Neuroendocrine Regulation

• the anterior, intermediate, and posterior lobes of the pituitary are effectively 3 separate endocrine organs, secreting 14 or more hormonally active substances

• the 6 established hormones secreted by the *anterior pituitary* are,

a.	thyroid stimulating hormone	TSH [§]
b.	adrenocorticotrophic hormone	ACTH
c.	growth hormone	GH
d.	follicle stimulating hormone	FSH [§]
e.	leutinizing hormone	LH [§]
f.	prolactin	PRL

NB: [§] these are *glycoproteins*, c.f. the others which are simple polypeptides

• the hormones of the *posterior pituitary* are,

- a. vasopressin ADH
- b. oxytocin

1.

• the pituitary is under control from,

hyp	othalamic hormones	
i.	thyrotropin releasing hormone	TRH
ii.	corticotropin releasing hormone	CRH
	• serotonin	
iii.	luteinizing hormone releasing hormone	LHRH
iv.	growth hormone releasing hormone	GHRH
v.	growth hormone releasing inhibiting hormone	GHRIH
	• somatostatin	
vi.	prolactin releasing factor	PRF
vii.	prolactin release inhibiting factor	PRIF
	• dopamine	

- 2. *negative feedback* from target endocrine glands/hormones
 - i. thyroid
 - ii. adrenal
 - iii. gonads

• Changes in Acute Stress

- 1. sympathetic NS and adrenal medulla \rightarrow
- 2. renin-angiotensin-aldosterone axis
- 3. hypothalamopituitary axis
- \rightarrow \uparrow catecholamines
- \rightarrow \uparrow angiotensin II + aldosterone
- → ↑ corticotrophin
 ↑ corticotrophin related peptides
 ↑ vasopressin
 ↑ prolactin

• ACTH is synthesised from *POMC*, which itself is synthesised in the,

- 1. corticotropes of the anterior lobe
- 2. intermediate lobe
- 3. hypothalamus
- 4. other parts of the CNS, the lungs, the GIT and in the placenta

• in the *corticotropes* this is hydrolyzed to,

- a. ACTH
- b. β -LPH β -lipotropin, a linear 91 AA polypeptide - contains the sequences for the *endorphins* (α , $\beta \& \gamma$) and *enkephalins*
- c. β -END small amount only
- d. γ-MSH
- during "stress" the gonadal steroids and thyroid hormones *decrease*
- pituitary production of LH, FSH & TSH may increase, decrease or remain unchanged

Endocrine "Stress Response"		
Sympathetic nervous system	noradrenaline	
Adrenal medulla	adrenaline & noradrenaline	
Renin-angiotensin axis	angiotensin II & aldosterone	
Neurohypophysis	antidiuretic hormone	
Adenohypophysis	• ACTH	
	 β-LPH 	
	 prolactin 	

Effect	Starvation	Sepsis	Trauma
BMR	-	+	+
Malnutrition	slow	rapid	rapid
Primary Hormones			
• glucagon	+	+	+
 catecholamines 	-	+	+
glucocorticoids	-	+	+
Energy substrates			
• glucose	-	+	+
 triglycerides 	-	+	+
• FFA	+	+	+
• ketones	+	-	-
• lactate	-	+	+
• alanine/glutamine	+	+	+
Energy supply sites			
 adipocytes 	+	±	+
• muscle	+	+	-
protein reserves	-	-	+
Metabolic processes			
 glycogenolysis 	+ (early)	-	-
 gluconeogenesis 	+ (early)	+	+
• proteolysis	+ (early)	+	+
 lipolysis 	+	+	+
 ketogenesis 	+	+	-
• ureagenesis	±	+	+

• Role of TPN

a.	starvation	- beneficial
		- reverses process
b.	sepsis	- little effect unless sepsis controlled
c.	trauma	preserves protein substrate supplydoes not prevent negative nitrogen balance

ADRENAL CORTEX

• the only steroids secreted in physiologically significant amounts are,

a.	mineralocorticoid	- aldosterone
b.	glucocorticoids	- cortisol, corticosterone

c. androgens - dehydroepiandrosterone, androstenedione

hypothalamus secretes CRH, which in turn increases pituitary secretion of ACTH ACTH release is also increased by,

1. ADH & oxytocin

2. angiotensin II

3. β -adrenergic agonists

• cortisol has direct negative feedback on both CRH release & the pituitary response to CRH

- ACTH release is also decreased by somatostatin, β -END and enkephalins

- ACTH is the *only* known stimulus to adrenal cortisol synthesis (? SNS input)
- plasma half-life ~ 10-15 min
- ACTH binds to specific receptors on the plasma membrane

 \rightarrow adenylate cyclase / cAMP / activated protein kinases

normal daily output of <i>cortisol</i>	~ 40-80	µmol/d	

- 1. maximum level ~ 220-770 nmol/l 08:00-09:00
- 2. minimum level < 220 nmol/l 22:00-24:00

• normal daily output of *aldosterone* ~ 0.1-0.7 μ mol/d

• response to *stress* \rightarrow

- 1. cortisol levels > 500 nmol/l
- 2. loss of diurnal rhythm
- 3. maximal output of adrenal cortex $\sim 550 \,\mu \text{mol/d}$ $\rightarrow \text{ plasma levels} \sim 1600 \,\text{nmol/l}$

• cortisol concentrations appropriate for acute illness are unknown

• there is *no correlation* between plasma cortisol levels and the severity of disease

• in critically ill patients, cortisiol replacement should be considered if,

- 1. baseline cortisol < 350 nmol/l
- 2. short synacthen rise < 250 nmol/l

Addison's Disease

i.

Aetiology

- a. *primary* adrenal insufficiency > 90% destruction of functioning tissue
 - autoimmune ~ 70% of cases
 - ~ 50% of whom have positive plasma Ab's
 - ii. infection
 - TB
 - overwhelming septicaemia
 - histoplasmosis, coccidioidomycosis, cryptococcosis
 - viral (CMV) especially in AIDS
 - iii. haemorrhagic/coagulopathic adrenal necrosis
 - overwhelming sepsis \rightarrow Waterhouse-Friderichsen syndrome
 - meningococcaemia (usually children), Pseudomonas, H. influenzae
 - · adults during pregnancy, or with anticoagulant therapy
 - · retroperitoneal haemorrhage following trauma or ruptured AAA
 - iv. surgical removal breast carcinoma

v.	rare causes	- bilateral metastatic carcinoma
		- amyloidosis
		- sarcoid

b. *secondary* adrenal insufficiency

- i. hypopituitary syndromes
 - post-partum necrosis Sheehan's syndrome
 - pituitary apoplexy acute haemorrhagic infarction of adenoma
- ii. pituitary supression by *exogenous steroids*
 - increases with \uparrow doses > physiological range
 - \uparrow duration of therapy (may be seen after 5 days)
 - daily dose > 37.5 mg hydrocortisone
 - > 7.5 mg prednisolone
 - > 2 mg dexamethazone
- iii. pituitary supression by steroid secreting tumours
- c. interference with *hormone synthesis*
 - congenital hypoplasia
 C₂₁-hydroxylase
 C₁₁-hydroxylase
 C₁₁-hydroxylase
 C₁₁-hydroxylase
 C₁₁-hydroxylase
 C₁₁-hydroxylase
 - ii. enzyme inhibitors
- metyrapone, mitotane, aminoglutethamide
- ketoconazole, etomidate

iii. cytotoxics

i.

- d. enhanced metabolism
 - *rifampicin* induces cytochrome P_{450} & may unmask latent hypoadrenalism

Precipitating Factors

- a. surgery, trauma, sepsis
- b. severe acute illness
- c. cessation of steroid therapy
- d. commencement of thyroid hormone replacement
- e. coagulopathy

Clinical Features

a.	weakness, fatigue ~ 100%
b.	excess pigmentation ~ 90%
c.	hypotension \pm hypovolaemia ~ 90%
d.	vomiting, diarrhoea, abdominal pain~ 60%
e.	biochemistry
	i. mild <i>hyponatraemia</i> , hypoosmolality ~ 90%
	ii. <i>hyperkalaemia</i> (Na ⁺ :K ⁺ ratio $< 25:1$) ~ 70%
	iii. <i>hypoglycaemia</i>
	iv. mildly elevated urea
	v. mild anion gap <i>acidosis</i> - renal impairment, hypovolaemia, lactate, etc. + mild type IV RTA
	vi. hypercalcaemia
f.	FBE
	i. normocytic anaemia - may be masked by hypovolaemia
	ii. eosinophilia & lymphocytosis
g.	short Synacthen test * Synacthen 250 µg IMI
	i. no response - primary adrenal failure
	ii. normal response - hypopituitarism
h.	 thyroid function tests R_x for <i>myxoedema</i> must include hydrocortisone to guard against adrenal crisis may have ↑ TSH with low-normal T₄ levels, reversible with cortisol
:	CT accon may show be marked or consideration

i. CT scan - may show haemorrhage or carcinomatous infiltration

• crisis patients may appear clinically "septic", however *eosinophilia* and *hypoglycaemia* are unusual findings in sepsis *per se*

• patients with primary ACTH deficiency,

- 1. are not hyperpigmented absence of excess ACTH & MSH
- 2. not hyperkalaemic adrenal responds to angiotensin II

Short Synacthen Test ¹				
Sample 1	09:00 ²	• 220-770 nmol/l		
Sample 2 Sample 3	09:30 10:00	 > 270 nmol/l > 500 nmol/l 	increase minimum	
¹ Synacthen 0.25 mg IM				
² in Addison's baseline levels are frequently $< 100 \text{ nmol/l}$				

NB: if secondary adrenal insufficiency is suspected (ACTH < 10 ng/l), then

Synacthen 1 mg IM daily / 3 days SST performed 48 hours post last dose

Treatment

- a. O_2 and ventilatory support
- b. IV fluids
 - i. colloids to restore blood volume
 - ii. saline to replace Na⁺ deficit
 - iii. hypoglycaemia $\rightarrow D_{50}W \sim 50 \text{ ml} / 5 \text{ mins}$
 - iv. hyperkalaemia rarely requires specific therapy per se
- c. hydrocortisone \rightarrow 200 mg stat, then 100 mg q6h
 - theoretically, a loading dose of 10 mg, followed by 8-10 mg/hr is sufficient
 - this gives a total dose of 200 mg / 24 hrs, which is normal maximal production
- d. inotropes / vasopressors prn may have decreased sensitivity
- e. treatment of primary cause, or initiating factor

