# NON-INVASIVE BLOOD PRESSURE - NIBP

| a. | palpatory      | <ul> <li>measure at pulse return</li> <li>systolic ± 5-8 mmHg</li> </ul>                                     |
|----|----------------|--------------------------------------------------------------------------------------------------------------|
| b. | limb flush     | ~ systolic $\pm 10 \text{ mmHg}$                                                                             |
| c. | oscillometric  | <ul> <li>systolic &amp; mean, no diastolic</li> <li>mean very accurate</li> <li>systolic ± 5 mmHg</li> </ul> |
| d. | ultrasonic     | - systolic & diastolic accurate                                                                              |
| e. | pulse arrival  | - time interval QRS - peripheral pulse                                                                       |
| f. | auscultatory   | - Korotkoff's sounds                                                                                         |
|    | i. phase I     | - snapping tones ~ systolic                                                                                  |
|    | ii. phase II   | - murmurs (may be low pitch/inaudible)                                                                       |
|    | iii. phase III | - thumping                                                                                                   |
|    | iv. phase IV   | - muffling                                                                                                   |
|    | v. phase V     | - silence ~ diastolic                                                                                        |

# ARTERIAL LINES

- there are no absolute, only *relative indications*,
  - 1. continuous arterial pressure monitoring
  - 2. arterial pressure waveform analysis
  - 3. repeated arterial blood tests
  - 4. research

#### Advantages

- a. ease of cannulation
- b. accessibility
- c. usually adequate collateral circulation
- d. low complication rate

#### • Absolute Contraindications

- a. AV shunt for dialysis
- b. severe Raynaud's disease
- c. absence of collateral circulation (but not +'ve Allen's)
- d. Buerger's disease
- e. Wegener's granulomatosis

#### • Factors Which Optimise Signal Fidelity

- a. equipment factors
  - i. high frequency transducer response
  - ii. short, stiff, non-compliant tubing
  - iii. elimination of air bubbles from tubing  $< 0.25 \text{ ml} \rightarrow \text{underdamping}$ >?  $\rightarrow \text{overdamping}$
  - iv. a slow continuous flush device
  - v. correct calibration of the transducer against Hg column
- b. patient factors which reduce signal fidelity
  - i. rapid heart rates  $\rightarrow$  resonance
  - ii. reflection of high frequencies within circulation
    - elderly, high SVR, atherosclerosis
  - iii. site of catheter insertion radial vs. femoral - axillary vs. aortic
  - iv. profound vasodilatation post-CPB

### Information Gained

| a. | systolic and diastolic trends |                                                                                                                                                                                               |                                                                                  |
|----|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| b. | accurate mean                 |                                                                                                                                                                                               |                                                                                  |
| с. | hypovolaemia                  | <ul><li>increased pulse parad</li><li>lower dichrotic notch</li><li>steeply peaked systol</li></ul>                                                                                           | l                                                                                |
| d. | decreased contractility       | <ul><li>reduced upslope</li><li>reduced peak pressur</li></ul>                                                                                                                                | e                                                                                |
| e. | indication of myocardia       | ll O <sub>2</sub> supply/demand                                                                                                                                                               | <ul><li>pulse pressure product</li><li>systolic area vs diastolic area</li></ul> |
| f. | pulsus paradoxus              | <ul> <li>hypovolaemia</li> <li>tamponade, constricti</li> <li>high intrathoracic pre</li> <li>severe CCF, myocard</li> <li>RV AMI</li> <li>PTE</li> <li>ascites</li> <li>pregnancy</li> </ul> | essure                                                                           |
| g. | hyperdynamic pulse            | <ul> <li>sharp rise &amp; fall</li> <li>sepsis</li> <li>AI</li> <li>AV fistula</li> <li>anaemia</li> <li>thyrotoxicosis</li> <li>pregnancy</li> </ul>                                         |                                                                                  |
| h. | pulsus alternans              | <ul><li>pericardial effusion</li><li>severe LV dysfunctio</li></ul>                                                                                                                           | on                                                                               |
| i. | pulsus bisferens              | - AI                                                                                                                                                                                          |                                                                                  |
|    |                               |                                                                                                                                                                                               |                                                                                  |

j. access for frequent blood analyses

# Misinformation

- a. poor guide to *perfusion*
- b. poor guide to *myocardial performance*

#### c. errors

- i. calibration / drift
- ii. amplification
- iii. resonance
- iv. damping

## • Complications

| a. | . thrombosis                    |                      | ~ 60% overall incidence                                                                              |
|----|---------------------------------|----------------------|------------------------------------------------------------------------------------------------------|
|    | i.                              | duration             | ~ 50% at 2/7, but minimal < 24 hours                                                                 |
|    | ii.                             | size of canulae      | - 20G better in adult                                                                                |
|    | iii.                            | wrist size           | <ul> <li>approximates arterial diameter, &lt; 18 cm ↑ incidence</li> <li>female &gt; male</li> </ul> |
|    | iv.                             | catheter material    | - teflon/vialon are best                                                                             |
|    | v.                              | flush system         |                                                                                                      |
|    | vi.                             | systemic hypotension |                                                                                                      |
|    | vii.                            | technique            | <ul> <li>number of cannulation attempts</li> <li>Seldinger &gt; direct</li> </ul>                    |
| b. | haematoma                       |                      | ~ 50%                                                                                                |
| c. | accidental haemorrhage          |                      |                                                                                                      |
| d. | sepsis                          |                      | <ul> <li>related to technique and duration</li> <li>increases after 4-5 days</li> </ul>              |
| e. | distal emboli                   |                      | ~ 2-4%                                                                                               |
| f. | thun                            | nb/hand ischaemia    | - transient in 10%                                                                                   |
| g. | proximal forearm ischaemia      |                      |                                                                                                      |
| h. | h. aneurysm                     |                      |                                                                                                      |
| i. | AV fistula                      |                      |                                                                                                      |
| j. | inadvertant drug administration |                      | on                                                                                                   |
|    |                                 |                      |                                                                                                      |

# • <u>Calibration of Transducers</u>

| a. | static | calibration                                |
|----|--------|--------------------------------------------|
|    | i.     | zero                                       |
|    | ii.    | gain                                       |
|    | iii.   | linearity                                  |
|    | iv.    | stability with time, temperature variation |
| b. | dyna   | mic calibration                            |

# i. high frequency response - ideally ~ 10x

- se ideally ~ 10x fundamental frequency
- ii. damping coefficient,  $\mathbf{x} \sim 0.677$

# CENTRAL VENOUS CATHETERS

# Indications

| a. | CVP measurement               |                                                                                                       |
|----|-------------------------------|-------------------------------------------------------------------------------------------------------|
| b. | vascular access               | - difficult or prolonged                                                                              |
| c. | hypertonic or irritant fluids | - TPN, HCl<br>- inotropes                                                                             |
| d. | infusion of large volumes     | - <i>not</i> for rapid administration                                                                 |
| e. | other therapies               | <ul><li>pacemaker</li><li>PA catheter</li><li>haemodialysis, haemoperfusion, plasmapheresis</li></ul> |

# • Complications

a.

b.

| duri | ing insertion              |                                                                                                                      |
|------|----------------------------|----------------------------------------------------------------------------------------------------------------------|
| i.   | failure to site in SVC     | ~ 55% cephalic / 35% basilic<br>~ 10% EJV / $0-4\%$ IJV<br>~ 5% subclavian (some $\le 25\%$ )                        |
| ii.  | haematoma                  |                                                                                                                      |
| iii. | arterial puncture          | ~ 5% with subclavian approach<br>~ 1-2% with IJV approach                                                            |
| iv.  | pneumothorax               | ~ 2% with subclavian approach<br>< 1-2% with IJV approach                                                            |
| v.   | damage to other struct     | ures - vagus/recurrent laryngeal nn.<br>- stellate ganglion, cervical plexus<br>- thoracic duct, trachea, ETT cuff ! |
| duri | ing use                    |                                                                                                                      |
| i.   | venous thrombosis          | <ul><li>hypertonic solutions</li><li>thromboembolism</li></ul>                                                       |
| ii.  | colonisation, infection,   | bacteraemia, septicaemia                                                                                             |
|      | • $\sim 10\%$ of colonised | $\rightarrow$ bacteraemia                                                                                            |
| iii. | accidental removal         |                                                                                                                      |
| iv.  | venous perforation         | <ul><li>catheter stiffness</li><li>duration &amp; site</li></ul>                                                     |
| v.   | embolisation               | <ul><li>air, thrombus, septic thrombus</li><li>catheter tip (shearing)</li><li>AV fistula</li></ul>                  |
|      |                            |                                                                                                                      |

