytren's contractures
- i. spider naevi
- j. parotid & lacrimal swelling
- k. weight loss, generalised muscle wasting
- l. peripheral oedema, thin skin
- m. males decreased body hair - testicular atrophy
- n. females virilisation - menstrual irregularities
- o. signs of chronic renal insufficiency

Chronic Active vs. Chron	ic Persistent H	epatitis
	CAH ¹	CPH ²
PHx acute viral hepatitis	30%	70%
recurrent episodes	yes	no
other organs involved	yes	no
prognosis	variable	good
liver necrosis	yes	no
end-stage cirrhosis	yes	no
ALT increase	2-10x	$\leq 2x$
albumin	low	normal
autoimmune features	yes	no
autoantibodies		
 elevated IgG 	~ 70%	normal
 anti-smooth muscle 	~ 80%	
anti-nuclear factor	~ 50%	
 anti-mitochondrial 	~ 20%	
¹ Chronic active hepatitis ~ aut	oimmune hepatitis	·
² Chronic persistent hepatitis ~ pro	longed viral hepatit	is $\geq 6/12$

• Complications of Hepatitis B

a.	massive hepatic necrosis	\pm encephalopathy
b.	cirrhosis with portal hypertension	~ 15-30%
c.	carrier state (HBsAg / HBcAb)	~ 5%
d.	chronic active hepatitis	~ 3-5%
e.	hepatocellular carcinoma	
f.	immune complex syndromes	 serum sickness polyarteritis glomerulonephritis urticaria

NB: many of the complication previously ascribed to HBV may well be due to *concurrent* HCV infection

LIVER TRANSPLANTATION

- first performed 1963 but limited survival
- current 5 year survival in USA ~ 60%
- *fulminant hepatic failure* is increasingly an indication for transplantation
- 1 year survival with medical $R_x \sim 20-30\%$, cf. following transplantation ~ 65%

• Considerations Preoperative

- 1. malnutrition
- 2. liver failure
 - i. coagulopathy

		 factor deficiency 	$< 20\% V \rightarrow \uparrow$ intraoperative haemorrhage
		• thrombocytopaenia	∝ splenomegaly Ab's
		• splenectomy \rightarrow	\uparrow portal vein thrombosis, \land <i>not</i> an option
		• \pm ? relationship to tra	ansfusion requirements
	ii.	immunosuppression	- spontaneous bacterial peritonitis
	iii.	metabolic derangement	- hypoglycaemia, hyponatraemia, hypokalaemia
3.	CNS 1	failure	 hepatic encephalopathy * acute cerebral oedema
4.	respira	atory insufficiency	- \uparrow shunt / \downarrow compiance / central drive failure - infection, aspiration
5.	cardio	ovascular insufficiency	 ↓ effective blood volume despite ascites (????) ↓ LV function masked by ↓ afterload
6.	renal	failure	* hepatorenal syndrome

Intraoperative

1.	aspiration risk	- RSI
2.	cerebral oedema	 ↑ ICP ∝ ↑ permeability of BBB & toxins steroids <i>not effective</i> limit use of volatile agents, vasodilators ? ICP monitoring
3.	high risk of VAE	? avoid using N ₂ O - monitoring
4.	prolonged procedure	~ 8 hrs
5.	massive transfusion	 ~ 25 units average - IV access & fluid warmers - monitoring: CVP/PAP, IABP, CUD, core T. - <i>citrate</i> toxicity & ↓ Ca⁺⁺ when <i>anhepatic</i>

6.	electrolyte disturbances	 ↓ Na⁺, ↓ K⁺, ↓ Mg⁺⁺ * BSL usually OK - progressive <i>metabolic acidosis</i> ± NaHCO₃ ~ 50 mmol prior to unclamping
7.	coagulopathy	- INR, APTT, fibrinogen & platelets hourly
8.	fibrinolysis ∝	 ↑↑ tissue plasminogen activator - treat with Amicar (EACA) - monitor with <i>thromboelastography</i>
9.	maintenance of renal perfusion	on
10.	venovenous bypass	 used by some institutions ↓ CVS compromise, inotropes & blood loss <i>no</i> difference in morbidity / mortality
11.	unclamping	 - H⁺ & K⁺ load, plus cold fluid - highest risk of VAE - arrhythmias (↓ HR), ↑ PAOP, ↓ CO - risk of PTE