• Major Surgery

• excess replacement is associated with,

- 1. \uparrow susceptibility to infection
- 2. poor wound healing
- 3. \downarrow glucose tolerance
- *NB*: the normal adrenal response to major surgery \sim 75-150 mg / 24 hrs
 - R_x hydrocortisone 25 mg stat, followed by 25 mg qid

Cushing's Syndrome

Aetiology

a.	iatrogenic steroid administrati	on = most common	l
b.	pituitary adenoma	~ 70%	(of remainder)
c.	ectopic ACTH	~ 15%	
	\rightarrow biochemical effects,	not clinically Cushin	goid
d.	adrenal adenoma / carcinoma	~ 15%	
Clinical	Features		
a.	truncal obesity ~	90%	
b.	 hypertension ~ ↑ renin substrate, ↑ vascular 	80% reactivity, ↑ blood ve	olume 2° fluid re
c.	plethoric face ~	75%	

• <u>C</u>

a.	truncal obesity	~ 90%
b.	 hypertension ↑ renin substrate, ↑ vasc 	~ 80% cular reactivity, \uparrow blood volume 2° fluid retention
c.	plethoric face	~ 75%
d.	hirsutism	~ 70%
e.	proximal myopathy	~ 60%
f.	osteoporosis	~ 60%
g.	bruising, striae	~ 50%
h.	poor wound healing	~ 40%

NB: patients with excess "ACTH" from rapidly growing tumours (eg. oat cell) usually present with hypokalaemia, muscle weakness & wasting, and hyperpigmentation; cf. ACTH from *slowly* growing tumours (ovary, thyroid medullary, thymic, pancreatic, bronchial adenoma), which present with classical Cushingoid features

Electrolyte Abnormalities

- high Na⁺, HCO_3^- & glucose a.
- low K⁺ & Ca⁺⁺ b.
- metabolic alkalosis c.

Secondary Endocrine Effects

- insulin resistance / glucose intolerance a.
- \uparrow urinary Ca⁺⁺ excretion / \downarrow GIT absorption 2° hyperparathyroidism b. \propto
- antagonism of GH effects c.
- \uparrow ACTH \rightarrow \uparrow pigmentation d.
- e. androgen excess

Laboratory Investigations & Diagnosis

- 1. increased urinary 17-(OH)-steroids
 - urinary 24 hr cortisol reflects freely filtered, ie. unbound cortisol and reflects hypercortisolaemia
 - may be falsely positive with stress or depression, & negative with renal failure
- 2. high plasma cortisol and loss of *diurnal variation*
 - normal range ~ 140-690 nmol/l
 - trough level ~ 2400 hrs
 - peak level ~ 0600 hrs
- 3. dexamethasone suppression test
 - · normal pituitary secretion is suppressible. cf. autonomous adenoma
 - suppressible function *excludes* Cushing's with 98% specificity
 - i. *low dose*
 - day 1 baseline 09:00 plasma cortisol, *optional*
 - dexamethasone 2mg orally at 23:00
 - day 2 09:00 plasma cortisol < 140 nmol/l
 - < 50% of baseline on day 1
 - false positives depression, alcohol abuse, "stress", OCP, 20-35% of obese

ii. *high dose*

- plasma cortisol & ACTH daily 09:00 for 7 days
- day 1,2 baseline, no dexamethasone
- day 3,4 dexamethasone 2 mg/d
- day 5,6,7 dexamethasone 8 mg/d
- failure to suppress usually indicates *ectopic ACTH* or neoplasm
- LIGW states suppression not achievable in *critically ill* ??
- 4. ACTH level
 - i. low → adrenal autonomy (< 20 pg/ml) → suppression by exogenous steroids
 ii. normal / high → pituitary
 - iii. very high \rightarrow ectopic ACTH
- 5. localisation procedures
 - i. pituitary ~ 50% demonstrable by MRI
 - selective inferior petrosal vein sampling for ACTH
 - ii. adrenal majority demonstrable by CT

Management

- 1. resection of *pituitary microadenoma*
 - usually trans-sphenoidal approach
 - · Roizen, "anecdotally higher CVP and greater blood-loss, cf. other microadenoma"
- 2. unilateral / bilateral *adrenalectomy*
 - · preoperative suppression of hypothalamic/hypophyseal axis
 - → *glucocorticoid* supplementation postoperatively
 - \rightarrow *mineralocorticoid* supplementation after several days
 - ~ 10% will have an undiagnosed *pituitary adenoma*, (Nelson's syndrome)
 - i. rapid enlargement following adrenalectomy
 - ii. \uparrow pigmentation due to ACTH/MSH secretion
 - iii. field defects / hypopituitarism from mass effect

3. radiotherapy

4. *medical therapy*

- tumour (pituitary, adrenal, ectopic) not amenable to surgical resection
- following unilateral adrenalectomy for adenoma/carcinoma, the other gland frequently enlarges & hypersecretes

i. <i>ketoconazole</i>	 ~ 200-300 mg q6h - inhibits cytochrome P₄₅₀ dependent steroid synthesis * also affects hepatic function, ∴ monitor LFT's
ii. metyrapone, mitotaneiii. spironolactoneiv. cyproheptadine	 inhibition of steroid synthesis aldosterone antagonist hypothalamic <i>serotonin</i> (CRH) antagonist

- **NB:** the aim of therapy is *complete* adrenal suppression,
 - \ may require perioperative *steroid replacement*

Phaeochromocytoma

- rare *neuroectodermal* tumour \rightarrow "autonomic hyperreflexia"
- produces different features in children and adults,
 - a. episodic or sustained hypertension
 - b. malignant hypertension
 - c. palpitations, tachyarrhythmias
 - d. angina, CCF
 - e. headaches
 - f. nausea, vomiting, weight loss
 - g. abdominal or thoracic pain
 - h. profuse diaphoresis

"Rule of Tens"

NB: all of the following occur with ~ 10% *incidence*,

- 1. *not* associated with hypertension
- 2. occur in children
- 3. occur as a familial tendency * *MEN II*, MEN IIb
 - medullary carcinoma of the thyroid (*p*arafollicular)
 - phaeochromocytoma & parathyroid adenoma
- 4. multiple tumours
- 5. extra-adrenal location
- 6. extra-abdominal location if extra-adrenal

Diagnosis

ii.

- a. elevated urinary metabolites * 24 hr urine
 - i. spot metanephrine $> 0.8 \mu g$ per mg of creatinine
 - *metanephrine $> 2.2 \,\mu g \,/\,mg$ creatinine
 - iii. *VMA $> 5.5 \mu g / mg$ creatinine
- b. raised urinary free catecholamines
- c. elevated plasma catecholamines
- d. CT with ¹³¹I-labelled MIBG (¹³¹I-meta-iodobenzylguanidine)

• Complications

- a. malignant hypertension
- b. intracranial haemorrhage
- c. arrhythmias
- d. cardiomyopathy, IHD/AMI, LVF
- e. decreased intravascular volume

Emergency Management

- a. phentolamine 2-5 mg IV prn
- b. IV fluid expansion
- c. nifedipine 10 mg SL
- d. \pm low dose β -blockers

Preoperative Preparation

NB: **a**-blockers + **b**-blockers + **a**-methyltyrosine

- 1. control hypertension BP < 160/90 mmHg for 48 hrs
- 2. orthostatic hypotension $BP \sim 80/45 \text{ mmHg}$
- no ST/T wave changes on ECG for > 2 weeks
 ?? this may take weeks to months to achieve
- 4. VPB's < 1 per 5 mins

Anaesthetic Management

NB: * avoid drugs which release endogenous catecholamines, histamine, etc.

• intraoperative problems, *prior* to tumour removal,

- a. hypertensive episodes intubation, laryngoscopy - surgical stimuli
 - tumour manipulation
- b. haemorrhage from surgical site
- c. arrhythmias
- d. LVF

• intraoperative problems, *following* to tumour removal,

a.	hypotension	 relative lack of catecholamines unopposed α/β-blockade blunted reflexes relative hypovolaemia
b.	hypovolaemia	blood lossvasodilatation
c.	hypoglycaemia	 relative lack of catecholamines insulin resistance β-blockade
d.		n/tachycardia up to 2 weeks postoperatively

- e. incomplete removal return of signs/symptoms
- NB: all patients should have repeat urinary screen 2/52 following removal

Conn's Syndrome

Def'n:	benign <i>adenoma</i> of the zona glomerulosa of the adrenal cortex
	rarely due to bilateral hyperplasia or carcinoma

a.	hypertension	- mild dias \pm headache	tolic hypertension es
b.	hypokalaemia	- polyuria	evere s ± paralysis 2° nephrogenic DI , PVC's, arrhythmias
c.	metabolic alkalosis		
d.	polyuria	∝ hypokal ± polydips	aemic nephrogenic DI ia
e.	biochemistry		
	i. hypokalaemic n	netabolic alka	llosis
	ii. hypernatraemia		- Na ⁺ retention + water loss (DI)
	iii low plasma reni	n activity	- ie not 2° hyperaldosteronism

- iii. low plasma renin activity ie. not 2° hyperaldosteronism
- f. oedema * classically *absent*
 - exhibit intrinsic renal "escape" from mineralocorticoid
 - may occur in longstanding cases 2° to CCF & azotaemia

Diagnosis

- 1. diastolic hypertension *without* oedema
- 2. hypersecretion of *aldosterone* no decrease with volume expansion
- 3. hyposecretion of *renin* low PRA
 - * no rise with volume depletion

• Hypokalaemic Alkalosis

1.	diuretics	- low Na ⁺ & Cl ⁻ - high urea
2.	vomiting	 very low Cl⁻, low/normal Na⁺ high urea
3.	diarrhoea laxatives	 low Cl⁻, normal Na⁺ high urea
4.	mineralocorticoid excess	- normal/ <i>high</i> Na ⁺ & Cl ⁻ - normal urea

5. citrate metabolism & correction of acidosis following massive blood transfusion

Secondary Hyperaldosteronism

- 1. nephrotic syndrome[§]
- 2. cirrhosis[§] *see below
- 3. CCF[§]
- 4. pre-renal failure[§]
- 5. renal artery stenosis
- 6. bronchogenic carcinoma

NB: §decreased effective circulating blood volume

- HPIM classifies these as follows,
 - 1. *normotensive* states
 - i. pregnancy
 - ii. diuretic therapy
 - 2. *hypertensive* states

i. ii.