#### c. during removal

- i. embolisation
- ii. haematoma formation

# PA CATHETERS

• 1953 Lategola & Rahn used hand-made, balloon-tiped catheter for PA catheterisation & occlusion measurement in dogs

• Swan *et al.*, 1970 NEJM, reported used of multilumen, balloon-tipped, radio-opaque PVC catheter with the following charcteristics,

- 1. reliable, prompt passage into the PA
- 2. minimal arrhythmias
- 3. passage without fluoroscopy

• balloon occluded PA pressure, *pulmonary artery occlusion pressure (PAoP)*, showed good correlation with traditional *pulmonary capillary wedge pressure* measurements

- the later using traditional stiff right heart catheters "wedged" into small pulmonary vessels
- subsequent studies confirmed correlation between PAoP, PWP and LAP by direct measurement

• since then a multitude of catheters have been described, uses including,

- 1. in-vivo oximetry
- 2. pulmonary angiography
- 3. paediatric catheterisation
- 4. His-bundle electrocardiography
- 5. thermodilution CO estimation
- 6. LV pacing

# Indications

- 1. optimisation of *LV preload*, where the CVP will not reflect LVEDV
  - i. LV dysfunction
    - n present or anticipated
    - severe IHD
- global or regional dysfunction
- recent myocardial infarction
- ischaemia-induced valvular dysfunction
- cardiomyopathy
- valvular heart disease this is argued due to validity of measurement
- aneurysmal heart disease
- HOCM
- ii. aortic surgery poor LV function
  - suprarenal clamping
- iii. severe pulmonary disease
  - pulmonary hypertensive disease
  - multiple pulmonary emboli
- iv. states of increased *oedemagenesis* pre-eclampsia, ARDS
- 2. optimisation of *perfusion* & oxygen delivery, in patients unresponsive to therapy
  - i. sepsis syndrome / SIRS / MOSF
  - ii. LV dysfunction
- 3. *ancillary* capabilities
  - i. ventricular pacing
  - ii. mixed venous  $S_pO_2$
  - iii. diagnostic categories
    - angiography in PE
    - air embolism
    - preoperative assessment of post-pneumonectomy risk
  - iv. therapeutic regional thrombolytic therapy
- 4. research

#### • Guidelines For Use

- 1. check position with a CXR
- 2. never use fluid to fill balloon & inflate the balloon slowly
- 3. use the minimal volume to achieve a wedge trace
- 4. never let balloon remain wedged
- 5. never withdraw the catheter across the heart with the balloon inflated
- 6. be aware of increased risk of PA rupture in elderly

# Criteria for ''Wedging''

- 1. blood sample = pulmonary capillary blood
  - may not be fully saturated in patients with significant intrapulmonary shunt or with excessive levels of PEEP
  - now no longer recommended
- 2. PA phasic contour should change to LA tracing
- 3. mean PAoP should be < mean PAP

#### West Zone 3 Criteria

- 1. 'a' & 'v' waves visible on PAoP trace
- 2. mean PAoP ~ PADP (except with large 'v' waves)
- 3. blood freely aspirated from distal port
- 4. aspirated blood has a high  $P_{02} \sim P_{a02}$

• changes from zone 3-2-1 occur with,

- a. hypovolaemia
- b. high PEEP  $> 10 \text{ cmH}_2\text{O}$
- c. poor catheter position
- d. poor patient position

#### Recording Methods

- 1. inherent underdamping renders systolic & diastolic unrelaible (Gardner Anaes.'81)
- 2. most circuits do not allow damping adjustment
- unselective, time-based electrical sampling & averaging renders "mean" unreliable
   → graphic recording *mandatory* to eliminate respiratory artefact

#### • PA Catheter - Clinical Aspects

- a. no absolute indications
- b. essentially a poor indicator of preload in severe disease
  - trends of far greater value than isolated readings
  - derived data probably of greater benefit than PAoP
- c. *no* improvement in *outcome* in CCU patients
- d. *no* improvement in outcome in severe respiratory disease
- e. some suggestive evidence for improved survival,
  - i. in major postoperative and severely septic patients (Shoemaker)\*
  - ii. perioperative MI < 3 months (Rao, El Etr)<sup>§</sup>
- f. results depend upon the *use* of information derived
- *NB:* \*this improvement was not necessarily related to PA catheter \*this was a none peer reviewed paper, subsequently claimed benefits withdrawn

#### Complications

- *NB*: complication rate similar to *CVC catheters*, especially complications of *insertion*
- 1. principal complication = misuse & misinformation
- 2. minor complications common
  - i. *arrhythmias* VEB's, AEB's, persistent VEB's - transient RBBB, 3°HB - SVT
    - ii. haematoma
    - iii. catheter thrombosis

#### 3. major complications rare

- i.pulmonary infarction $\leq 7\%$ ii.carotid puncture~ 1-4\%iii.infection~ 1-2\%
- iv. thrombotic endocardial vegetation  $\leq 1\%$
- v. pneumothorax  $\sim 0.5\%$
- vi. PA rupture  $\sim 0.1\%$
- vii. valvular damage
- viii. papillary muscle damage
- 4. catheter knotting
- 5. bacteraemia / sepsis
- 6. balloon rupture

| Author                                             | Shah <i>et al</i> * | Davies, Cronin | Other   |
|----------------------------------------------------|---------------------|----------------|---------|
| Date                                               | 1984                | 1,982          |         |
| Patients                                           | 6,245               | 220            |         |
| Carotid artery puncture                            | 1.9 %               | 3.6 %          |         |
| Pneumothorax                                       | 0.5 %               | -              |         |
| Arrhythmias                                        | 72 %                | 25 %           | 17-28 % |
| • VEB's                                            | 67 %                | 24 %           |         |
| AEB's                                              | 1.3 %               | -              |         |
| persistent VEB's                                   | 3.1 %               |                |         |
| transient RBBB                                     | 0.05%               |                |         |
| • 3°HB                                             | 0.016%              |                |         |
| • SVT                                              | 0.5 %               |                |         |
| Bacteraemia/Sepsis                                 | ~ 5 %               | 1.4 %          | 0-2 %   |
| PA rupture                                         | 0.064%              |                |         |
| PE/pulmonary infarct                               | 0.064%              | 0.5 %          | ≤7%     |
| Balloon rupture                                    |                     | 0.5 %          |         |
| * Shah, Rao, El Etr Anaesthesiology, 1984 61:271-5 |                     |                |         |

#### Pulmonary Capillary Pressure

**Def'n:** the effective pulmonary capillary pressure  $(P_C)$  = the dynamic pulmonary capillary hydrostatic pressure, where,

 $P_{C} = LAP + 0.4 x (P_{mPA} - LAP)$  the *Garr Equation* 

- $P_C$  is determined by,
  - a. PA pressure
  - b. LAP
  - c. alveolar pressure
  - d. PEEP increased LAP & PAP - increase in  $P_{c} \sim 0.5 \times PEEP$

• this is the pressure responsible for *hydrostatic pulmonary oedema*,

| PAoP ~ LAP, but |   | PAoP <sup>1</sup> P <sub>c</sub> |
|-----------------|---|----------------------------------|
|                 | R | PAoP < P <sub>c</sub>            |

- where,  $P_C$  is the "dynamic" pulmonary capillary pressure
- this can be calculated upon occlusion of the PA tracing  $\rightarrow$  bi-exponential decay
- extrapolating the second phase to time zero gives an *intercept pressure*,  $P_i$  where,

$$P_{\rm C} \sim PAoP + P_{\rm i}$$

**NB:** alternatively, the pressure at the *inflexion* point of the decay curve ~  $P_C$ 

• by these techniques it is possible to determine the predominant site of PVR in health and disease states,

1. PAP >>  $P_{C} \sim PAoP \rightarrow most PVR is$ *precapillary*  $2. PAP > <math>P_{C} >> PAoP \rightarrow most PVR is$ *postcapillary* 

• using this technique it has been demonstrated that,

- 1. most of the increase in PVR with *histamine* is postcapillary (ie. venous)
- 2. with 5HT most of the increase is precapillary

### PA Catheters - Misleading Information

• the primary assumption, that **PAoP** ~ **LVEDP**, holds true for 90-95% of "normal" subjects

- tolerance limits are  $\pm 0-4$  mmHg
- on balloon inflation, at time = 0, the systolic component is lost and PAoP ~ PADP

• the pressure then falls away *bi-exponentially* to approach LAP, the rate of decay depending upon,

- a. diastolic time
- b. pulmonary vascular resistance\* \**time constant* = R x C
- c. pulmonary vascular compliance\*

*NB*: the value should be taken at *end diastole* and *end expiration* 

#### Potential Problems

ii.