• **Postoperative Considerations**

1.	pain relief / sedation		
2.	fluid requirements		
3.	hypothermia		
4.	transfusion	- blood, FFP, platelets	
5.	electrolyte changes		
	i. hyper-	- Na ⁺ , osmolarity	
	ii. hypo-	- Mg ⁺⁺ , K ⁺	
	iii. glucose	- usually hyperglycaemic	
	iv. uraemia		
	v. <i>metabolic alkalosis</i>		
6.	pulmonary \rightarrow	- elective ventilation ± ARDS, pneumonia	
7.	1° graft non-function	- small percentage, ? reperfusion injury	
8.	renal failure	 ATN*, persistence of hepatorenal syndrome <i>cyclosporin</i> nephrotoxicity ± CVVHD 	
9.	CNS	 IC haemorrhage, hypertension seizures <i>cyclosporin</i> neurotoxicity 	
10.	graft rejection / liver failure	~ 5-20%	

• Complications

a. *pre-operative*

- i. malnutrition
- ii. coagulopathy
- iii. metabolic derangement
- iv. renal failure
- v. acute cerebral oedema & raised ICP
- vi. nosocomial infection / sepsis

b. *intraoperative*

- i. prolonged procedure ≥ 8 hrs
- ii. massive transfusion ~ 25 units average
- iii. coagulopathy
- iv. electrolyte disorders
- v. VAE
- vi. hypothermia

c. *postoperative*

i.	fluid requirements	
ii.	transfusion	- blood, FFP, platelets
iii.	hypothermia	
iv.	renal failure	 cyclosporin nephrotoxicity ATN*, hepatorenal syndrome
v.	electrolyte changes	 hyper-Na⁺ hyperosmolarity hyperglycaemia / hypoglycaemia hypo-Mg⁺⁺ / Ca⁺⁺ (citrate) hypo-K⁺ uraemia <i>metabolic alkalosis</i>
vi.	pulmonary	- oedema, pneumonia, ARDS
vii.	CNS	- seizures
		- IC haemorrhage
		- cyclosporin neurotoxicity
viii.	liver failure	

• Aetiology of Renal Dysfunction

- a. pre-existing renal dysfunction HRS, pseudo-HRS
- b. hypovolaemia, hypoperfusion
- c. IVC obstruction
- d. inefficiency of venovenous bypass
- e. poor graft
- f. nephrotoxins cyclosporin, aminoglycosides
- g. intra-abdominal hypertension
- h. septicaemia

NB: $R_x \rightarrow IV$ fluids, reduce Cyclosporin dose, ? dopamine

Transplant Rejection

a.	1° graft rejection \rightarrow	 ~ 2% - ↑ GGT, fever & tachycardia - later ↑ALP
b.	'preservation injury'	- reversible centrilobular lesion
c.	vascular thrombosis	- ↑ AST & ALT first
d.	intrahepatic cholestasis	- common, spontaneous remission
e.	biliary tract complications	
f.	chronic rejection	
NB:	Acute rejection R_x	 pulse steroids monoclonal Ig OKT₃
	Maintenance R_x	azathioprinecyclosporin A, steroids

HEPATORENAL SYNDROME

- *Def'n:* potentially *reversible* renal failure associated with severe liver failure, characterised by,
 - 1. oliguria with -low urine Na⁺
 - high urine osmolality
 - 2. unresponsive to fluids/inotropes
 - 3. may progress to ATN

Clinical Features

a. mortality

* recovery associated with improvement of liver function

b. oliguric renal failure with H_2O/Na^+ retention

~ 95%

- c. high urine osmolality with $[Na^+] < 10 \text{ mmol/l}$
- d. low SVR, low cardiac output, hypotension
- e. hypervolaemia
- f. decreased response to vasopressors
- g. high circulating renin, angiotensin II, aldosterone
 - these may *decrease* with the onset of HRS
- h. increased renal excretion of noradrenaline & TBX_{B2}
- i. *decreased* renal production / urinary excretion of PGE₂
 - normally *increased* in cirrhosis with ascites
 - ie. intrarenal PG's protect GFR against high circulating angiotensin/aldosterone

Precipitating Factors

- 1. paracentesis probably 2° association
 - ie., the syndrome is associated with ascites
- 2. diuretics
- 3. hypovolaemia
- 4. sepsis
- 5. NSAID's