- 1° reninism renin secreting tumours
 - 2° reninism renal artery stenosis (FMD, atheroma)
 - arteriolar nephrosclerosis
 - accelerated hypertension
- iii. diuretic therapy
- 3. *oedematous* states
 - i. cirrhosis
 - ii. nephrotic syndrome
 - iii. CCF
- 4. Bartter's syndrome

• Cirrhosis

• the diminution of effective plasma volume activates the renin-angiotensin system with elevation of plasma *aldosterone*, further enhanced by the decreased metabolism in the liver

however, early theories that hyperaldosteronism *per se* is responsible for the sodium retention in cirrhosis have been questioned

- there appears to be *dissociation* of aldosterone & distal tubular sodium reabsorption
- the dominant factor appears to be decreased distal delivery of filtrate
- this may relate to,
 - 1. impaired intrarenal *PGE*₂ synthesis
 - 2. direct renal effects of angiotensin II
 - 3. direct effects of the SNS
 - 4. decreased kinin synthesis

Bartter's Syndrome 1. autosomal recessive - frequently symptomatic in childhood 2. renal juxtaglomerular apparatus hyperplasia 3. high plasma renin activity, angiotensin I/II & aldosterone secretion 4. normal BP decreased vascular response to noradrenaline & angiotensin II[§] • 5. hypokalaemia \pm alkalosis ± hypomagnesaemia • weakness & periodic paralysis nephrogenic DI • polyuria \rightarrow overproduction of *prostaglandins* \rightarrow altered Na⁺/K⁺ handling NB: the principal defect is reduced NaCl absorption in the *thick ascending LOH* ↑ renin-angiotensin-aldosterone \rightarrow volume depletion \rightarrow • \uparrow NaCl delivery to the late DT + \uparrow aldosterone \rightarrow severe K⁺ wasting • defective function of TA-LOH results in *hypomagnesaemia* & exacerbation of K⁺ wasting \uparrow PGE₂, PGI₂ • hypokalaemia \rightarrow further T renin secretion \rightarrow ↑ renal kallikrien \rightarrow • angiotensin-II & aldosterone ↑ plasma *bradykinin* • normal BP reflects, a. \downarrow vasopressor activity of angiotensin-II - ? diminished by downregulation b. vasodepressor actions of PGE₂ & bradykinin Treatment

a.	oral K ⁺ supplementation	
b.	propranolol /atenolol	- \downarrow renin release
c.	captopril	- \downarrow angiotensin II
d.	spironolactone	- antagonise angiotensin
e.	PG synthesis inhibition	 indomethacin, ibuprofen aspirin

NB: $\rightarrow \equiv^{\mathrm{T}}$ opposite to *RTA*

HYPOPITUITARISM SIMMOND'S DISEASE

- Aetiology
 - a. hypophysectomy
 - b. irradiation
 - c. chromophobe adenoma
 - d. post-partum pituitary necrosis- Sheehan's syndrome
 - e. sarcoidosis
 - f. TB meningitis
 - g. head injury

• presentation is *age dependent*,

- a. child \rightarrow dwarfism, failure to thrive
- b. adult \rightarrow *hypothyroidism* + loss of 2° sex characteristics
 - characteristic order of function loss,
 - i. hypothyroidism
 - ii. loss of 2° sex characteristics
 - iii. bitemporal hemianopia
 - iv. coma hypothyroid
 - hypoglycaemia
 - Addison's
- *NB: aldosterone* production usually masks ACTH & cortisone deficiency *central DI* occurs late in the disease course

CARCINOID SYNDROME

- *Def'n:* clinical syndrome due to *malignant* and *metastatic* carcinoid tumour which releases vasoactive substances in sufficient quantities to cause *systemic effects*,
 - 1. serotonin, histamine
 - 2. bradykinin, kallikriens
 - 3. PGE & PGF

• only ~ 5% of patients with a tumour develop the *carcinoid syndrome*

- the *primary* site is usually either,
 - 1. jejunum or ileum
 - 2. bronchus
 - 3. ovary

Clinical Presentation

- 1. episodic flushing
- 2. cyanosis
- 3. asthma
- 4. vomiting, abdominal pain, *diarrhoea*
- 5. fever
- 6. tachyarrhythmias
- 7. telangectasia*
- 8. tricuspid regurgitation*
- 9. pulmonary stenosis* *occur later

Investigations

- a. *hypoglycaemic* episodes
- b. hypoalbuminaemia
- c. increased urinary excretion of **5HIAA** ($\geq 10 \text{ mg/day}$)

Indications for Surgery

- a. primary resection
- b. debulking of metastases
- c. vascular surgery

• medical therapy is aimed at blockade of active hormonal agents,

1.	somatostatin	~ 50 µg IV or SC
2.	$5HT_1$ receptors	- <i>ketanserin</i> ~ 5-10 mg/hr
3.	5HT & H_1 receptors	 <i>methotrimeprazine</i> 2.5-5.0 mg IV cyproheptadine 4-8 mg ó tds
4.	H ₂ receptors	- <i>ranitidine</i> / cimetidine
5.	bradykinin	- steroids reduce release
6.	kallikrein	- aprotinin 200,000U over 60 min preop

THYROID DYSFUNCTION

• functions of thyroid hormones,

- 1. regulation of basal VO₂ \rightarrow \uparrow NaK-ATPase, mitochondrial function
- 2. regulation of lipid and CHO metabolism
- 3. normal growth & maturation * especially CNS

thyrotrophin releasing hormone acts predominantly in the adenohypophysis to release TSH
however, also found in,

- 1. neurohypophysis, brain, brainstem, medulla, spinal cord
- 2. pancreas, GI tract
- 3. adrenal
- 4. placenta

other actions include partial opioid antagonism and inhibition of pancreatic secretion *thyroid stimulating hormone* is released in response to TRH and is inhibited by,

- 1. T_3 / T_4
- 2. somatostatin
- 3. glucocorticoids
- 4. *dopamine* TRHIH

• T_3 has ~ 3x the potency of T_4 & 85-90% of the circulating T_3 is formed peripherally from T_4

• hence, virtually all of the activity of peripheral T_4 is due to $T_3 \rightarrow ie. T_4 \equiv prohormone$

• normally ~ 45% of $T_4 \rightarrow \mathbf{rT}_3$ which is effectively inactive

• ratio of rT₃:T₃ increased by,

- 1. severe systemic illness
- 2. malnutrition
- 3. drugs propylthiouracil, propranolol, glucocorticoids amiodarone

Thyroid Hormone Binding				
Protein	Concentration (mg/dl)	Half-life (days)	T ₄ binding %	T ₃ binding %
Albumin	3,500	13	13	53
TBG	2	5	67	46
TBPA	15	2	10	1
Total percentage	protein bound:	99.98%	99.8%	
Normal Plasma level:			13-23 pmol/l	4-8 pmol/l

Thyroid Function Tests

		Hypo- thyroid	Lower limit	Normal	Upper limit	Hyper- thyroid
TSH	mU/l	> 4.5	0.2-0.4	0.5-3.5	3.6-4.5	< 0.2
Free T ₄	pmol/l	< 8	8-12	13-23	24-26	> 26
Free T ₃	pmol/l			4-8	8.1-10	>10

• in pituitary (secondary) hypothyroidism, the TSH is low relative to FT $_4$

• TSH levels are suppressed by adequate replacement in 1° hypothyroidism, but allow 8 weeks

• in early 1° hypothyroidism, plasma TSH is a more sensitive marker than FT_4

• patients on adequate replacement have plasma FT₄ levels at the upper range of normal

• FT_3 is insensitive in 1° hypothyroidism as levels only fall late in the disease

• artefactual increases in *total* T_4 occur with increases in TBG,

- 1. OCP, pregnancy
- 2. hepatitis
- 3. biliary cirrhosis

• decreases in TBG occur in,

- 1. androgen therapy, corticosteroids
- 2. chronic liver disease
- 3. severe systemic illness * malnutrition, CRF, autoimmune

NB: free hormone levels should always be used, as they correlate better with metabolic state and are uninfluenced by alterations of protein binding

• may also perform *TRH stimulation* test to assess 2° hypothyroidism & TSH response

• Other Tests

- 1. ultrasound thyroid masses, cystic, nodular, multinodular - needle biopsy
- 2. radionuclide scan
- 3. autoantibodies anti-thyroglobulin, anti-thyroid microsomal - thyroid stimulating
 - especially for multinodular lesions
- 4. CT neck/thoracic inlet

Sick Euthyroid Syndrome

· severe illness, caloric deprivation, physical trauma, physiological stress may result in,

- 1. altered regulation of TSH sercetion
 - \downarrow serum TSH \rightarrow diagnosis of primary hypothyroidism difficult
 - TSH decreases markedly at 24-48 hrs, then tends to return to normal
- 2. ↓ peripheral conversion to T₃ → ↑ rT₃
 inhibitor of peripheral *5-monodeiodination* ? cortisol, starvation
- 3. \downarrow protein binding of thyroid hormones
 - circulating inhibitor of thyroid hormone binding to TBP's
 - artefactual decrease in resin uptake of $T_3 \& \therefore$ the FTI is also low
- 4. FT₄ levels are low/normal & plasma $t_{\mu\beta}$ ~ 1-5 days cf. normal ~ 7 days
- 5. *euthyroid state* is maintained by increased tissue T_3 receptors
- *NB*: \downarrow serum T₃ T₄ may be low, normal, or rarely \uparrow 'd

• the presence of a very low T_4 in severe non-thyroidal illness \rightarrow *poor prognosis*

- measurements of T_3 , T_4 and levels of hormone binding are usually adequate
 - *NB*: when direct assays of FT₄ are low, studies giving replacement show *no improvement* in survival, therefore these patients are considered *euthyroid*

• differentiation from hypothalamic hypothyroidism can be helped by 3rd generation sensitive TSH assays,

- a. non-thyroidal ilness $> 0.05 \ \mu U/ml$
- b. hypopituitary insufficiency $< 0.05 \ \mu U/ml$
- *NB:* prolonged *dopamine* infusion may produce true *secondary hypothyroidism* due to direct dopamine suppression of TSH secretion, some would provide thyroxine replacement in this group

• when the calculated FTI is low, presumably due to inhibition of TBP's, a euthyroid state is established by a *normal TSH*

NB: abnormal thyroid function studies in acutely ill patients, *without* clinical signs of thyroid disease, should *not* be treated but reviewed after the acute illness has resolved (LIGW)

Hyperthyroidism

i.