- 1.  $\mathbf{PAoP} > \mathbf{P}_{C}\mathbf{P}$  up to 11 mmHg
  - i. tachycardia inadequate time for EDP to equilibrate with LAP
    - PA hypertension hypoxia, hypercarbia, acidosis
      - CAL
      - 1° PAH
    - $\rightarrow$  prolongation of time constant

| 2. | PA  | $\mathbf{P} \mathbf{P} \mathbf{P}_{\mathbf{C}} \mathbf{P}$ | up to 7 mmHg                            |
|----|-----|------------------------------------------------------------|-----------------------------------------|
|    | i.  | RBBB                                                       | - RV systole delayed, and               |
|    |     |                                                            | - septal movement interferes with PAEDP |
|    | ii. | hypovolaemia                                               | - increase non-zone 3 area              |

- 3.  $\mathbf{P}_{\mathbf{C}}\mathbf{P} > \mathbf{P}_{\mathbf{V}}\mathbf{P}$  (or LAP)
  - i. pulmonary venous disease (fibrosis, tumour, anomalies)
  - ii.  $PEEP > 10 \text{ cmH}_2O$

#### 4. LAP > LVEDP

- i. mitral valve disease, prosthetic valve
- ii. atrial myxoma

#### 5. LVEDP <sup>1</sup> LVEDV

- accuracy with which LVEDP represents LVEDV depends upon blood volume and the compliance of the LV
- this is *non-linear* in normals and displaced in disease states
- determinants of LV compliance include,
- i. LV wall thickness and diameter
- ii. fibre stiffness

iii.

- pericardial pressure\* \*juxtacardiac pressure
- iv. intrathoracic pressure\*
- lowered compliance occurs in: IHD, AMI
  - IHSS
  - fibrosis

- aortic regurgitation

- LVH
- raised compliance occurs in: dilated LA or LV
- $6. \quad LAP < LVEDP$
- 7. West's zone of placement

• other problems reading PA catheters are encountered with,

| a. | rapid heart rates              | <ul> <li>difficult to judge end-diastole</li> <li>insufficient time for equilibrium</li> </ul>                                              |
|----|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| b. | respiratory pattern            | <ul> <li>rapid rate, large tidal volumes</li> <li>large intrathoracic pressure swings</li> <li>difficult to judge end-expiration</li> </ul> |
| c. | digital readouts $\rightarrow$ | - average pressure<br>- where mean <sup>1</sup> end-diastolic pressure                                                                      |
| d. | underdamping                   | - small air bubbles $< 0.25$ ml                                                                                                             |
| e. | overdamping                    | <ul><li>large air bubbles</li><li>narrow, long tubing</li><li>catheter blockage</li></ul>                                                   |

### • Correlation - PAoP & LAP (Sibbald, Raper)

• generally a good correlation in postsurgical patients with no respiratory disease

- the correlation is poor with,
  - a. high levels of PEEP
  - b. hypovolaemia
  - c. acute respiratory failure

#### • Circumstances Where PAoP <sup>1</sup> LAP

- 1. incorrect catheter placement
- 2. non-zone 3 position
- 3. incorrect transducer placement
- 4. over/under-damping
- 5. respiratory pressure artefact, PEEP
- 6. eccentric balloon inflation
- 7. balloon overinflation
- 8. obstructive airways disease (autoPEEP)
- 9. valvular heart disease
- 10. increased pericardial pressure
- 11. altered myocardial compliance
- 12. pulmonary venous obstruction

#### • Circumstances Where LAP <sup>1</sup> LVEDP

| a. | altered myocardial compliance | <ul> <li>- IHD</li> <li>- IHSS</li> <li>- AMI</li> <li>- aneurysm</li> <li>- fibrosis</li> <li>- LVH</li> <li>- dilated LA or LV</li> </ul> |
|----|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| b. | mitral valve disease          |                                                                                                                                             |
| c. | aortic regurgitation          | - falsely high PAoP                                                                                                                         |

#### • Circumstances Where LAP <sup>1</sup> LVEDP

• factors which influence this include,

- a. LV compliance
- b. RV diastolic volume (ventricular interdependence)
- c. pericardial compliance
- d. intrathoracic pressures
- e. normal curvilinear relationship between EDP/EDV is volume dependent \* steep vs. flat portion of the curve

#### • Correlation - Reasons why LVEDP <sup>1</sup> LVEDV

- a. myocardial fibre stiffness, *compliance*, varies
- b. myocardial wall thickness varies
- c. alterations in juxtacardiac pressures
- *NB*: no animal, or human studies, have shown a consistent correlation between LVED**P** & LVED**V**,

therefore, "PAoP must be regarded as an unreliable index of LVEDV"

- Beupre et al., Anaesth.'83, assessing LVEDA and PAoP,
  - 1. linear regression with correlation coefficient, r = 0.3, for > 77% of measurements
  - 2. in > 50% of measurements, the change was in the opposite direction

• Sibbald et al., Chest '83, PAoP vs LVEDV by radionuclide LVEF and thermodilution CO

• linear regression essentially a scatter diagram, but multiple errors in calculation of LVEDV

• more recent studies using TOE, PAoP versus LVEDA also show poor correlation

#### • LV Compliance = LV Pressure/Volume Curve

- $\ \ \, \text{ecceased compliance} \quad \rightarrow \quad \text{left shift} \\$
- $\cdot$  increased compliance  $\rightarrow$  right shift
  - a. LV preload

| b. | LV mass                      | <ul><li> LVH decreases compliance</li><li> chronic dilatation increases compliance</li></ul> |
|----|------------------------------|----------------------------------------------------------------------------------------------|
| c. | myocardial fibre stiffness   | <ul><li>ischaemia</li><li>fibrosis, scar</li><li>infiltration, amyloid</li></ul>             |
| d. | RVEDV                        | <ul><li>- cor pulmonale</li><li>- increased PVR</li></ul>                                    |
| e. | hypoxia, temperature, osmola | lity, HR                                                                                     |

- f. vasopressors, vasodilators, inotropes, adrenergic blockers
- ventricular interdependence depends upon,
  - a. RV size
  - b. septal shift
  - c. juxtacardiac pressure change tamponade
    - high PEEP
    - effusion

# PAoP and PEEP

 $P_c = LAP + 0.4 x (P_{PA} - LAP)$  the Garr Equation

#### • $P_c$ is determined by,

- a. PA pressure
- b. LAP
- c. alveolar pressure
- d. PEEP
  - increases LAP & PAP
  - increase in  $P_{C} \sim 0.5 \text{ x PEEP}$
  - the PAoP ~ LAP which are both less than  $P_C$
  - thus, PEEP will affect PAoP, the important factors being,
    - i. the level of PEEP
    - ii. lung and chest wall compliance
    - iii. airways resistance  $\rightarrow$  "autoPEEP"
      - $dPIP \sim dP_{AW} \times C_L/(C_L + C_{CW})$

| - interpleural pressure |
|-------------------------|
| - airways pressure      |
| - lung compliance       |
| - chest wall compliance |
|                         |

- in the normal physiological state,  $C_{\rm \scriptscriptstyle L}$  &  $C_{\rm \scriptscriptstyle CW}$  are approximately equal, therefore,

 $\delta P_{IP} \sim \frac{1}{2} \times \delta P_{AW}$  or,

 $\mathbf{d}_{\mathrm{C}} \sim \mathbf{d}_{\mathrm{CWP}} \sim \frac{1}{2} \times \mathbf{d}_{\mathrm{EEP}}$ 