Proposed Mechanisms

Secondary Tubular Dysfunction

- completely reversible with return of liver function
- successful transplantation of HRS kidneys
- *enzymuria* & \mathbf{b}_2 -*microglobinuria* seen in HRS *not* seen in ATN or pre-renal failure
- ${\boldsymbol{\cdot}}$ but, absence of histological tubular damage in some studies & able to conserve $Na^{\scriptscriptstyle +}$
- · other studies show ATN-like changes, bile vacuoles in tubular cells and hypertrophied JGA

<u>Mediator Imbalance</u>

• xenon studies show maldistribution of RBF

a.	\downarrow renin-angiotensin a	ctivity -↓ renin substrate in HRS - improved filtration with FFP or AII infusion
b.	\downarrow "glomerulopressin"	 hormone, MW ~ 500, synthesized in the liver increased by AA infusion & glucagon reduces afferent aa. tone and increases GFR synthesis blocked by NSAID's
c.	\downarrow PGE ₂ / PGI ₂	-↓ substrate & enzyme activity * normal in ATN
d.	\uparrow TBX _{A2}	 ? 1° or 2° to hypovolaemia & high circulating catecholamines * little evidence to support this (Maxwell & Kleeman)

• Other Factors

- 1. intra-abdominal hypertension
 - increased renal vein pressure
 - improved filtration with paracentesis and colloid infusion, or peritovenous shunt
- 2. high SNS tone \rightarrow reversible *cortical ischaemia*

• factors probably *not involved*,

a.	fall in ANF	- levels are only marginally reduced
		- infusion <i>does not</i> improve filtration

- b. high renin-angiotensin II ?
- c. aldosterone levels correlate *poorly* with the degree of Na⁺ retention
- NB:however, plasma renin activity correlates with survival in cirrhosis,
those with,(Maxwell & Kleeman)
 - i. high PRA $\rightarrow \sim 6$ months mean survival
 - ii. normal PRA \rightarrow ~28 months

Treatment

- a. prevention
- b. optimise volume status
- c. paracentesis + FFP, HSA-20%
- d. ?? LeVeen shunt
 - \uparrow preload & cardiac output
 - ↑ RBF & GFR
 - high operative mortality \rightarrow *no* improved survival
 - problems with *thrombocytopaenia*
- e. liver transplantation

• other modalities tried with little or *no success*,

- a. vasodilators dopamine
- b. lumbar sympathectomy
- c. vasopressors transient improvement
- d. A-II inhibitors marked hypotension
 - no increase in GFR
- e. Ca⁺⁺ entry blockers transient effect
- f. PGE_2 infusion
- g. selective TBX_{B2} inhibitors
- h. water immersion increases venous pressure
- i. dialysis
- j. plasma exchange

Pseudo-Hepatorenal Syndrome

• occurs where primary disease process involving the liver also affects the kidneys,

- 1. autoimmune SLE, PAN, systemic sclerosis
- 2. drugs
- 3. toxins CCl_4 , amanita poisoning
- 4. severe sepsis
- 5. cardiogenic shock

Intra-Abdominal Pressure / Hypertension

Aetiology

- a. haemorrhage intra-abdominal / retro-peritoneal
- b. ascites
- c. severe pancreatitis
- d. bowel obstruction
- e. gas insufflation laparoscopy
- f. external pressure eg. abdominal binder

• Methods of IAP Measurement

- a. intra-vesical pressure
- b. intra-gastric pressure
- c. direct intra-peritoneal pressure
- d. rectal or vaginal pressure

• Complications of Raised IAP

a.	CVS	 - ↓ venous return & cardiac output - ↑ SVR
b.	renal	- \downarrow RBF/GFR resulting in oliguria
c.	respiratory	- \downarrow FRC, respiratory impairment, high P _{IP} - \uparrow V/Q mismatch, hypoxia
d.	GIT	 ↑ intra-gastric pressure regurgitation and aspiration

e. opening of congenital pleuroperitoneal connection

• Clinical Effects

- a. normal IAP ~ 0-5 mmHg
- b. post-operatively levels $\leq 12 \text{ cmH}_2\text{O}$ (9 mmHg) occur without renal impairment
- c. as IAP is raised ³ 25 cmH₂O (20 mmHg) there is,
 - i. \uparrow venous return and cardiac output, but
 - later followed by \downarrow VR
 - ii. \uparrow SVR ~ 30%
 - iii. \uparrow renal-VR $\leq 500\% \rightarrow 25\% \downarrow$ RBF/GFR
- *NB:* the dramatic rise in renal vascular resistance and oliguria lead to *anuria* at IAP \geq 30 *mmHg*
- mechanisms of *renal failure* with intra-abdominal hypertension,
 - a. \downarrow venous return + \uparrow afterload $\rightarrow \downarrow$ cardiac output
 - b. $\uparrow RVR + \downarrow$ cardiac output $\rightarrow \downarrow RBF$
 - c. renal vein compression
 - d. redistribution of RBF, cortical \rightarrow medullary