Causes

- 1. disorders associated with *thyroid hyperfunction*
 - *intrinsic* \rightarrow thyroid autonomy
 - hyperfunctioning thyroid adenoma
 - toxic multinodular goitre
 - ii. *extrinsic* \rightarrow abnormal thyroid stimulator
 - excess TSH *rarely* with pituitary adenoma
 - Graves' disease most common, diffuse multinodular goitre
 - LATS, LATS-p, TSI, and TBII
 - trophoblastic tumour choriocarcinoma (TSH-like)
- 2. disorders *not* associated with thyroid hyperfunction
 - i. disorders of hormone storage
 - subacute thyroiditis with or without neck pain
 - chronic throiditis with transient thyrotoxicosis (CT/TT)
 - ii. extrathroidal source of hormone
 - thyrotoxicosis factitia exogenous ingestion
 - ectopic thyroid tissue struma ovarii
 - functioning follicular carcinoma
- 3. *pregnancy* ~ 5%, up to 3-6 months post-partum

• Grave's Disease

• 3 clinical manifestations, which may appear separately or in combination,

- 1. hyperthyroidism with diffuse multinodular goitre
- 2. dermopathy
- 3. opthalmopathy

NB: most common cause, diffuse multinodular goitre

circulating IgG class Ab's attach to TSH receptor - LATS, LATS-p, TSI, and TBII
high association with other *autoimmune* diseases,

- 1. pernicious anaemia
- 2. IDDM
- 3. Addison's disease
- 4. myasthenia gravis

• phases of exacerbation/remission, frequently progressing to thyroid failure & hypothyroidism

• Toxic Multinodular Goitre

results from an *autonomous nodule* & often seen in elderly patients with a long history of goitre
onset is often slow & may present with,

- 1. myopathy
- 2. resistant atrial fibrillation

Major Clinical Manifestations

- a. nervousness, agitation, insomnia
- b. weight loss, increased apetite
- c. diarrhoea \pm fluid & electrolyte disturbances if severe
- d. warm moist skin, heat intolerance
- e. muscular weakness especially proximal mm.
 - common in *apathetic* form & in elderly
- f. cardiac dysrhythmias AF, VEB's, sinus tachycardia
- g. cardiac / papillary muscle dysfunction \pm mitral valve prolapse
- h. congestive heart failure
- i. menstrual abnormalities

k.

- j. Grave's disease \rightarrow ocular signs
 - sympathetic overstimulation - widened palpebral fissure i. - stare, lid-lag *opposite of Horner's - failure to wrinkle brow on upward gaze - tremor of eyelids on closing ii. - inability of upward / outward gaze ophthalmoplegia - failure to converge, proptosis iii. - chemosis, conjunctivitis congestive oculopathy - periorbital swelling, corneal ulceration iv. other manifestations - optic neuritis | atrophy - hypertrophy of lacrimal glands *apathetic* form most commonly seen in the elderly - resistant AF, CCF
 - \pm proximal myopathy

Investigations

- 1. biochemistry
 - hypercalcaemia, hyperglycaemia
 - hypokalaemia, hypomagnesaemia
 - *type I RTA* \rightarrow metabolic acidaemia
 - \uparrow ALP and hyperbilirubinaemia often occur
- 2. blood picture \pm mild leukocytosis
- 3. TFT's
 - plasma TSH is unrecordable and non-responsive to TRH
 - FT_4 / FT_3 levels are elevated
 - rarely FT_3 levels are increased in isolation in T_3 thyrotoxicosis variant

Management General

• when the thyroid is functioning abnormally the *cardiovascular system* is the one most stressed

- although **b**-blockade will control the rapid HR, this carries the risk of precipitating CCF
- however, decreasing the *ventricular rate* will usually improve LV filling and function
- occasionally patients require emergency surgery with uncontrolled hyperthyroidism, and control of the rate with propranolol (or esmolol) is unavoidable
- its use in this situation should be cautious, with the aid of PAOP measurement
- the aim, however, is not to anaesthetise anyone prior to control of their hyperthyroidism, ie. "life-threatening" cases only
- control may be achieved by the use of "anti-thyroid" medications, such as *propylthiouracil* or methimazole, both of which decrease the synthesis of thyroxine
- PTU also decreases the peripheral conversion of $T_4 \rightarrow T_3$
- there is now a trend toward preparation with β -blocker and iodides alone
- the later approach is quicker, 7-14 days, c.f. 2-6 weeks for the former
- both methods treat the symptoms and achieve *devascularisation* of the gland
- however, the later does not treat the abnormalities of LV function

• regardless of the approach, anti-thyroid medication should be administered chronically and through the morning of surgery

- prior to the euthyroid state being achieved, control during surgery may be achieved with
- propranolol ~ 0.2 to 10.0 mg IV, providing CCF does not supervene
- fluid and electrolyte balance should also be restored
- treatment with β -blockers *does not* invariably prevent the onset of *thyroid storm*
- some recommend anticholinergics be avoided, due to the inhibition of sweating and tachycardia

• patients possessing large goitres and obstructed airways can be handled in the same way as for any patient with *upper airway obstruction*,

- a. premedication should avoid excessive sedation
- b. an airway should be established, often with the patient awake
- c. a firm armoured tube should be used
- d. ? the patient should not be paralyzed prior to intubation

• preoperative CT scanning may be desirable to determine the extent of *compression* and *retrosternal extension*

• the most important perioperative *complications* of thyroid surgery include,

- 1. thyorid storm
- 2. recurrent laryngeal nerve injury
- 3. hypocalcaemic tetany

• bilateral recurrent laryngeal nerve injury results in *stridor* and airway obstruction due to unopposed adduction of the vocal cords and closure of the glottic aperture

• immediate intubation is required, usually followed by *tracheostomy*

• unilateral recurrent laryngeal nerve injury often goes unnoticed due to compensation by the patent side

Thyroid Storm

- 1. without treatment \rightarrow *mortality* ~ 10-20%
- 2. F > M usually unrecognised or poorly controlled Grave's disease
- 3. $\uparrow T_3 \& FT_4$ but levels *do not* correlate with the severity of the state
 - results more from loss of *end-organ* ability to modulate response
- 4. precipitating factors ~ 50%
 - i. intercurrent illness especially infection
 - ii. trauma
 - iii. operative procedures
 - iv. uncontrolled diabetes mellitus
 - v. *labour* and pre-eclampsia/eclampsia
- 5. associated with surgery
 - excessive palpation of the gland
 - incomplete preparation
 - inadequate doses of β-blockers perioperatively

6. uncommon factors

- radio-iodine in unprepared patients
- iodide drugs amiodarone, haloperidol
- large doses of thyroid hormones ~ 3-7 days onset
- *NB*: now *uncommon* in association with thyroid surgery

Clinical Presentation

1.	fever	≥ 41°C * usually absent in uncomplicated thyrotoxicosis - usually moist warm skin	
2.	CVS	 dyspnoea and fatigue sinus <i>tachycardia</i> (may be > 160 bpm) resistant AF, <i>ventricular arrhythmias</i> <i>congestive failure</i>, cardiomegaly ± ECG changes of LVH mitral valve prolapse (both treated and active disease) 	
3.	CNS / MSS	 tremor, increasing restlessness, nervousness and insomnia progressing to <i>delerium</i>, then <i>coma</i> and death hyperactive tendon reflexes, hyperkinesis muscle weakness, especially in<i>apathetic</i> form syndrome ≡^t UMN lesion with asymmetrical reflexes <i>rhabdomyolysis</i> 	
4.	GIT	 nausea, vomiting and diarrhoea poor <i>oral bioavailability</i> of drugs, rapid intestinal transit severe abdominal pain, suggesting intra-abdominal pathology <i>jaundice</i> is a poor prognostic sign 	
5.	neck	 goitre & thyroid bruit if Grave's disease, <i>difficult intubation</i> dysphagia, <i>aspiration risk</i> 	
6.	biochemistry	 ~ 15% have <i>hypercalcaemia</i>, but rarely an emergent problem * <i>hypokalaemia</i> & <i>hypomagnesaemia</i> may be severe, especially in apathetic form * don't use digoxin for control of AF → amiodarone 	
7.	FBE	- leukocytosis common	

Differential Diagnosis

1.	drug induced	 amphetamine overdose, cocaine MAO inhibitors & hypertensive crisis
2.	drug withdrawal	delerium tremensopioid withdrawal
3.	hyperthermic synd.	- MH, MNS, heat stroke
4.	phaeochromocytoma	

5. panic attack, mania/hypomania

Management

- 1. **ABC**
 - supportive measures
 - IV fluids, dextrose, *thiamine* & B group vitamins

2. **b**-adrenergic blockade

- antagonises the effects of thyroid hormones and decreases the sensitivity to circulating catecholamines
- inhibits the peripheral conversion of $T_4 \rightarrow T_3$
- tachycardia, fever, hyperkinesis & tremor respond promptly
- improves proximal myopathy, periodic thyrotoxic paralysis, bulbar palsy and thyrotoxic hypercalcaemia
- *propranolol* ~ 0.5 mg increments IV with CVS monitoring (up to 10 mg)
- oral doses 20-120 mg q6h but may need to \uparrow dose due to $\uparrow\uparrow$ clearance
- β_1 -selective antagonists *do not* inhibit the conversion of $T_4 \rightarrow T_3$ as effectively, but may be preferred in the presence of CCF or airways disease
- *reserpine* has been largely superseded, but may be of benefit in propranolol resistant hyperthyroidism

3. steroids

- usually administered as a *relative deficiency* may be present
- · also, potential for associated autoimmune disease, ie. Addison's
- inhibit the peripheral conversion of $T_4 \rightarrow T_3$
- hydrocortisone ~ 100 mg IV q6h

4. thioamides

- *no* parenteral preparation is available
- theoretical advantages of PTU have *not* been supported in clinical trials
- i. *prophylthiouracil*
 - rapid onset, though, GIT absorption is impaired and unreliable during a crisis
 - blocks the iodination of tyrosine and the peripheral conversion of $T_4 \rightarrow T_3$
 - administered orally or via NG tube ~ 1g loading dose

~ 200-300 mg q4-6h

ii. *methimazole*

- *does not* inhibit the peripheral conversion of $T_4 \rightarrow T_3$
- use only if PTU contraindicated
- less rapidly absorbed but longer acting
- doses are ~ $1/10^{\text{th}}$ those for propylthiouracil ~ 100 mg loading dose

iii. carbimazole

- metabolised to methimazole, relative potency ~ 0.6:1
- transient *leukopenia* is common but agranulocytosis rare

5. *iodine*

• large doses inhibit the synthesis and release of thyroid hormones

 \rightarrow Wolff-Chaikoff effect

- administration delayed ³ 1 hr after thioamides ? why
- Lugol's iodine, saturated solution potassium iodide (SSKI), potassium iodide, or sodium iodide
- NaI ~ 1g IV q12h or continuous infusion, or equivalent doses of other agents

6. *lithium*

- same effects as iodine and may be used in allergic patients
- doses 500-1500 mg daily but takes 5-7 days for steady state
- requires monitoring plasma levels ~ 0.7-1.4 mmol/l