• in pathological lungs with decreased compliance,  $C_{CW} >> C_L$ , thus,

 $\delta P_{IP} \sim \delta P_{AW} \times C_L/C_{CW}$ 

 $C_{1}/C_{CW} << 1.0$ 

where,

so,  $\delta P_{IP} \ll \delta P E E P$ 

or,  $\mathbf{d}_{c} \sim \mathbf{d}CWP \ll \mathbf{d}EEP$ 

- that is, the "wedge pressure" is relatively protected
- the reverse occurs with either highly compliant lungs, or a pathologically stiff chest wall,

$$\rightarrow C_{\rm L} >> C_{\rm CW}$$

thus, **dc** ~ **dC**WP ~ **dE**EP

#### PAoP and Preload

• the correlation of CVP with LVEDP is poor when,

- a. EF < 40%
- b. LV dyskinaesia
- c. myocardial ischaemia
- d. LAP > 15 mmHg
- e. right heart disease
- the correlation of PAoP and LVEDP,

| a. | is fair in | "normal" | individuals |    | $\pm 4$ mmHg in 95% |
|----|------------|----------|-------------|----|---------------------|
|    |            |          |             | ?? | ± 1 mmHg in 90%     |

- b. is poor where,
  - i. LAP > 15 mmHg
  - ii. PEEP  $> 10 \text{ cmH}_2\text{O}$
  - iii. tachycardia

#### • the correlation of PAoP and LVEDV,

- a. very poor correlation in the presence of sepsis, or cardiac disease  $\rightarrow$  "scatter graph"
- b. relationship between LVEDV and LVEDP is *non-linear*
- c. LV compliance is abnormal in a number of disease states

### • <u>Causes of Increased LV Compliance</u>

- a. increased EDV (low EF, volume overload)
- b. dilated cardiomyopathy
- c. vasodilators(SNP, GTN, β-blockers)

#### • Causes of Decreased LV Compliance

- a. decreased EDV improved EF, relief from volume overload
- b. ischaemia
- c. PEEP
- d. increased RV afterload
- e. hypotensive shock hypovolaemia, sepsis
- f. pericardial effusion
- g. positive inotropes  $-\beta_1$ -agonists

### *Factors Affecting PAOP in Critically Ill* (Sibbald)

| a. | CVP and RVEDV | - 80% |
|----|---------------|-------|
| b. | LVEDV         | - 10% |
| c. | PVR           | - 10% |

### Primary Data

- *NB:* individual values are of little use, *trends* are more useful
- a. PAoP as an indicator of oedemagenesis
  - essentially a poor indicator of preload
- b. PA pressures indicate degree of PAH
- c.  $P_{vO2}$  indicates global  $O_2$  supply/demand

### Derived Data

- a. haemodynamic variables
  - CI, LVSWI, SVR
  - qualitative information re cardiac and vascular function
  - some quantitative information with trends
- b.  $DO_2 \& VO_2$ 
  - rough guide to O<sub>2</sub> supply and utilization
  - assessment of the effect of therapy

### Cardiac Output - Thermodilution

- thermodilution introduced by Fegler 1954 in anaesthetised dogs
- injection of a known volume of cold solution in RA & detection by thermister in proximal PA
- · some disagreement regarding extravascular losses of "coolth"
- · however, distance between injection & detection should be as short as possible

$$CO = \frac{V_1(T_B - T_I)K_1K_2}{\int_0^\infty \Delta T_B(t)dt}$$

- a.  $V_1 =$ volume of injectate
- b.  $T_{B/I} = blood / injectate temperatures$
- c. K<sub>1</sub> = *density factor* = <u>[specific heat . specific gravity].Injectate</u> [specific heat . specific gravity].Blood

- i. catheter dead space
- ii. heat gain by injectate
- iii. injection rate (should  $\leq 2$ -4s)
- e. demoninator corresponds to area under thermodilution curve
- *NB: recirculation peak* should be < 4% of maximum, 5-35 seconds later

### • Errors of Measurement

- a. injectate temperature
  - theoretically the lower the better  $\rightarrow$   $\uparrow$  S:N ratio
  - multiple studies have shown little advantage & room temperature OK
  - i. syringe rewarming
    - $\uparrow 1^{\circ}C \rightarrow \uparrow CO \sim 2.9\%$
    - $T_{I}$  increases ~ 1°C / 13s handling,  $\therefore$  aim at delivery within 30 secs
    - ideally, should measure T<sub>1</sub> at entry point on catheter

ii. loss to catheter wall - most important  $\rightarrow K_2$ ~ 0.83, assuming 17% loss (catheter specific)

- b. blood temperature lower temperature  $\rightarrow$  overestimation rarely a problem
  - i. severe hypothermia and room temperature injectate
  - ii. inspiration of cold gases & decrease PA blood temperature
  - iii. rapid infusion of cold fluids
- c. cardiac output  $\pm 0.6\%$  at 5.0 l/min  $\pm 2.0\%$  at 4.0 l/min  $\pm 4.0\%$  at 3.0 l/min  $\pm 7.5\%$  at 2.0 l/min  $\pm 20\%$  at 1.0 l/min
- d. volume
  - the larger the better, small volumes  $\rightarrow$  overestimation
  - however, larger volumes more difficult to inject as *bolus*
- e. injectate time  $-K_2$  allows for 2-4 secs
- f. timing of injection
  - variation of CO & PA temperature with respiration and mode of ventilation
  - with IPPV, CO lower during inspiration
  - variation ~ 14%  $\rightarrow$  average  $\geq$  3 readings
- g. recirculation only if frequent calculations, repeated over < 30 secs
- h. catheter wedging  $\rightarrow$  underestimation
  - also seen with catheter thrombosis
- i. shunts
- i.  $L \rightarrow R$  measured CO ~ RV output >> LV ii.  $R \rightarrow L$  - falsely *high* CO if injectate bypasses the thermister j. pulmonary regurgitation - low output state - over & under-estimations may occur
- k. diathermy increased noise

#### Summary - Causes of Overestimation

| a. | higher injectate temperature                       | <ul> <li>room temp.</li> <li>catheter wall</li> <li>handling</li> <li>low CO</li> </ul>                                                                |
|----|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| b. | lower blood temperature                            | <ul><li>hypothermia</li><li>infusion of cold fluids</li><li>IPPV with cold gases</li></ul>                                                             |
| c. | low injectate volume                               |                                                                                                                                                        |
| d. | slow injection time                                |                                                                                                                                                        |
| e. | respiratory cycle                                  | $\begin{array}{ll} - \text{SV} & \rightarrow \text{ inspiration} \\ - \text{IPPV} & \rightarrow \text{ expiration} \\ \sim 10\text{-}15\% \end{array}$ |
| f. | $L \rightarrow R$ shunt<br>$R \rightarrow L$ shunt | <ul><li>overestimates effective forward LV flow</li><li>overestimates CO</li></ul>                                                                     |

g. incorrect  $K_1/K_2$ 

### **Summary - Causes Of Underestimation**

- **NB:** = opposite of the above, plus
- a. PA catheter wedging / thrombosis
- b. rapid repetitive calculations
- c. RV valve regurgitation (PI/TI)

#### • Other Complications of CO Measurement = "Complications of PA Catheter"

- a. technical insertion
  - equipment
  - backup
- b. infection catheter - injection
- c. hypothermia
- d. thrombosis/pulmonary infarction
- e. haemorrhage

# Haemodynamic Measurements

| 1.       | BSA                      | ~                 | [Ht.] <sup>0.725</sup> x [Wt.] <sup>0.425</sup> x 71.48 x 10 <sup>-4</sup>                    | $m^2$                                                                 |
|----------|--------------------------|-------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 2.       | CI                       | =                 | CO/BSA                                                                                        | $l/m^2$                                                               |
| 3.       | SVI                      | =                 | CI/HR                                                                                         | l/m <sup>2</sup> /beat                                                |
| 4.       | LVSWI<br>W               | =<br>=            | (MAP - PAoP) x SVI x 0.0136                                                                   | gm.m/m²/beat                                                          |
| 5.       | SVRI                     | =                 |                                                                                               | dyne.sec.cm <sup>-5</sup> /m <sup>2</sup>                             |
|          | R                        | _                 | V / I                                                                                         |                                                                       |
|          | R                        | =                 | V / I                                                                                         |                                                                       |
| 6.       | <b>R</b><br>PVRI         | <del>-</del><br>= | V / I<br>(MPAP - PAoP)/CI x 80 <sup>*</sup>                                                   | dyne.sec.cm <sup>-5</sup> /m <sup>2</sup>                             |
| 6.<br>7. |                          |                   | $(MPAP - PAoP)/CI \times 80^*$                                                                | dyne.sec.cm <sup>-5</sup> /m <sup>2</sup><br>ml.O <sub>2</sub> /100ml |
| _        | PVRI                     | =                 | (MPAP - PAoP)/CI x 80*                                                                        | •                                                                     |
| 7.       | PVRI<br>CaO <sub>2</sub> | =                 | (MPAP - PAoP)/CI x 80 <sup>*</sup><br>(SaO <sub>2</sub> x [Hb] x 1.34) + ( $P_{aO2}$ x 0.003) | ml.O <sub>2</sub> /100ml                                              |