• *Cullen CCM* 1989

- syndrome of massively increased IAP ~ $30-80 \text{ cmH}_2\text{O}$
- all patients had,
 - a. hypovolaemia but high filling pressures
 - b. good EF $\sim 55\%$ but low stroke volume & cardiac output
 - c. oliguria ≤ 10 ml/hr
 - d. hypoxia all patients required IPPV
 - e. small improvement with volume challenge (10ml/kg)
 - f. considerable improvement in cardiac, renal and respiratory function with decompression
 - NB: similar picture to cardiac tamponade

Jacques AIC 1988

• case report of traumatic retroperitoneal haematoma causing oliguria and high IAP ~ 32 cmH₂O

• no response to volume, mannitol, or dopamine

PANCREATITIS

Aetiology

	<u>37</u>	
a.	ethanol*	
b.	gallstones*	* (a + b) account for ~ 85%
c.	idiopathic	~ 7%
d.	traumatic	
e.	post-ERCP	
f.	familial / hereditary	
g.	cystic fibrosis	
h.	SIRS, ARDS, MODS	? ischaemic pancreatitis
i.	metabolic	 hyperlipidaemia hyperparathyroidism, hypercalcaemia renal failure acute fatty liver of pregnancy haemochromatosis
j.	infections	 viral hepatitis, mumps Coxsackie, Echovirus and other viruses Mycoplasma, Ascariasis
k.	autoimmune diseases	 → "pancreatic vasculitis" SLE, TTP, necrotising vasculitis
l.	drugs	 thiazides, frusemide, valproate vit D, oestrogens sulphonamides, tetracyclines, azathioprine
	possible associations	- steroids, methyl dopa, procainamide, chlorthalidone, ethacrynic acid, β -blockers, cimetidine, clonidine, rifampicin, phenformin, paracetamol
m.	toxins - me	thanol
		scorpion envenomationorganophosphate poisoning
n.	renal transplant	 surgery hypercalcaemia steroids (?), diuretics viral infections, immunosuppressives
0.	GIT disease	 duodenal ulcer, penetration / perforation Crohn's disease obstruction of the Ampulla of Vater pancreas divisum

- Pathophysiology
- *exocrine* gland secretes $\sim 1500-2000 \text{ ml fluid/d}$ $\sim 150-200 \text{ mmol HCO}_3^{-7}/d \propto secretin$ • also secretes lipolytic & proteolytic enzymes $\propto cholecystokinin$ muscarinic ACh stimulation

• proenzymes: *trypsinogen* \rightarrow trypsin + other enzymes \rightarrow kallikrein, elastas

kallikrein, elastase, phospholipase

under the influence of *enterokinase* secreted by the duodenal mucosa

• bile contents, especially *lipase* \rightarrow more specific for pancreas cf. amylase

- kinins \rightarrow proteolysis
- activation of these enzymes results in,

a. connective tissue & fat necrosis

- b. pancreatic destruction
- c. vasodilatation
- d. shock, haemorrhage
 - trypsin \rightarrow *complement activation*, C₃ & C₄ activation of coagulation, kinin system & fibrinolytic cascades

• mechanisms for activation,

e.