7. digoxin

- following the correction of *hypokalaemia* if AF is present
- requires larger doses due to \uparrow clearance & \downarrow efficacy
- usually ineffective alone $\pm \beta$ -blockers, verapamil, amiodarone, reserpine
- *amiodarone* also inhibits peripheral de-iodination of T_4

8. other measures

- i. IVT, electrolytes, glucose
- ii. treat fever, but *not aspirin*, as this displaces T_{3-4}
- iii. vitamins, especially *thiamine*
- iv. cholestyramine binds thyroxine in the GIT
- v. *activated charcoal* in thyroxine overdosage
- vi. *plasma exchange* in refractory cases, following 24-48 hrs aggressive R_X
- vii. *dantrolene* has been used with symptomatic improvement

Hypothyroidism

NB: common, ranging from **3-6%** of the population, usually *subclinical* \rightarrow normal T_4/T_3 but \uparrow TSH

Aetiology

- 1. <u>thyroidal</u> **3 95%**
 - i. *thyroprivic*
 - *primary idiopathic* circulating antithyroid Ab's
 ± multiple endocrine neoplasia syndrome (MEN I, pituitary adenoma)
 ± IDDM, SLE, RA, Sjögren's synd., pernicious anaemia, chronic hepatitis
 - postablative surgery & radio-iodine for Graves' disease
 - * most common cause
 - post-radiation lymphoma, SCC
 - congenital developmental defects
 - ii. goitrous

•

- congenital biosynthetic defects
- maternally transmitted iodides, antithyroid drugs
 - chronic thyroiditis Hashimoto's
- iodine deficiency

drug induced

- aminosalicylate, phenylbutazone
 - amiodarone, lithium, iodides
- 2. <u>suprathyroidal</u> < 5%

i.	pituitary	- Sheehan's syndrome
		- panhypopituitarism

- ii. hypothalamic
- 3. <u>self-limiting</u>
 - i. following suppressive therapy with *antithyroid drugs*
 - ii. following surgical excision of *functioning adenoma*
 - iii. thyrotoxicosis of *pregnancy*
 - iv. subacute thyroiditis
 - v. chronic thyroiditis & transient hypothyroidism

• Common Causes of Goitre

- i. nontoxic endemic goitre iodine deficiency, most common worldwide
- ii. Graves' disease
- iii. toxic multinodular goitre
- iv. adenoma, carcinoma
- v. Hashomoto's thyroiditis
- vi. chronic thyroiditis

• Clinical Features

b. CNS $\begin{array}{c} - \text{slow mentation, lethargy} \\ - \text{sensitivity to sedatives / opioids} \\ - \text{tendency to hypothermia, cold intolerance} \\ * CMRO_2 \text{ not decreased, except with hypothermia} \end{array}$ c. CVS i. \downarrow LV function $\begin{array}{c} - 50-60\% \text{ decrease in contractility} \\ - 40\% \text{ decrease in CO} \\ - 60\% \text{ pericardial effusion} \\ - \text{cardiomegaly and increased CAD} \end{array}$ ii. \downarrow blood volume $\begin{array}{c} - 10-25\% \\ \text{iii.} \end{array}$ baroreceptor dysfunction \downarrow responses \propto IPPV, hypovolaemia, valsalva etc. iv. bradyarrhythmias, AF v. accelerated athersclerosis				
i. \downarrow LV function ~ 50-60% decrease in contractility ~ 40% decrease in CO ~ 60% pericardial effusion - cardiomegaly and increased CAD ii. \downarrow blood volume ~ 10-25% iii. baroreceptor dysfunction \downarrow responses ~ IPPV, hypovolaemia, valsalva etc. iv. bradyarrhythmias, AF				
 ~ 40% decrease in CO ~ 60% pericardial effusion - cardiomegaly and increased CAD ii. ↓ blood volume ~ 10-25% iii. baroreceptor dysfunction ↓ responses ∝ IPPV, hypovolaemia, valsalva etc. iv. bradyarrhythmias, AF 				
 iii. baroreceptor dysfunction ↓ responses ∝ IPPV, hypovolaemia, valsalva etc. iv. bradyarrhythmias, AF 				
iv. bradyarrhythmias, AF				
v. accelerated <i>athersclerosis</i>				
d. respiratory $-\downarrow$ MBC, \downarrow DL _{CO} • \downarrow <i>central respiratory drives</i> ~ 10-15% of normal O ₂ drive ~ 30-40% of normal CO ₂ drive $\rightarrow \uparrow$ • obstructive sleep apnoea syndrome	$\downarrow central respiratory drives \sim 10-15\% \text{ of normal } O_2 \text{ drive} \\ \sim 30-40\% \text{ of normal } CO_2 \text{ drive} \rightarrow \uparrow P_{aCO2}$			
e. gastrointestinal				
i. decreased apetite, increased weight				
ii. gastric stasis & \downarrow airway reflexes $\rightarrow \uparrow$ <i>aspiration risk</i> iii. constipation				
f. decreased motor activity, stiffness & muscle cramps, prolonged relaxation of DT	lecreased motor activity, stiffness & muscle cramps, prolonged relaxation of DTR's			
 g. connective tissue → myxoedema (*pretibial = hyperthyroidism) i. dry & thickened skin & hair, loss of outer 1/3 of eyebrows ii. deepening of voice iii. thickened tongue iv. amyloidosis v. carpal tunnel syndrome 				
h. drugs - impaired liver / renal function $\rightarrow \uparrow t_{\frac{1}{2}\beta}$'s				

- → MAC for volatile agents
 ↑ sensitivity to sedatives / opioids

Investigations

- a. electrolytes
 - \downarrow blood volume / \uparrow ECF fraction
 - *hyponatraemia* $-\uparrow$ ADH secretion
 - \downarrow tubular Na⁺ reabsorption / \downarrow free water clearance

- b. FBE
 - normochromic normocytic anaemia
 - pernicious anaemia ~ 12%

c. AGA's
$$\uparrow P_{aCO2} / \downarrow pH$$

 $\downarrow P_{aO2}$

- d. ECG
 - low amplitudes, flattened / inverted T waves
 - \downarrow phase 4 depolarization, \uparrow APD & QT_c
 - bradyarrhythmias, AF \pm J-waves if hypothermic
- e. TFT's
 - \uparrow TSH except pituitary hypothyroidism
 - \downarrow FT₄ / FT₃
- f. CXR
 - cardiomegaly, effusion, CCF

Clinical Assessment

a.	severity	 bradycardia hyporeflexia & slow recovery, "hung-up" reflex temperature skin, hair, facies, voice
b.	CNS	conscious stateairway protection reflexes
c.	CVS	 bradycardia IHD, CCF, pericardial effusion if heart normal size, then ?? hypothalamic origin may be <i>hypertensive</i> 2° hypercarbia
d.	respiratory	 hypoventilation ± hypercarbia pulmonary oedema recurrent infection OSAS ± 2° pulmonary hypertension

Myxoedema Coma

- likely scenarios,
 - 1. hypothyroidism unmasked by *concurrent illness*
 - 2. known hypothyroid and *emergency surgery*
- precipitating factors,
 - 1. surgery, trauma
 - 2. anaesthesia, sedatives, narcotics
 - 3. sepsis, hyperthermia
 - 4. any severe illness
 - NB: mortality \leq 50%

■ <u>Treatment</u>

- a. assisted ventilation with *slow* correction of *hypercarbia*
- b. IV dextrose for *hypoglycaemia* 50% not D_5W
- c. water restriction ± hypertonic saline for *hyponatraemia*
- d. passive rewarming for *hypothermia* $\leq 0.5^{\circ}$ C/hr
- e. $T_3 \sim 5-20 \ \mu g \ IV$ in 100 ml N.saline slowly over 30-60 min, or $T_4 \sim 200-500 \ \mu g \ IV (\rightarrow more \ constant \ T_3 \ levels)$

** no studies as to best dose or form of replacement

- f. *hydrocortisone* ~ 400 mg on first day, then reducing
 - assess adrenal function with *short Synacthen* test once euthyroid
 - · correction of hypothyroidism may unmask underlying associated adrenal deficiency
- g. screen for *sepsis*
- h. treat underlying illness
- i. avoid sedatives, narcotics, etc.

Management for Emergency Surgery

- a. ABC
 - avoid sedatives, narcotics | use conservative doses
 - intubate if airway reflexes absent ? antacids, ranitidine
- b. *hydrocortisone* ~ 100 mg IV q6h for first 24 hrs
 acute adrenal crisis may be precipitated in severe hypothyroidism with thyroxine
- c. commence T_3 replacement if,
 - i. no active IHD ? how to be sure
 - ii. no depression of conscious state pre-coma or coma
 - iii. surgery can be delayed several hours to assess the effect of T_3
 - iv. continuous ECG monitoring available
 - \rightarrow ~ 5-20 µg in 100 ml N.saline IV slowly over 30-60 min

NB: otherwise withhold until after surgery and give low dose slowly

• excessive thyroxine doses may precipitate myocardial ischaemia / infarction even in the presence of normal coronary vessels

• therefore, use T_3 with 5%NSA as the carrier & monitor FT₃ & TSH levels

- LIGW suggests $T_3 \rightarrow$
 - 1. loading dose $\sim 10 \ \mu g$
 - 2. infusion $\sim 20 \,\mu g/d$

Simple (nontoxic) Goitre

• causes,

1.	idiopathic	
2.	excess TSH	iodine deficiencyingested goitrogenbiosynthetic defect
3.	early toxic MNG	- should be detected by newer sensitive assays
NB:	$R_x \downarrow TSH$ stimulatio	n - remove offending agent - I ⁻ supplementation - L-thyroxine ~ 100-200 μg/day

Thyroid Nodules

Adenomas

- 1. papillary
- 2. follicular most common & most likely to be functional
- 3. Hurthle cell

NB: functional nodules of any type are less likely to be malignant

• Carcinoma

- males > females
- previous irradiation to the neck

1.	follicular epithelium	
	i. anaplastic	- rare, highly malignant & rapidly fatal
	ii. follicular	
	iii. papillary	~ 60%, bimodal frequency of presentation - simple excisions \equiv^{t} radical neck resections
2.	parafollicular C cells familial incidence 	- more aggressive
• MEN II \rightarrow		medullary carcinoma + <i>phaeochromocytoma</i> + parathyroid adenomas

DIABETES MELLITUS

Aetiology

a.

b.