**NB:** \*79.98 =  $\delta$  mmHg.min/l  $\rightarrow$  dyne.sec.cm<sup>-5</sup>

all measurements involving output should be indexed, including resistances

|            | Normal Cardiovascular Pressures |                                        |             |            |                                        |
|------------|---------------------------------|----------------------------------------|-------------|------------|----------------------------------------|
|            | Right                           |                                        |             | Left       |                                        |
| CVP<br>RAP | diastole ~ 0-3<br>systole ~ 4-8 | 0                                      | PAoP<br>LAP | ~ 3-7      | mmHg                                   |
| RV         | ~ 22-25 / 0                     | mmHg                                   | LV          | ~ 120 / 0  | mmHg                                   |
| PA         | ~ 22-25 / 8                     | mmHg                                   | Aortic      | ~ 120 / 80 | mmHg                                   |
| PA mean    | ~ 13-15                         | mmHg                                   | MAP         | ~ 90-100   | mmHg                                   |
| PVRI       | ~ 150-250                       | dyne/cm <sup>5</sup> /s/m <sup>2</sup> | SVRI        | ~ 800-1800 | dyne/cm <sup>5</sup> /s/m <sup>2</sup> |

# **BLOOD-GAS ELECTRODES**

### Glass pH Electrode

• the circuit consists of,

- a capillary tube of *pH* sensitive glass  $\rightarrow \delta V \propto pH$ a. • Corning 015
- Ag/AgCl surrounded by buffer within pH sensitive glass tube b. anode
- Hg/HgCl (Calomel) within KCl buffer cathode c.
- a "salt bridge" to allow Cl<sup>-</sup> ion flow d.
  - blood sample interacts with glass & the cathode via the salt bridge
- a surrounding water jacket at 37°C e.
- f. a high impedance amplifier to measure gradient
  - ie. the amplifier should not interact with generated potential
  - generates potential difference

 $\rightarrow$  E = 61.5 x  $\delta pH$ 

# Severinghaus $P_{CO2}$ Electrode

- · measurements are based on pH, due to the dissociation of carbonic acid
- the  $P_{CO2}$  is therefore related to the  $[H^+]$
- the Severinghaus  $CO_2$  electrode provides a direct measure of  $P_{CO2}$  from the change is pH
- the circuit consists of,
  - a closed cylinder of pH sensitive glass in the centre a.
  - b. 2 electrodes, 1 inside, the other outside the cylinder
  - a surrounding solution of sodium bicarbonate c.
  - d. a thin film of bicarbonate impregnated nylon mesh covering the end of the cylinder
  - a thin, CO<sub>2</sub> permeable membrane covering the end of the electrode e.

• at the end of the electrode  $CO_2$  diffuses from the blood sample through the membrane into the nylon mesh and by the formation of carbonic acid lowers the pH of the bicarbonate solution

- this change in pH alters the  $\delta V$  across the glass
- pH changes such that,

$$\delta pH \propto \delta \log_{10} P_{CO2}$$

- the output of the voltmeter can be calibrated in terms of  $P_{CO2}$
- the electrode has an accuracy ~ 1 mmHg
- the response time ~ 2-3 mins

• as for the pH electrode, the CO<sub>2</sub> electrode must be kept at 37°C and regularly calibrated with known concentrations of CO<sub>2</sub>

# Clark - Polarographic O<sub>2</sub> Electrode

• the circuit consists of,

- a. DC voltage source  $\sim 0.6 \text{ V}$
- b. an ammeter
- c. anode  $Ag/AgCl \rightarrow Ag + Cl^{-} \longrightarrow AgCl + e^{-}$
- d. cathode *platinum*  $\rightarrow$  O<sub>2</sub> + 4e<sup>-</sup> + 2H<sub>2</sub>O  $\longrightarrow$  4(OH<sup>-</sup>)
- e. an electrolyte solution (KCl, ?KOH) and O<sub>2</sub>-permeable membrane

• separated from the sample by a gas permeable membrane

· as for any resistive circuit as the voltage is increased the current will increase proportionately

• the above circuit  $\rightarrow$  a *plateau voltage* range over which the current does not increase with increasing voltage, however does increase with an increasing P<sub>02</sub> in the cell

•  $O_2$  is *consumed* in the reaction and the current produced is proportional to the sample  $P_{02}$ 

• the platinum electrode cannot be inserted directly into the blood stream as protein deposits form an affect its accuracy

• factors apart from O<sub>2</sub> which affect the current generated include,

- 1. the age of the membrane
- 2. the condition of the buffer solution
- 3. temperature
  - $\rightarrow$  should be calibrated prior to use ~ 3% accuracy at 50% O<sub>2</sub>
- the response time is ~ 30-60 seconds, therefore not used for breath-to-breath analysis
- some specially designed units, with electronic enhancement  $\rightarrow 0.25$ s response time

• unlike fuel cells they don't deteriorate when exposed to air, however, their shelf-life is limited by the life of the membrane and the buffer solution  $\rightarrow \sim 6$  months

# Other Methods of Oxygen Measurement

## • Oxygen Fuel Cell

• effectively an O2 limited gold/lead battery, consisting of,

- a. an ammeter
- b. a mesh *gold cathode*  $\rightarrow$  O<sub>2</sub> + 2H<sub>2</sub>O + 4e<sup>-</sup>  $\rightarrow$  4OH<sup>-</sup>
- c. a lead anode  $\rightarrow$  Pb + 2(OH<sup>-</sup>)  $\rightarrow$  PbO + H<sub>2</sub>O + 2e<sup>-</sup>
- d. a compensating thermistor
- e. an electrolyte solution (KCl) and O<sub>2</sub>-permeable membrane
- thus, current flow depends upon the uptake of oxygen at the cathode
- unlike the Clarke electrode, the fuel cells requires no external power source
- · however, like other batteries, the fuel cell will eventually expire

# Paramagnetic Oxygen Analysis

- oxygen is *paramagnetic* and is therefore attracted into a magnetic field
- this is due to the unpaired outer shell electrons of the oxygen molecule
- most other gases, such as N<sub>2</sub>, are weakly *diamagnetic* and are repelled from a magnetic field
- actually measures oxygen concentration
- problems with use include,
  - 1. they require *calibration* before use with 100%  $N_2$  and 100%  $O_2$
  - 2. the presence of *water vapour* biases the result, therefore gases should be dried through silica gel before analysis
  - 3. they are not well suited to continuous analysis, ie. breath-to-breath analysis flows > 100 ml/min through the chamber affect accuracy
  - 4. limited *response time* doesn't allow breath-to-breath analysis
- their advantages include,
  - 1. O<sub>2</sub> specific
  - 2. don't wear-out

#### Hummel Cell

• based upon the paramagnetic principal & used in the *Datex* instruments

• the sample gas and an air reference are drawn into a magnetic field through a T-piece

• each sample line is connected in parallel to a sensor chamber, where the differential pressure is measured across a diaphragm

• in the resting state both sample lines are at equal pressure, however as a magnetic field is induced across the T-piece sample set, each gas (air & sample) is "held-up" in proportion to the  $O_2$  content • this then results in a pressure differential within the sensor chamber

• by oscillating the magnetic field the sensor diaphragm also oscillates, in proportion to the  $O_2$  content of the sample gas

- the diaphragm effectively acting as a microphone, with the amplitude reflecting  $\%\mathrm{O}_2$ 

### PO2 Optode

• based on the principle of *photoluminescence quenching* 

• when light shines on luminescent material, electrons are excited to higher energy states and on their return emit light at characteristic wavelengths