- 1. duodenopancreatic reflux
 - allows duodenal *enterokinase* to activate trypsinogen, which in turn activates phospholipase $A_2 \rightarrow$ lysolethecin which causes duct damage
- 2. hypersecretion
 - rare cause \rightarrow scorpion envenomation, organophosphate poisoning
- 3. pancreatic duct 'hypertension'
 - not supported by animal studies of obstruction \rightarrow *atrophy*
 - pancreatic obstruction by a gallstone is rare in pancreatitis (4% of 2653 pts)

Presentation

- a. severe central abdominal *pain*, nausea and vomiting
- b. paralytic *ileus*
- c. jaundice
- d. systemic inflammatory response syndrome, coagulopathy
- e. hypovolaemic *shock*
- f. respiratory failure pain, pleural effusion - ARDS
- g. tetany from hypocalcaemia and hypomagnesaemia

• Clinical Signs

	a.	Cullen's sign	 blue discoloration of the periumbilical area haemoperitoneum
	b.	Gray-Turners sign	 blue discoloration of the flanks retroperitoneal haematoma, usually > 48 hrs
	c.	petechiae ± purpura	
	d.	thrombophlebitis	
	e.	warm, dry erythema o	f SIRS
	f.	jaundice	
	g.	Peach's retinopathy	- retinal artery fat emboli
•	<u>Investi</u>	gations / Diagnosis	
	a.	clinical	* high suspicion in critically-ill
	b.	 <i>poor</i> correlation with if elevated > 5 days also found in the live → different 	\geq 3x rise (> 600 IU/l), usually > 3 hrs, P-type cf. S-type and returns to normal by 3-5 days, cleared by GFR th disease severity & outcome s then \rightarrow <i>pseudocyst</i> ver, lung, prostate, fallopian tubes, and ovaries erent amylase (S-type), cleared by non-renal mechanisms
		i. false negative	- early mild, or severe necrotising pancreatitis

- ii. false positive ~ 300-600 IU/l
 - perforated or ischaemic bowel, salivary disease or biliary colic
 - tumours of lung, ovary, or pancreas
 - pregnancy, acidaemia, DKA, ARF

c.	urinary amylase	> 750 IU/l (N: 10-300)
	peritoneal amylase	* grossly elevated, may be > 50,000 IU/l

- $[Cr]_P x [Ams]_U$ d. amylase:creatinine ratio = $[Cr]_{U}$ $[Ams]_{P}$
 - \rightarrow non-pancreatic amylase < 5 ~ 5-10 \rightarrow pancreatitis

S-type

• invalid in the presence of renal failure

e.	serum <i>lipase</i>	- more specific for pancreas, elevated in ~ 75%
		- remains elevated for 10-14 days

f. FBE / blood film

- i. leukocytosis ~ 15-20,000/µl
- free Hb, \downarrow haptoglobin, \uparrow methaemalbumin ii. haemolysis
- ? DIC iii. thrombocytopaenia
- methaemalbuminaemia iv.

g.	biochemist	ry	 AG metabolic acidosis hypocalcaemia, hypomagnesaemia, hypokalaemia hyperglycaemia hypertriglyceridaemia (~ 15%, may normalise amylase) ± rising creatinine/urea
h.	LFT's		 high bilirubin / low albumin ± alcoholic hepatitis obstructive jaundice
i.	AGA's		~ 25% will be hypoxaemic
j.	ECG		- non-specific ST/T wave changes, tachycardia
k.	AXR	~ 50%	- regional ileus \rightarrow "sentinal loop" ± gallstones pancreatic calcification ascites
1.	CXR	~ 40%	 basal atelectasis, pleural effusions raised left hemidiaphragm cardiac failure ARDS
m.	U/Sound	< 60%	 often fails to visualise pancreas assessment of biliary tracts / gallbladder
n.	CT Scan		 good sensitivity for oedematous pancreatitis identification of late complications * grading of severity

o. diagnostic laparotomy

Electrolyte Disorders

- a. hypocalcaemia
- b. hypomagnesaemia
- c. hypo/hyper-K⁺
- d. hyperglycaemia
- e. hyperlipidaemia
- f. high anion gap metabolic acidosis
- g. elevated urea and creatinine

• Acidosis in Pancreatitis

- a. lactic acidosis types I & II
- b. diabetic ketoacidosis
- c. alcoholic ketoacidosis
- d. renal failure
- e. respiratory failure
- f. rarely 2° to ingested toxin

• Respiratory Dysfunction / Failure

a.	mechanical	 pain, sputum retention pleural effusion, increased IAP often pre-existing lung disease 	
b.	V/Q mismatch	- kinin, C' activation	
c.	central depression- analgesics, sedatives, treatment of DT's		
d.	acute lung injury / ARDS		

e. infection - nosocomial pneumonia, aspiration

Investigation of Cause

- a. history alcohol, gallstones, drugs
- b. examination
- c. baseline investigations
 - i. FBE
 - ii. U,C&E's, Ca⁺⁺, Mg⁺⁺, glucose
 - iii. amylase, LFT's
 - iv. CXR, AXR
 - v. CT scan
- d. other investigations
 - serum lipids
 - hepatitis and other viral serology
 - ANF, ANA
 - cholecystogram