<u>type I</u>					
 "juvenile onset" 		≤ 40 years onset			
	peak	~ 12-14 years			
• absolute insulin deficiency		\geq 90% loss of islet mass			
• plasma insulin/C-p	eptide levels	are unmeasurable & elevated glucagon			
HLA & autoimmu	ne association	ns $\leq 85\%$ antipancreatic B cells ~ 50% antipancreatic T cells			
• family history rare	, MZ concore	dance ~ 50%			
<u>type II</u>					
 "maturity onset" 		\geq 40 years onset			
	peak	~ 60 years			
• have both <i>insulin resistance</i> and relative <i>insulin deficiency</i>					
hyperglycaemia does not occur until insulin secretion decreases					
exaggerated glucagon response to ingested nutrients					
 obesity & gestational DM are associated & are risk factors 					
 strong family history, MZ concordance ~ 100% 					
ndary diabetes mellitu	S				
drugs	- corticost	eroids, thiazide diuretics, oestrogen therapy			
	- β_2 -adren	- β_2 -adrenergic agonists (inotropes)			
adrenal	- Cushing'	s syndrome, Conn's syndrome			
	- phaeochi	romocytoma			
- pancreat		bancreatitis, haemochromatosis			
		ic calcification (hyper-Ca ⁺⁺)			
	•				
		ioma, somatostatinoma, carcinoma			
	• •				
	•				
	- congenit	al β-cell absence			
• • • • •	1 11	1' D			
viral pancreatitis		coxsackie B_4 , mumps			
pituitary tumours	- acromega	aly, Cushing's disease			
pituitary tumours hyperlipidaemias	- acromega - III, IV, V	aly, Cushing's disease			
pituitary tumours	- acromega	aly, Cushing's disease / syndrome			
	 "juvenile onset" absolute insulin de plasma insulin/C-p HLA & autoimmut family history <i>rare</i> <i>type II</i> "maturity onset" have both <i>insulin</i> hyperglycaemia do exaggerated gluca, obesity & gestation <i>strong</i> family histor <i>ndary diabetes mellitu</i> drugs adrenal 	• "juvenile onset" peak • absolute insulin deficiency • plasma insulin/C-peptide levels • HLA & autoimmune association • family history <i>rare</i> , MZ concord <i>type II</i> • "maturity onset" peak • have both <i>insulin resistance</i> and • hyperglycaemia does not occur • exaggerated glucagon response • obesity & gestational DM are a • <i>strong</i> family history, MZ conc <i>ndary diabetes mellitus</i> drugs - corticost $= \beta_2$ -adrent adrenal - Cushing's = phaeocht pancreatic disease - chronic p = pancreatic = glucagon = hypocalc = amyloidot			

- acute intermittent porphyria
- muscular dystrophy
- many congenital syndromes

Insulin

- synthesised from *proinsulin* in β -cells of pancreas,
 - a. storage $\sim 200^{\circ}$
 - b. plasma activity ~ 10-15% cf insulin
 - but *more* effective in suppressing hepatic glucose production
 - c. forms equal amounts of *insulin* & *C-peptide*

• basal insulin release,

- a. during fasting limits ketosis & catabolism ~ 1 U/hr
- b. total daily secretion of insulin $\sim 40 \text{ U}$ (50% removed by liver)

• only ~ 7% of plasma insulin activity is supressed by anti-insulin Ab's

• the remaining 93% constitutes nonsuppressible insulinlike activity, NSILA

a. somatomedins		~ 5%
	• insulinlike growth factors	- IGF I & II
b.	nonsuppressible insulinlike protein	- NSILP

Factors Influencing Insulin Release		
Stimulation ¹	Inhibition	
glucose & fructose	somatostatin	
amino-acids leucine, arginine 	insulin	
drugs sulphonylureas theophylline (PDE inhibitors) acetylcholine 	drugs • diazoxide, thiazide diuretics • phenytoin • 2-deoxyglucose	
b -agonists \uparrow glucose & K ⁺ uptake	α_1 -agonists	
 GIT hormones gastrin, secretin cholecystokinin-pancreozymin enteroglucagon (GIP) 		
glucagon		
¹ insulin production in a normal adult ~ 40 U/d, though only ~ 50% reaches the systemic circulation		

Insulin Resistance

• state in which normal amounts of insulin (0.5U/kg/day) produce a subnormal biological response

- clinically this is not usually considered until patients are on > 2 U/kg/day

Diagnosis

- sample should be *venous plasma* not whole blood, as later levels may be ~ 13% lower
- fasting level < 6 mmol/l, or random level < 8 mmol/l \rightarrow diagnosis excluded
- WHO criteria,

1.	fasting venous <i>plasma glucose</i>	3 7.8 mmol/l (NB: plasma 15% > whole blood) ≥ 2 occasions
2.	 fasted > 8/24 overnight - apa * no 	D g/day for 3 days rt from H_2O smoking, no alcohol, no exercise
	• if the 2 hr venous plasma glucos	and 2 hrs post 75g of dextrose (300 ml 25%) se is, normal
	 at least one other test valu ie. a minimum of 2 values	diabetic e ≥ 11.1 mmol/l are required during the test interval diagnosis of <i>impaired glucose tolerance</i>
	• if one other value during the	the 2 hr test is ≥ 11.1 mmol/l (hy, but are at risk of large vessel disease

• believed the degree of hyperglycaemia is relevant to the risk of microangiopathy

selection of 11.0 mmol/l is taken as some individuals below this show *spontaneous remission*causes of an abnormal GTT,

1.	prolonged inactivity	
2.	major stress with previous 3/12	- AMI, stroke, trauma, surgery
3.	minor stress within previous 2/52	- "flu-like" illnesses
4.	dietary irregularity	 starvation recent weight change > 2 kg
5.	hepatocellular disease	
6.	endocrinopathies	
7.	hypokalaemia	- inhibits insulin release
8.	pyridoxine deficiency	
9.	drugs	- thiazides, adrenergic agonists

• Other Investigations

- a. plasma lipid studies
 - glycosylated Hb Hb_{Alc}
 - normal individuals have levels < 6%
 - control to this level in diabetics is associated with excessive hypoglycaemia
 - debate as to the optimal level for control
- c. ECG

b.

- d. E,C&U
- e. opthalmology review

• Type I Diabetes

- a. *juvenile onset* usually but not essential
- b. an *autoimmune* disease with a MZ *concordance* ~ 40-50%
 - auto-Ab's to *glucose transporter* of β -cells
- c. a relative or absolute deficiency of insulin
- d. a tendency to both,
 - i. ketotic hyperglycaemic coma
 - ii. hyperglycaemic, hyperosmolar, non-ketotic coma
- insulin levels are low or immeasurable, as are those of C-peptide
- increase insulin requirement in postmidnight hours \rightarrow "dawn phenomenon"
- results in early morning hypoglycaemia due to nocturnal surges in GH secretion
- Type II Diabetes
 - a. usually an adult onset & frequently associated with *obesity*also pregnancy, drugs and other endocrine abnormalities
 - b. MZ *concordance* ~ 100%
 - c. peripheral *insulin resistance*
 - d. no tendency toward ketoacidosis or hyperosmolar, non-ketotic coma

- management varies from diet, to oral hypoglycaemics \pm insulin

• Oral Hypoglycaemics

- sulphonylureas act by,
 - 1. increasing release of insulin from the pancreas
 - primarily by $\uparrow \beta$ -cell *sensitivity* to glucose \propto \uparrow membrane gK⁺
 - they *no not* \uparrow insulin production & are not useful in IDDM
 - 2. improving peripheral utilisation of glucose
 - ? increased receptor numbers, or increased binding

• alcohol may potententiate their action, cf. thiazides which are antagonistic

• newer agents, *glyburide & glipizide* have a longer duration of hypoglycaemic effect (~ 24 hrs) and fewer drug interactions

• *chlorpropamide* has the longest half-life & these agents may produce hypoglycaemia for up to **50** *hrs* post-administration

- therefore hypoglycaemic episodes due to these agents require *observation*
- side-effects,
 - a. rashes, pruritis
 - b. hyponatraemia ("SIADH"), hypoglycaemia
 - c. "disulphiram-like" reaction to alcohol
 - d. nausea, vomiting, cholestasis
 - e. haemolytic anaemia, bone marrow aplasia
- the *biguanides* act by,
 - 1. \downarrow hepatic gluconeogenesis
 - 2. \uparrow glucose utilisation through *anaerobic metabolism*
 - 3. \downarrow intestinal absorption of glucose

unlike the sulphonylureas, these agents are unlikely to result in weight gain *contraindicated* with,

- a. renal insufficiency entirely renally excreted
- b. pregnancy
- c. liver disease
- d. alcoholism
- e. cardiopulmonary insufficiency- anaerobic metabolism
- side-effects,
 - a. diarrhoea
 - b. lactic acidosis
 - c. rarely hypoglycaemia

• Complications: Acute

- 1. hypoglycaemia \pm coma
- 2. ketoacidosis \pm coma
- 3. hyperglycaemic, hyperosmolar, non-ketotic coma

• Complications: Chronic

1.	cardiovascular
- •	

- i. 1 atherosclerosis IHD, AMI, HT, CVA, PVD, foot ulcers
- ii. microangiopathy

• retinopathy

- capillary microaneurysms, haemorrhages
 - venous dilatation, waxy exudates
 - new vessel formation
 - fibrotic bands, retinal destruction, blindness
- peripheral & autonomic neuropathy
- iii. hypertension
- iv. cardiomyopathy infiltrative/ischaemic with diastolic dysfunction

2. other ocular

- cataracts, Horner's syndrome, Argyll-Robinson pupil
- cranial nerve palsies III, IV & VI are common

3. *renal*

- range from mild renal impairment to ESRF 2° progressive GN
- recurrent UTI, papillary necrosis, CRF
- higher rate of renal transplant rejection
- 4. joint-collagen tissue abnormalities
 - stiff joint syndrome TMJ and atlanto-axial immobility
 - poor wound healing decreased tensile strength / rate of tissue healing
 - necrobiosis lipoidica breakdown of collagen
 - lipodystrophy, xanthelasma

5. *immune deficiency*

• nosocomial infections - wound, respiratory tract, UTI

6. *neuropathic*

- i. peripheral neuropathy trophic changes, ulcers, infections neuropathic joints
 ii. autonomic neuropathy postural hypotension, CVS instability silent MI, asymptomatic hypoglycaemia bladder retention, impotence
 - gastric stasis, diarrhoea, diminished sweating

7. psychological

• chronic disease state & recurrent hospitalisation

Degree of Control

- *NB*: the evidence that *tight control* of the BSL reduces the rate of progression, or that poor control accelerates the progression, is *suggestive* but *not definitive*
- high concentrations of glucose promote non-enzymatic *glycosylation* reactions, which may be in part responsible for,