• this excited electron can also return to its original energy state by interacting with an oxygen molecule, increasing the vibrational and rotational energy of the later

• for such photoluminescent quenching dyes, the amount of oxygen present can be related to the luminescent intensity by the *Stern-Volmer equation*,

$$I_{P_{O2}} = \frac{I_0}{1 + (k \cdot P_{O2})}$$

where, I = the luminescent intensity at a  $P_{O2}$ I<sub>0</sub> = the intensity in the *absence* of O<sub>2</sub>

= the *quenching constant* for the dye

• the advantages of this system are its simplicity and size, which allow intra-arterial insertion and measurement

• pH-sensitive dyes are also available, therefore , a three optode sensor can measure  $P_{02}$ ,  $P_{C02}$  and pH simultaneously

# PULSE OXIMETRY

• Kramer optically measured the  $O_2$  in arteries of animals in the early 1930's

• Karl Matthes in 1936 was the first to measure  $O_2$  from transmission of red and blue-green light through the human ear

• the term oximeter was coined by Millikan et al. in the 1940's

• they developed a lightweight oximeter, a smaller version of Matthes' design, which measured

SpO<sub>2</sub> by transillumination of the earlobe using red & green filters covering Kramer's photocells

 $\boldsymbol{\cdot}$  the signal detected from the photocell under the green filter later proved to be in the IR range

• there were two technical problems with this approach,

a. there are many non-Hb light absorbers in tissue

b. the tissues contain capillary & venous blood in addition to arterial blood

• these were overcome by first measuring the absorbance of the ear while it was compressed to remove all blood

• after this bloodless "baseline" measurement the ear was heated to "arterialise" the blood

• this device was shown to accurately predict intraoperative desaturations, however, due to the technical difficulties was never adopted on mass

#### Development

• in the early 1970's, the Japanese engineer Takuo Aoyagi was working on a dye dilution method for CO, using an earpiece densitometer

• he noted that the pulsatile components of the red & IR absorbances were related to the  $SpO_2$ 

• his prototype, built by Nihon Khoden, was tested clinically in 1973 and the first commercial prototype was available in 1974

• however, further refinements were required and widespread use did not eventuate until the early 1980's

#### • Nomenclature

- 1.  $SaO_2 = 100.(O_2 \text{ content})/(O_2 \text{ capacity})$ 
  - arterial blood saturation measured in vitro
  - $O_2$  content  $\neq 1.39$  x [Hb], but the amount of  $O_2$  which can combine with reduced Hb, *without* removing COHb or MetHb when they are present
  - thus, at high  $P_{aO2}$  the SaO<sub>2</sub> = 100%, irrespective of the [COHb + MetHb]
- 2.  $HbO_2 = oxyhaemoglobin concentration$  (fraction or %)
  - multiwavelength spectrometers measure all Hb species as fractions or percentages of the total [Hb] =  $HHb + O_2Hb + COHb + MetHb$
  - this has been inappropriately termed "fractional saturation"
  - SaO<sub>2</sub> computed from  $P_{O2}$  and pH approximates SaO<sub>2</sub>, not HbO<sub>2</sub>
- 3.  $SpO_2 = pulse oximeter saturation$

#### Methodology

• 2 wavelengths of light,

1. red = 660 nm

2. IR = 910-940 nm

• the signal is divided into two components,

- a. ac = pulsatile arterial blood
- b. dc = tissue + capillary blood + venous blood + non-pulsatile arterial blood

NB: all pulse oximeters assume that only the pulsatile absorbance is arterial blood

• for each wavelength, the oximeter determines the ac/dc fraction, which is *independent* of the incident light intensity = *pulse added absorbance* 

• then the *ratio* ( $\mathbf{R}$ ) of these is calculated,

$$R = (ac absorbance/dc absorbance)_{Red}$$

$$(ac absorbance/dc absorbance)_{IR}$$

$$=$$
 A<sub>660nm</sub> / A<sub>940nm</sub>

• this value varies from,

| a. | $SaO_2 = 100\%$ | R = 0.4        | (0.3)                 |
|----|-----------------|----------------|-----------------------|
| b. | $SaO_2 = 85\%$  | <b>R</b> = 1.0 |                       |
| c. | $SaO_2 = 0\%$   | R = 3.4        | (4.87) - Severinghaus |

• being a 2 wavelength device, the pulse oximeter assumes that there are only two light absorbing Hb species in arterial blood

• the photo-detector diodes of the sensor will also register *ambient light* 

• this interference is reduced by cycling the light signal from red only  $\rightarrow$  infrared only  $\rightarrow$  both off

• this is repeated at 480-1000 Hz in an attempt to subtract the ambient light signal, even when this is oscillating

• this allows accurate estimation of SaO<sub>2</sub> at arterial pulse frequencies ~ 0.5-4 Hz (30-240 bpm)

• data is averaged over several cycles

# Uses of Pulse Oximetry

### <u>Monitoring Oxygenation</u>

- 1. anaesthesia & recovery
- 2. intensive care i. non-invasive monitoring of - all ventilated patients - during weaning - respiratory / cardiac failure ii. risk of oxygen toxicity - neonates - chemotherapy, radiotherapy - paraquat poisoning iii. avoidance of repeated AGA's 3. emergency care & transport i. labour ii. premature & newborn infants iii. home & hospital monitoring for SIDS
  - iv. patients in remote locations XRay, MRI
  - v. "office" procedures dentistry, endoscopy

### Monitoring Circulation

- 1. systolic BP & pleth waveform appearance \*inflation better than deflation
- 2. sympathetic blockade with central neuraxis anaesthesia
- 3. autonomic dysfunction with valsalva manoeuvre
- 4. anecdotally reported uses patency of the ductus arteriosus
  - level of ischaemia in PVD
  - patency of arterial grafts
  - circulation in reimplanted digits or grafts

# • Other

- 1. optimisation of home  $O_2$  therapy
- 2. sleep studies
- 3. research

# Limitations of Pulse Oximetry

e.

- 1. SpO<sub>2</sub> *does not* indicate *oxygenation* unless [Hb] and CO are known
- 2. insensitive to directional changes in  $P_{aO2}$  above 80 mmHg
- 3. due to automatic gain, oximetry is relatively insensitive to *perfusion*
- 4. *errors* of saturation estimation

| eno                                                                         | rs of saturation estimati              | 011                                                                                                                                  |  |
|-----------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| i.                                                                          | signal to noise ratio                  | <ul> <li>vasoconstrictors</li> <li>shock or hypothermia, low perfusion pressure</li> <li><i>automatic gain</i></li> </ul>            |  |
| ii.                                                                         | motion artefact                        | ~ <b>0.5-4 Hz</b> range<br>- improved by <i>coupling</i> with the ECG signal                                                         |  |
| iii.                                                                        | light artafaat                         | - improved by coupling with the LCO signal                                                                                           |  |
|                                                                             | light artefact                         |                                                                                                                                      |  |
| iv.                                                                         | dyshaemoglobins                        |                                                                                                                                      |  |
|                                                                             | COHb indistinguis                      | hable from $HbO_2$ , $\therefore$ artefactually high reading                                                                         |  |
|                                                                             | MetHb absorbance                       | e in high at both $A_{660nm} \& A_{940nm} \rightarrow \text{ forces } R \rightarrow 1.0$                                             |  |
| v.                                                                          | anaemia                                | $\leq 15\%$ low error with Hb < 8.0 g/dl                                                                                             |  |
| vi.                                                                         | intravenous dyes                       | - methylene blue and indocyanine green                                                                                               |  |
| vii.                                                                        | pigments                               | - pigmented races $\rightarrow \uparrow$ false high readings<br>- nail polish $\downarrow$ transmitted light & may result in failure |  |
| viii.                                                                       | abnormal pulses                        |                                                                                                                                      |  |
|                                                                             | <ul> <li>venous waves</li> </ul>       | - TI, reflectance operation                                                                                                          |  |
|                                                                             | <ul> <li>ventilation</li> </ul>        | - a large paradox may lead to searching                                                                                              |  |
| ix.                                                                         | probe variability error                | S                                                                                                                                    |  |
| х.                                                                          | probe position                         | $\rightarrow$ the "penumbra effect"                                                                                                  |  |
| xi.                                                                         | electrocautery                         | - most unit are now immune                                                                                                           |  |
| xii.                                                                        | MRI interference                       | - rare, usually probe lead distorts MRI image                                                                                        |  |
| read                                                                        | ing failure                            |                                                                                                                                      |  |
| • F                                                                         | Freund <i>et al.</i> ~ 1.12% f         | ailure (cumulative > 30 mins) in 11,046 anaesthetics                                                                                 |  |
| • Gilles <i>et al.</i> ~ 1.1% incidence (2 x 15 mins) in 1,403 anaesthetics |                                        |                                                                                                                                      |  |
|                                                                             | ······································ |                                                                                                                                      |  |

# Patient Safety

• multiple studies showing superiority of oximetry to clinical judgement in detecting desaturation

• as yet, *no* published paper has shown a statistically significant reduction in *morbidity* and *mortality* resulting from the use of oximetry

• major problems relating to the detection of desaturation relate to,

- 1. what level of desaturation is *unacceptable*?
- 2. for how long is this unacceptable?
- 3. in whom do these limits apply?