	CT Grading of Pancreatitis			
Grade A	• normal	• normal		
Grade B	focal or diffuse pancreatic oedema	• focal		
Grade C	• extension of inflammation to peripancreatic fat	• extension		
Grade D	 phlegmon, or single ill-defined pancreatic fluid collection	• 1 collection		
Grade E	 2 or more fluid collections, or the presence of pancreatic gas	• >1 collections		

Treatment Principles

a.	rest	the pancreas/gut	
	i.	nil orally	- on recovery, low fat, low protein diet
	ii.	NG tube and suction	- only if severe, otherwise just <i>nil orally</i>
		• no therapeutic value in co	ontrolled studies of mild disease
	iii.	analgesia	- parenteral narcotics - epidural analgesia (exclude coagulopathy)
	iv.	aprotinin	 - inhibitor of proteolytic enzymes * <i>no</i> proven benefit
b.	prev	vent / treat complications	
	i.	IV fluids	 large deficit may be present crystalloids / colloids
	ii.	O ₂ therapy	 all but mild cases ABG's if clinical respiratory failure
	iii.	monitor vital signs	 fluid balance, urine output, CVP PA catheter PRN
	iv.	maintain urine output	≥ 0.5 ml/kg/hr - fluids / inotropes (?? mannitol, dopamine)
	v.	electrolyte shifts	- give K ⁺ , Ca ⁺⁺ , Mg ⁺⁺ if low
		• <i>calcium</i> replacement is r	arely if ever required and may exacerbate disease
	vi.	TPN	- with additional <i>insulin</i>
	vii.	antibiotics	 <i>not</i> for uncomplicated cases suspected <i>cholangitis</i> or septicaemia pancreatic abscess
	viii.	peritoneal lavage	-
		• tried in severe cases	- 2l isotonic dialysate + Heparin 1000 ^U + Amoxycillin 250 g
			- drain every hour & continue 24-48 hrs
		-	s & reduces early mortality
	•	• however, <i>no</i> decrease in	-
	ix.	CT guided drainage	- pseudocyst, <i>not</i> abscess
	х.	surgery	- indicated in ~ 15%, if
		diagnosis uncertain	- persistent high WCC, (+)'ve cultures
		pancreatic abscess	- persistent light wCC, $(+)$ ve cultures - fever and pain > 1-3 weeks, CT scan
		 pancreatic pseudocyst biliary tract disease	~ 10%
		•	to prevent progressive deterioration
с.	nrev	<u>vent relapse</u>	I From From States
С.	i.	avoid precipitating factors	

ii. drain pseudocyst

Peritoneal Lavage

- proposed advantages,
 - a. decreased sepsis & sepsis-related mortality
 - b. decreased overall mortality
 - c. improved early haemodynamic stability
 - d. decreased severity
- technique,
 - a. 2000 ml isotonic dialysate + Heparin 1000^U
 - + Amoxicillin 250 mg
 - b. drain every hour
 - c. continue 2-7 days
- variables,
 - a. volume
 - b. frequency
 - c. additives (antibiotics, antiproteases)
 - d. duration
 - *NB*: reduces *early mortality* and stabilises haemodynamics however, no long-term decrease mortality
- SGO, 1980 controlled multi-centre British trial showed,
 - a. *no* improvement in outcome
 - b. increased protein loss
 - c. higher incidence *bacterial peritonitis*

• SGO, 1990 Perderzoli, *uncontrolled*, unblinded study of 191 pts all given peritoneal, or retroperitoneal lavage

- method = 1000 ml 4-6 hrly, hypertonic solution + aprotinin
- three groups, commenced on day ≤ 2 , 2-4 days, or > 4 days
- decreased mortality with early lavage, and (-)'ve blood cultures
- SGO, 1990 Ranson, uncontrolled study with 2 days vs 7 days lavage,
 - a. decreased overall mortality 43% vs 27%
 - b. decreased incidence of sepsis 83% vs 33%
 - c. decreased mortality associated with sepsis20% vs 0%