1.	\downarrow 'd tissue elastance	- stiff joint syndrome
		- poor wound healing - \downarrow myocardial compliance

- 2. \uparrow macroglobulin synthesis \uparrow blood viscosity
- 3. \uparrow ICF volume
 - production of nondiffusable species (sorbitol etc) with intracellular swelling
 - newer therapies (aldose-reductase inhibitors) aim to reduce formation

• however, *insulin* may be directly toxic to small blood vessels and retinopathy initially *worsens* with tight control

• chronic therapy does reduce the leakiness of the glomerular capillaries to albumin, and the retinal capillaries to fluorescein dyes

• problems secondary to high levels of peripheral insulin are absent with administration into the *portal system*

• tight control does improve wound tensile strength & decrease infections in animal models

• hyperglycaemia, neuropathy, athersclerosis & microangiopathy may contribute to wound failure

• insulin is necessary in the early stages of the inflammatory response, but appears to have no effect on collagen formation after the first 10 days

• epithelial wounds do not require leukocyte infiltration and collagen formation for healing and are thus not impaired in the diabetic patient

- *infections* account for $\sim 2/3$ of postoperative complications $\sim 20\%$ of perioperative deaths,
 - a. altered leukocyte function
 - \downarrow chemotaxis & \downarrow phagocytic activity of granulocytes
 - \downarrow intracellular killing of pneumococci & staphlococci
 - b. function is returned to near-normal levels with tight control BSL < 12.5 mmol/l

• Cruse et al. (Arch.Surg 1973) in a review of 23,649 surgical patients,

- a. diabetic wound infection ~ 10.7% cf. 1.8% in non-diabetics
- b. when *age* is accounted for, the difference in incidence *is not* statistically significant
- *NB*: ie. diabetes increases in frequency with *age* wound infection increases with *age*

• 430 consecutive patients from *out-of-hospital arrest*, mean BSL levels at presentation,

с.	consistent with <i>hyperglycaemia</i>	\rightarrow worse neurological	
	ii. with CNS intact	$\sim 251 \pm 7 \text{ mg/dl}$ (~ 14 mmol/l)
	i. with CNS deficit	$\sim 286 \pm 15 \text{ mg/dl}$ (~ 16 mmol/l)
b.	patients who wakened	~ 262 ± 7 mg/dl (~ 14.5 mmol/l)
a.	patients who never wakened	$\sim 341 \pm 13 \text{ mg/dl}$ (~ 19 mmol/l)

- d. supported by studies of *global ischaemia*, not those of focal ischaemia
- **NB:** 1. ? does hyperglycaemia worsen neurological outcome, or is it simply a marker of more profound physiological derangement & prolonged resuscitation

2. current recommendation for diabetics undergoing procedures with potentially decreased CBF is to maintain BSL < 14 mmol/l (250 mg/dl)

- in a 1980 study of 340 diabetics vs. 2522 nondiabetics undergoing CABG,
 - 1.moderate increase in operative mortality~ 1.8% vs. 0.6%
 - 2. requirement for *inotropic support & IABP* $\sim 5x \uparrow$
- reasons for these differences include,
 - 1. more extensive and *diffuse* CAD
 - 2. higher incidence of,
 - i. preoperative hypertension
 - ii. cardiomegaly
 - iii. diffuse hypokinesis
 - iv. previous MI
 - 3. IDDM patients with CAD have stiffer LV's \rightarrow \uparrow LVEDP
 - 4. autonomic dysfunction $\rightarrow \downarrow$ preload regulation
 - 5. CPB, hypothermia and stress reactions decrease the responsiveness to insulin
 - results in marked hyperglycaemia, even without glucose in the IVT
 - washed cells have been advocated as ACD significantly increases BSL
 - · insulin administration has little effect until rewarming
 - *lactate* containing solutions are gluconeogenic & poorly absorbed
 - 6. IDDM with poor LV function may have operative *mortality* ~ 10-15%

<u>Emergency Surgery & Ketoacidosis</u>

• the likelihood of intraoperative cardiac arrhythmias, CCF or hypotension are markedly reduced if the metabolic decompensation can be at least partially reversed

 \cdot however, delaying surgery where the underlying condition will continue to exacerbate ketoacidosis is futile, \backslash

a.	resu	scitate	- ABC	
b.	fluid	d / volume resuscitation		
	i.	colloid	~ 10-20 ml/kg prn	
	ii.	crystalloid	~ 15 ml/kg/hr \rightarrow 5 ml/kg/hr over 4-5 hours	
		• 0.9% saline	+ KCl 20 mmol/l [§]	
		• 0.45% saline	- if Na ⁺ > 150 mmol/l	
	iii.	dextrose	- when BSL < 20 mmol/l * total body <i>deficit</i>	
c.	insu	lin	~ 10-20 ^U IV ~ 0.25 ^U /kg + infusion U/hr ~ BSL (mmol/l)/8	
d.	pota	ussium [§]	~ 20 mmol/hr ~ 0.3 mmol/kg/hr - 30-50 mmol/hr if HCO_3^{-} used $\pm HCO_3^{-}$, $H_2PO_4^{-}$ and Mg^{++}	
	i.	NaHCO ₃	 consider if persistent pH < 7.0 give 1 mmol/kg in 500 ml (~ 1.4%) over 1 hr <i>no</i> evidence for benefit 	
	ii.	KH ₂ PO ₄	 - consider if [plasma] < 0.7 mmol/l - give as K⁺ salt 7-10 mmol/hr 	
	iii.	$MgSO_4$	- no need unless tachyarrhythmia	

e. treat underlying cause

• the actual amount of insulin given is less important than regular *monitoring* of the BSL, H⁺ & K⁺ • the number of insulin binding sites is limited, thus the rate of decline of plasma glucose is limited to a fairly constant $\rightarrow \qquad \downarrow \qquad max \sim 4-5.5 \ mmol/l/hr$

• the anion gap component of the acidaemia may be due to any, or a combination of,

- 1. ketoacids
- 2. lactic acid
- 3. organic acids due to renal insufficiency

hyperchloraemic, normal anion gap acidosis may result from DKA treated with N.saline only *bicarbonate* therapy is controversial,

- 1. respiration and myocardial function are depressed at pH < 7.0
- 2. rapid correction with HCO_3^- may result in,
 - i. paradoxical CSF & ICF acidosis due to diffusion of CO_2
 - ii. altered CNS oxygenation & decreased CBF
 - iii. production of unfavourable osmotic gradients

Regimens for Control

General

- 1. two distinct disease entities \rightarrow different perioperative management
- 2. different regimens permit almost any degree of blood glucose control,
 - i. *frequent measurement* of BSL is recommended
 - ii. the tighter the desired control, the more frequently BSL must be monitored
- 3. there is debate as to how "tight" perioperative control should be,
 - i. chronic tight control of type I $\rightarrow \downarrow$ complications
 - ii. some benefit has been shown for *pregnancy CABG*

- focal/global CNS ischaemia

- iii. the extent of benefit in relation to risks for other cases is *uncertain*
- 4. excepting these cases, diabetes *per se* may not be as important to outcome as the end-organ *complications* thereof,

i.	cardiovascular dysfunction	- atherosclerosis (CAD / PVD)
		- hypertension
		- cardiomyopathy
ii.	renal dysfunction	- nephrosclerosis
iii.	joint-collagen tissue abnormalities	joint immobility, "stiff-joint syndrome"impaired tissue healing
iv.	immune dysfunction	- nosocomial infections
v.	neuropathies	- peripheral / autonomic

NB: the combined presence of *diabetes, hypertension & renal dysfunction* caries a significantly worse prognosis

Classical Non-Tight Control

NB: aim: to prevent hypoglycaemia, ketosis & hyperosmolar states

- 1. fast from 2400 hrs the night before surgery, a glass of orange juice being beside the bed for emergency use
- 2. commence IVT at 0600 with D_5W at a rate of 125 ml/70kg/hr
- 3. administer $\frac{1}{2}$ the usual morning insulin dose s.c.
- 4. continue this IVT throughout the operative period
- 5. monitor BSL in the recovery and treat with a *sliding scale q4h*

Tight Control

NB: aim: to achieve a BSL ~ 4.5-11.0 mmol/l, possibly improving wound healing

- 1. determine preprandial BSL the preceeding evening
- 2. commence IVT with D_5W at a rate of **50 ml/70kg/hr**
- 3. commence an insulin infusion $= 50^{U} / 50$ ml N.Saline, use a metered pump set the infusion to run at,

$$Insulin(U/Hr) = \frac{BSL \ (mmol/l)}{8.0}$$

- 4. repeat BSL every 4 hours & adjust infusion to a BSL ~ 5.5-11 mmol/l
 - denominator should be 5.0 in patients taking *corticosteroids*
 - 100 mg/dl ~ 5.55 mmol/l \rightarrow denominator ~ 150 mg/dl
- 5. determine the BSL preinduction and repeat 2/24'ly for the next 24 hours
- NB: alternatively feedback could be performed by a mechanical pancreas

Hyperglycaemic Ketoacidosis

- *Def'n:* pre-coma / coma resulting from an imbalance in the *insulin:glucagon ratio*, resulting in,
 - 1. extracellular hyperglycaemia
 - 2. intracellular glucose deficit
 - 3. ketoacidosis
 - 4. marked fluid & electrolyte shifts
- the fall in insulin: glucagon ratio, due to absolute or relative insulin deficiency, results in,
 - a. hyperglycaemia
 - b. \uparrow lipolysis
 - c. \uparrow hepatic ketogenesis
 - d. \uparrow catecholamines, cortisol, GH, and glucagon

NB: small amounts of insulin will prevent ketosis (cf. basal pancreatic secretion)

 normal hepatic glucose production 	~ 50 mmol/hr/70kg	fasting
	~ 100 mmol/hr/70kg	without insulin
• production actually returns to normal	as ketoacidosis develops	
 normal peripheral metabolism 	\leq 150-300 mmol/hr/70	kg

NB: :: hyperglycaemia is predominantly due to decreased *peripheral ultilisation*

Clinical Features

a.	thirst, polyuria, blurred vision, leg cramps	\propto	osmotic diuresis
b.	nausea, vomiting, abdominal pain	∞	ileus, gastric stasis
c.	hypotension, tachycardia, dehydration	\propto	fluid losses
d.	Kussmaul's breathing	∞	acidaemia
e.	ketotic breath	\sim	acetone, β -OH-butyrate
f.	drowsiness, coma	\sim	hyperosmolality
g.	warm, dry skin	\sim	vasodilatation
h.	hypothermia	∞	\downarrow VO ₂ & \downarrow CNS