• SpO<sub>2</sub> cycling repeatedly down to 30-40% has been recorded during sleep, without detectable end-organ damage, on both,

- 1. chronic mountain dwellers with polycythaemia
- 2. obese patients with obstructive sleep apnoea syndrome

• Cote *et al.* Anesth.1988 showed that at least 50% of desaturations,  $SpO_2 < 75\%$  were clinically undetected in children, hence praised use of  $SpO_2$ 

• however, no *morbidity* was documented in any patient, in either group resulting from hypoxia • Moller *et al.*, Anesth.1991, looking prospectively at 20,802 cases in which half were monitored by  $SpO_2$ , failed to show any reduction in morbidity or mortality, except for a decreased incidence of intraoperative myocardial ischaemia (?? this would seem contradictory)

the ASA Closed Claims Project, in reviewing 348 "preventable" deaths or injuries, came to the conclusion that "pulse oximetry....would have been efficacious in preventing injury in 138 cases."
using the ASA data, Caplan described 14 cases of arrest under spinal anaesthesia, 12 of whom had IV sedation/opioids without SpO<sub>2</sub> monitoring and hypoxia was believed to contribute
Eichorn, Anesth.1989, looked at 1,001,000 ASA I&II patients between 1976-1988 and found that,

- 1. 11 major anaesthesia related incidents, of which 7-8 related to inadequate  $O_2$
- 2. only 1 of these occurred after the introduction of  $SpO_2$  in mid-'85

• this paper was accompanied by an editorial by Orchin, which pointed-out that this was not statistically significant, and this, nor any other paper had yet shown a clear cost-benefit justification for the use of pulse oximetry

*NB*: Severinghaus concludes, "pulse oximetry *probably* did contribute to increasing the safety of anaesthesia...however, this change may have come through the device's educational role in promoting vigilance and awareness of inadequacies in technique"

| SpO <sub>2</sub> | P <sub>aO2</sub> | Clinical example                                                              |
|------------------|------------------|-------------------------------------------------------------------------------|
| 100 %            | > 250 mmHg       | • $FiO_2 = 40\%$                                                              |
| 97.5 %           | 100 mmHg         | • arterial, young adult                                                       |
| 96 %             | 80 mmHg          | <ul><li> arterial, elderly</li><li> venous from skin</li></ul>                |
| 93 %             | 70 mmHg          | respiratory failure                                                           |
| 91 %             | 60 mmHg          | venous, exercising muscle                                                     |
|                  |                  |                                                                               |
| 85 %             | 50 mmHg          | • cyanosis may be visible                                                     |
| 75 %             | 40 mmHg          | <ul> <li>mixed venous blood</li> <li>central cyanosis if [Hb] = 20</li> </ul> |
| 72 %             |                  | • central cyanosis if [Hb] = 18                                               |
| 66 %             |                  | • central cyanosis if [Hb] = 15                                               |
| 50 %             | 26 mmHg          | • $P_{50}$ of HbO <sub>2</sub> curve                                          |
| 32 %             | 20 mmHg          | coronary sinus blood                                                          |

# Cytochrome aa<sub>3</sub> Saturation Monitoring

- this enzyme is distal in the cytochrome oxidase chain and contains copper
- when oxidised this enzyme has an absorbance peak  $\sim 830 \text{ nm}$  in the near infrared range
- as this wavelength is absorbed by both Hb &  $HbO_2$ , simultaneous estimation of these must be carried out and *three wavelengths* must be used
- the device for measuring this, the *Niros scope* = near infrared oxygen sufficiency scope
- uses powerful laser diodes with sufficient light intensity to penetrate the skull
- · effectively only measures saturation in the superficial cortical layers

# CAPNOGRAPHY - ETCO<sub>2</sub>

- continuously monitors ETCO<sub>2</sub> by either,
  - a. in line sampling
  - b. aspiration sampling
- use infrared light at a wavelength ~ 4.28 nm
- in steady state conditions  $ETCO_2 \sim P_{aCO2}$  ( $\delta = 2-8 \text{ mmHg}$ )
- uses include,
  - a. respiratory monitoring in ICU/anaesthesia
    - i. ETT position
    - ii. ventilation adequacy
    - iii. disconnect alarm
    - iv. emboli (especially air)
  - b. control of  $P_{aCO2}$  (hyperventilation in head injury)
  - c. monitoring of muscle paralysis during anaesthesia
  - d. adequacy of cardiac massage during CPR
  - e. sleep apnoea study
  - f. research

• causes of a low ETCO<sub>2</sub> include,

- a. hyperventilation
- b. hypovolaemia, hypotension
- c. pulmonary embolus air, fat, amniotic fluid, thrombi, etc.
- d. IPPV and PEEP
- e. anaesthesia, muscle paralysis
- f. hypothyroidism
- g. hypothermia
- h. posture change from supine upright/lateral

• causes of a high ETCO<sub>2</sub> include,

| a. | hypoventilation                                                        | <ul><li>respiratory failure</li><li>narcotics</li></ul>                                                                                               |
|----|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| b. | increased CO <sub>2</sub> production                                   | <ul> <li>IV HCO<sub>3</sub><sup>-</sup></li> <li>trauma</li> <li>sepsis, pyrexia</li> <li>MH</li> <li>hyperthyroidism, storm</li> <li>MOSF</li> </ul> |
| c. | recovery after low CO state                                            | <ul> <li>post cardiac arrest</li> <li>post-hypovolaemia</li> </ul>                                                                                    |
| d. | increased $\boldsymbol{V}_{\rm D}$ with fixed $\boldsymbol{V}_{\rm M}$ | <ul><li>anatomical, physiological</li><li>apparatus</li></ul>                                                                                         |
| e. | increased inspired CO <sub>2</sub>                                     |                                                                                                                                                       |

# GASTRIC INTRAMUCOSAL pHi

Tonometric Method

• pHi is obtained *indirectly* from,

- 1. measuring  $P_{CO2}$  of the *gut lumen* with a silicone balloon tonometer
- 2.  $HCO_3^{-}$  level of *arterial blood*
- 3. subsitiution of these into the Henderson-Hasselbach equation

$$pH_i = 6.1 + \log \frac{[HCO_3^-]}{P_{CO_2} \times 0.031}$$

• this measurement is based on the *assumptions*,

- 1. superficial mucosal  $P_{CO2}$  is in equilibrium with luminal contents
  - mocosal tissue presents a definite barrier to CO<sub>2</sub> diffusion & gradients can exist
  - differences should be small in the most superficial layers
- 2. tissue  $[HCO_3^-]$  is in equilibrium with arterial blood
  - residual food in the stomach will stimulate acid secretion & raise the intramucosal [HCO<sub>3</sub><sup>-</sup>], ∴gastric *acid secretion* must be inhibited for the assumption to hold
  - validation studies by Antonsson (AJP, 1990) supported correlation under conditions of low-flow, no-flow, sepsis, anaphylaxis
- 3. the  $pK_{A'}$  for the H-H equation is the same as for plasma
- these correlate well with microprobe samples in normally perfused animals (r = 0.945)

• however, under conditions of low flow, especially no-flow, pHi *underestimates* the severity of tissue acidosis

• this dissociation appears to be a *linear function* of the rate of decline of intramucosal pH