Prognosis

- overall *mortality* ~ 20%
- poor prognostic factors defined by *Ranson* 1976
- predictive criteria for *severe pancreatitis* ³ **3** of the following,

Ra	nson - 197	6		Ι	mrie - 1978	
		On Ac	lmissio	on		
• age	> 55	yrs				
• glucose	>11	mmol/l				
• WBC	> 16,000					
• AST	> 120	U/l^1				
• LDH	> 350	U/l				
		During the	First 4	48 hrs ²		
• IVT	> 6000	ml	•	WBC	> 15,000	
• \downarrow Hct	> 10%		•	glucose	> 10	mmol/l
• ↑ urea	> 10	mmol/l	•	P _{aO2}	< 60	mmHg
• HCO ₃ ⁻	< 20	mmol/l	•	BUN	>16	mmol/l
• $\downarrow P_{aO2}$ (air)	< 60	mmHg	•	AST	> 200	U/l
• \downarrow calcium	< 2.0	mmol/l ³	•	LDH	> 600	U/l
			•	Alb	< 32	g/l
			•	Ca ⁺⁺	< 2.0	mmol/l ³
NB: amy	lase level no	ot useful as a p	oredict	or of sever	ity	
Ranson's ori	ginal criteria v	was SGOT (AST) > 250	Frankel Uni	ts	
Severe Acut	e Pancreatitis	if > 2 criteria m	et in fir	st 48 hours		
uncorrected plasma calcium						

Surg Gynaecol Obstet, 1990		
"Ranson" score	Mortality	
0 - 2	~ 8%	
3 - 5	~ 25%	
³ 6	~ 65%	

- another factor associated with high mortality is (+)'ve *blood cultures* (2x)
- more recent studies assessing validity of *APACHE II* scores showed 77% predictive value
 if re-evaluated for first 48 hours, then,
 - a. APACHE II prediction $\sim 88\%$? Tan *et al.* b. Ranson score $\sim 69\%$ Imrie score $\sim 84\%$ *NB: severe acute pancreatitis* \rightarrow admission APACHE II > 9

• Complications

1. *local*

i. pancreatic

•

- phlegmon
 - pseudocyst ~ 4% of patients
 - ~ 30% develop complications
 - abscess ~ 100% mortality without surgery
 - haemorrhage
 - necrosis

ii. ascites

- may respond to somatostatin / octreotide
- iii. retroperitoneal abscess
 - haemorrhage
- iv. venous thrombosis splenic, renal, or portal vv.

2. systemic

•		
i.	pulmonary	- effusion, atelectasis
		- ARDS
		- chylothorax
		- mediastinal abscess
	1' 1	
ii.	cardiovascular	- hypotension shock
		- tachycardia
		- pericardial effusion
		- ST/T changes $\equiv^{T} AMI$
iii.	DIC	
iv.	gastrointestinal	- acute stress ulceration / peptic ulceration
	8454 01100 5 01100	- oesophageal variceal haemorrhage
		- ileus
v.	renal	- ARF
vi.	CNS	- encephalopathy
		- seizures
		- psychosis

- sudden blindness (Purtscher's retinopathy)

PSEUDOMEMBRANOUS COLITIS

Def'n: infective colitis due to Clostridium difficile cytopathogenic toxin

• uncommon but reversible cause of infective diarrhoea

- causative agents,
 - a. cephalosporins \rightarrow most common case
 - b. Clindamycin ~ 2-10%
 - c. Lincomycin
 - d. Amoxicillin
 - e. Chloramphenicol*
 - f. tetracyclines*
 - g. Cotrimoxazole* *rarely

Clinical Features

• onset within 2-25 days of antibiotic use,

- a. profuse watery diarrhoea, bleeding uncommon
- b. cramping abdominal pain
- c. dehydration, hypoalbuminaemia
- d. dilated bowel, toxic megacolon
- e. sigmoidoscopy oedematous friable mucosa
 - white-yellow raised plaques (fibrin, cells, polymorphs, mucus)
 - \pm ulceration or sloughing
- f. Barium study dilated bowel
 - distortion of haustra
 - ulcers
 - thumb-printing
 - cobblestone appearance

Treatment

- a. removal of causative antibiotic
- b. correction of fluid and electrolyte deficiencies
- c. Vancomycin or Metronidazole orally
- d. ? cholestyramine binds toxin
- *NB*: steroids no use recovery usual within 3 weeks