*NB*: pHi provides an accurate & reproducible measure of actual pH in the most superficial layers, but not of the submucosal space

acid secretion & generation of an *alkaline tide* must be inhibited for the assumption that interstitial and arterial  $[HCO_3^-]$  are equal

# Determinants of pHi

• intramucosal acidosis may theoretically result from,

- 1. back-diffusion of acid,  $CO_2$  or both
- 2. systemic metabolic acidosis
- 3. local tissue acidosis
  - i.  $\uparrow VO_2$
  - ii. reduced mucosal perfusion /  $DO_2$

• back-diffusion of protons appears to be clinically insignificant

• intraluminal production of  $CO_2$  is directly proportional to the amount of acid entering the duodenum and being bufferred with pancreatic  $HCO_3^-$ 

- this may be reduced by,
  - a. aspirating acidic gastric contents
  - b. administration of a H<sub>2</sub>-receptor antagonist or proton pump inhibitor
- main sources of acid in normoxic tissues,
  - a.  $CO_2$  generated from *oxidative phosphorylation* ~ 15,000 mmol/d
  - b. ADP + H<sup>+</sup> generated from *ATP hydrolysis* ~ 150,000 mmol/d
    - cf. ~ 150 mmol/d excreted by the kidney (0.1%)

• under conditions of *no-flow*, H<sup>+</sup> generation is *greater* than ATP hydrolysis, presumable due to metabolism of other high energy phosphate compounds

- these H<sup>+</sup> ions are then buffered, producing the intramucosal  $\uparrow P_{CO2}$  seen in hypoxia
- the increased  $VO_2$  seen in septic patients is met by an increase in  $DO_2$

 $\rightarrow$  supply being *demand-dependent* 

• changes in ERO<sub>2</sub> seen in critical illness, *do not* appear to contribute significantly to intramucosal  $P_{CO2}$ , as pHi bears little/no relationship to ERO<sub>2</sub>

• in animal experiments, pHi remains in normal limits as  $DO_2$  is decreased, either by hypoperfusion or hypoxaemia, until the *critical point* is reached at which *supply-dependency* develops

• this occurs at a higher level in septic models, and *endotoxin* will decrease pHi in normally perfused models

• the *Fick principal* would dictate that mucosal  $P_{CO2}$  should rise in proportion to decreased flow, due to failure of CO<sub>2</sub> removal, however this is *not* supported by animal models

• therefore, the dominant mechanism for  $P_{CO2}$  rise is the *buffer principal*, that  $CO_2$  originates from buffering of H<sup>+</sup> ions

*NB*: pHi is indicative of mucosal *oxygenation*, and an abnormally low pHi provides an index of the inadequacy of mucosal oxygenation present

• quantification of dysoxia,

- 1.pH-gappHa pHi2.standardized pH $7.4 \log(P_{1CO2} / P_{aCO2})$
- others have used the tonometric  $P_{CO2}$  alone

# HUMIDIFICATION - IDEAL FEATURES

| a.       | inspired gas delivered to trachea at                                                           | - 32-36°C<br>- 90-100% humidity                                                   |
|----------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| b.       | no fluctuation of set temperature &                                                            | humidity with - time<br>- high gas flows<br>- gas composition                     |
| c.       | simple to use, service & sterilise                                                             |                                                                                   |
| d.       | low resistance to gas flow                                                                     | - useful for SV & IPPV<br>$\leq 5 \text{ cmH}_2\text{O}/1/\text{min}$ at 50 1/min |
| e.<br>f. | low compliancei.neonateii.childii.childiii.adult $< 5$ ml/cmH2Olow dead space                  |                                                                                   |
| g.       | inbuilt alarms for - high/low t<br>- over/unde                                                 | 1                                                                                 |
| h.       | protection against - microshoc<br>- scalding, o<br>- "rain out"<br>- dehydratio<br>- "drowning | overheating<br>on/overhydration                                                   |
| i        | maintenance of sterility                                                                       |                                                                                   |

i. maintenance of sterility

# • Complications - Dangers

- a. infection
- b. drowning
- c. burns
- d. electrocution

# Nasogastric Tubes

### Indications

- a. decompression of the stomach
  - air, fluid, drug ingestion, food
  - bowel obstruction, ileus, pyloric stenosis, SMA syndrome, etc
  - prior to intubation
  - to assist SV in infants (removal of air)
- b. drug administration antacids, charcoal, antibiotics
- c. enteral feeding impaired swallowing/reflexes
- d. diagnostic tool ruptured aorta - barium studies
  - mucosal pH
- e. gastric aspiration and lavage poisoning
  - hyperthermia

# Complications

| a. | <u>durir</u> | ng insertion           |                                                                                 |
|----|--------------|------------------------|---------------------------------------------------------------------------------|
|    | i.           | incorrect placement    | - trachea, bronchus, mediastinum                                                |
|    | ii.          | inability to insert    |                                                                                 |
|    | iii.         | haemorrhage            |                                                                                 |
|    | iv.          | perforation            | - nasal mucosa, oesophagus                                                      |
| b. | <u>durir</u> | <u>ig use</u>          |                                                                                 |
|    | i.           | ulceration             | - pharynx, oesophagus, stomach                                                  |
|    | ii.          | patient discomfort     |                                                                                 |
|    | iii.         | difficulty swallowing  |                                                                                 |
|    | iv.          | infection              | <ul> <li>gastric microaspiration</li> <li>sinusitis</li> </ul>                  |
|    | v.           | macroaspiration        | - incompetent LOS                                                               |
|    | vi.          | extragastric "therapy" | <ul><li>enteral feeding etc.</li><li>lung, mediastinum, pleural space</li></ul> |
|    | vii.         | metabolic              | <ul><li>metabolic alkalosis</li><li>hypokalaemia</li><li>fluid loss</li></ul>   |

# Nerve Supply - Nose

| a.              | ante                                                                                    | rior ethmoidal nerve                                                                             | - anter<br>- anter | rior and upper septum<br>rior roof<br>rior parts of middle & inferior chonchae<br>rolateral wall |  |
|-----------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------|--|
| b.              | infraorbital nerve                                                                      |                                                                                                  | - vesti            | - vestibule                                                                                      |  |
| c.              | 1                                                                                       |                                                                                                  |                    | <ul><li> ant. lower septum &amp; floor</li><li> ant. lower portion of the lateral wall</li></ul> |  |
| d.              | pterygopalantine ganglion branches - post. 3/4 of septum, roof, floor, and lateral wall |                                                                                                  |                    |                                                                                                  |  |
| e.              | nerve of pterygoid canal                                                                |                                                                                                  | - uppe             | er & post. roof & septum                                                                         |  |
| f.              | olfactory nerve                                                                         |                                                                                                  | - olfactory area   |                                                                                                  |  |
| <u>Septum</u> : |                                                                                         | anterior ethmoidal nerve<br>short sphenopalantine<br>long sphenopalantine                        |                    | - anteriorly<br>- superoposterior<br>- posterior                                                 |  |
| Lateral Wall:   |                                                                                         | anterior ethmoidal nerve<br>short sphenopalantine<br>greater palantine<br>ant. sup. dental nerve |                    | - anteriorly<br>- upper/middle chonchae<br>- inferior choncha<br>- inf. choncha & floor          |  |

# Transoesophageal Echocardiography

### Advantages

- 1. relatively noninvasive, low risk procedure in anaesthetised patients
- 2. excellent image quality
- 3. no interference with surgical field
- 4. stable continuous cardiac monitoring

# • Clinical Uses

- 1. global and regional cardiac function
- 2. monitoring for myocardial ischaemia
- 3. assessment of valvular function and integrity
- 4. assessment of anatomical abnormalities
  - i. atrial myxoma
  - ii. valvular vegetations
  - iii. mural thrombi
  - iv. calcific disease
- 5. detection of embolisation air, fat, thrombi, other
- 6. assessment of aortic dissection

# Indications

- 1. optimisation of *LV preload* in patients at risk of decompensation
  - i. severe LV or valvular dysfunction
  - ii. major vascular, thoracic or other surgery
- 2. monitoring for *myocardial ischaemia*
- 3. monitoring and assessment of valve replacement surgery
- 4. monitoring for VAE, or other embolisation
- 5. assessment of myocardial anatomy

# • Contraindications

2.

- 1. operator inexperience
  - oesophageal disease tumour
    - stricture, previous surgery
    - varices