- NB:1.abdominal pain is due to reversible autonomic neuropathy,
other causes \rightarrow pancreatitis, appendicitis, perforated viscus
 - 2. if ketoacidotic patient is *hyperthermic*, then suspect *sepsis*

Precipitants

- a. unknown ~ 30%
- b. acute infection ~ 30%
- c. undiagnosed diabetic ~ 15%
- d. no insulin in known diabetic, especially with poor diet control
- e. trauma | surgery

Typical Early Biochemical Abnormalities			
Acidaemia • pH • P _{aCO2} • HCO ₃ ⁻ • ketoacidosis • lactic acidosis	~ 6.9 - 7.15 ~ 8-15 mmHg ~ 5 mmol/l ~ 5 mmol/l ~ 10-15 mmol/l ~ 4-6 mmol/l	 acetoacetate (N < 0.3) β-OH-butyrate (N < 1.2) 	
hyperglycaemia	~ 20-40 mmol/l		
hyperkalaemia	~ 5-8 mmol/l	• total <i>deficit</i> ~ 200-700 mmol	
hyperosmolar <i>hyponatraemia</i>	~ 130 mmol/l	• 2° to high glucose & lipids	
hyperosmolality	~ 310-350 mosm/l		
hyperuricaemia		protein breakdown	
↑ FFA	~ 2-4 mmol/l • if higher may → low Na+ ~ 110 mmol/l		
uraemia	~ 25 mmol/l		
high creatinine ~ 0.3-0.5 mmol/l			

• Late Biochemical Abnormalities

• following treatment these may progress to,

- 1. hypernatraemia
- 2. severe hypokalaemia
- 3. hypophosphataemia
- 4. hypochloraemia, or hyperchloraemic metabolic acidosis
- 5. hypomagnesaemia

• Other Features

a.	fluid loss	~ 3-8 litres	
b.	full blood count i. high Hct		
	ii. leukocytosis \rightarrow	~ 15-90,000/µl with left shift * with or <i>without</i> infection B ₁₂ or folate deficiency	
c.	NaCl usually normal	- vomiting \rightarrow low Cl ⁻ , and lower Na ⁺	
d.	K^{+} normal or low	* severe deficiency \geq 400 mmol	
e.	uraemia	- ↑↑ creatinine - low <i>urea:creatinine ratio</i> ∝ ketones	
f.	anion gap > 17	- predominantly ketones + some lactate ± SO ₄ = & PO ₄ =	
g.	increases in	 amylase (salivary glands) triglycerides, VLDL and CM uric acid LFT's (ketones interfere with assays, acute fatty liver) 	
h.	phosphate	 - initially high but with R_x may fall precipitately like K⁺ - no proven benefit on mortality - replacement may reduce the time to recovery and insulin needs 	
i.	ketones drag H^+ with them in urine, up to 10 mmol H^+ /hr		
j.	 <i>lactic acidosis</i> may mask a small ketoacidosis → a <i>low redox state</i> ↑ βOHB - which is <i>not</i> measured by ketone tests ↓ AcAc - which is measured by ketone tests 		
	• normal ratio βOHB:		
	levels during starv ketoa	$\geq 9:1 \text{ in reduced redox states}$ ation ~ 2-4 mmol/l acidosis > 5 mmol/l	

• may be as high as 15 mmol/l in severe DKA and totally account for anion gap

Treatment

b.

a. resuscitate - ABC

fluid/volume resuscitation

i. colloid

~ 10-20 ml/kg prn

- ii. crystalloid*
 - 0.9% saline total body Na⁺ deficit (200-700 mmol)
 - 0.45% saline
- if corrected Na⁺ > 150 mmol/l
- iii. dextrose
- when BSL < 20 mmol/l
- total body *deficit* in energy substrate

Fluid Requirements		
Hour	Crystalloid*	
1 st	• 15-20 ml/kg	
2^{nd}	• 10-15 ml/kg	
3 rd	• 5-10 ml/kg	
4^{th}	• 5-10 ml/kg	
5 th & over	• 2-5 ml/kg	

c.	insulin	~ 10-20 ^U IV	~ 0.25U/kg
		+ infusion (U/hr)	~ BSL (mmol/l)/8
	• results in re	ceptor <i>saturation</i> & \downarrow I	BSL at ~ 3-5 mmol/l/hr

- efficacy of insulin reduced in shock states, ∴ must resuscitate first
- 20-30% bound to plastic/glass surfaces, ∴ some use protein carrier

d.	potassium	$\sim 20 \text{ mmol/hr}$	~ 0.3 mmol/kg/hr	
		- total body deficit	~ 100-200 mmol/l	(rarely < 700)
	• NB: 30-50	mmol/hr if HCO_3^- used	\pm H ₂ PO ₄ ⁻ and Mg ⁺⁺	

- e. HCO_3^-
 - consider if,
 - i. persistent pH < 7.0, or
 - ii. normal AG hyperchloraemic acidosis develops
 - give 1 mmol/kg in 500 ml (~1.4%) over 1 hr
 - *no* evidence for benefit
- $f. \qquad Na/K-H_2PO_4 \qquad \ \ \ consider \ if \ [plasma] < 0.7 \ mmol/l \\ \ give \ as \ K^+ \ salt \ 7-10 \ mmol/hr$
- g. MgSO₄ no need unless tachyarrhythmia
- h. treat underlying cause

• Other Management

- a. repeated monitoring
 - plasma glucose & K^+ monitored hourly if $[K^+] < 3.0 \text{ or } > 6.0 \text{ mmol/l}$
 - otherwise monitor 2 hrly for first 6 hrs, then prn
 - vital signs, UO, CVP, Na⁺, K⁺, glucose, pH, P_{aO2}
- b. low dose *heparin*
- c. other Ix
 - i. CXR
 - ii. ECG & CKI
 - iii. blood cultures and sepsis workup
 - iv. coagulation studies
- d. *antibiotics* for evidence of infection only

• Causes of Hypokalaemia

- a. osmotic diuresis \rightarrow major cause
- b. vomiting
- c. neutralisation of ketones
- d. extracellular shift with acidosis
- e. renal Na⁺/K⁺ exchange ~ 2° hyperaldosteronism
- f. total body K^+ deficit ~ **200-700 mmol**
 - ~ 15-55 grams !

• Complications of Rapid Correction

- 1. hypokalaemia
- 2. hypernatraemia
- 3. hypophosphataemia
- 4. *hypomagnesaemia* & dysrhythmias
- 5. *cerebral oedema* * especially children

• Causes of Death

- a. mortality ~ **5-10%**
- b. adults
 - i. precipitating cause *sepsis*, AMI, CVA
 - ii. respiratory failure, aspiration pneumonitis, ARDS
 - iii. hypokalaemia
 - iv. vascular thrombosis
- c. children
 - i. cerebral oedema * too rapid treatment - especially if BSL lowered to < 14 mmol/l
 - ii. hypokalaemia

Euglycaemic Ketoacidosis

Def'n: ketoacidosis in a diabetic patient with euglycaemia or mild hyperglycaemia

- ~ 18% of diabetic emergencies
- occurs in young, known type I diabetics
- rapid onset, within hours
- clinical features include,
 - 1. present with *hyperventilation* but usually "look well"
 - 2. coma and dehydration are rare
 - 3. investigations
 - i. severe ketoacidosis
 - ii. relatively "normal" glucose $\leq 20 \text{ mmol/l}$
 - iii. osmolality only mildly elevated

• <u>Treatment</u>

- a. IVT with normal saline, then 5% dextrose
- b. insulin in *normal doses*
- *NB:* ?? absence of marked hyperglycaemia due only to rapid onset, normal kidneys and ECF volume, with subsequent glycosuria

Hyperosmolar, Hyperglycaemic, Non-ketotic Coma

Def'i	<i>n:</i> hyperglycaemia & o hyperosmolarity ≥	•	
NB:	•		glucose + urea + $[(glucose - 6)/3]$
Pathogo	enesis		
1.	insulin deficiency	\rightarrow	hyperglycaemia, but enough to prevent ketosis
2.	impaired renal function	$n \rightarrow$	exaggerating high glucose and hyperosmolality
3.	fluid restriction	~	impaired thirst mechanism CNS disease or sedatives
4.		olality & con	<i>coma</i> na difficult due to variable contribution of urea generally occurs > 320 mosmol/kg
Present	ation		
a.	precipitating event	infectionAMI, strhaemorrl	
b.	drugsdiphenylhydantoin,all impair insulin <i>se</i>		immunosuppressants, thiazides, cimetidine sulin <i>action</i>
c.	fever	- with or v	vithout infection
d.	neurological	 disorient seizures coma 	ation, tremors ~ 30% ~ 50%
	• seizure activity	•	lue to <i>cortical vein thrombosis</i> hyperosmolality
e.	dehydration	~ 99% + tachycar + hyperve	dia, hypotension ntilation
NB:	classically an elderly N clinical features relate	-	ent with an intercurrent illness,
	i. hyperglycaemia	- polyuria,	polydipsia, hypotension
		. • ′	

ii. hypertonicity - confusion, disorientation, coma

Investigations ¹			
glucose	~ 50-60	mmol/l	• ~ 2x DKA
acetone (ketones)	~ 4-6	mmol/l	 normal or slightly elevated equal to <i>fasting</i> levels
osmolality	~ 380	mosm/l	• often > 50%
рН	~ 7.3-7.4		normal or mild acidosis
HCO ₃	~ 17-22	mmol/l	
Na ⁺	~ 144	mmol/l	~ 160 mmol/l "corrected"
\mathbf{K}^{+}	~ 5	mmol/l	
urea	~ 10-15	mmol/l	\rightarrow <i>low</i> U:C ratio
creatinine	~ 0.4	mmol/l	$\rightarrow i0 \ 0.0$ Tatio
average fluid deficit	~ 10	litres	
DIC			occasionally
¹ average values, Arieff 1972, HPIM 12 th Edition			

Treatment

- a. ABC
- b. expand ECF initially with N. saline, then 0.45% saline, according to CVP and U/O • Na⁺ deficit ~ 400 mmol / H₂O deficit ~ 4-181 \rightarrow ~ 60 mmol/l ideal
- infuse insulin at *slow rate* ~ 3-4 U/hr c.
 - elderly are sensitive to insulin
 - a rapid fall in plasma glucose may result in *cerebral oedema*
 - .: aim to reduce
 - \leq 3 mmol/l/hr i. glucose: rate *minimum* \geq 10-15 mmol/l
 - ii. osmolality: rate $\leq 2 \text{ mosmol/kg/hr}$
- d. replace $K^+ / Mg^{++} / HPO_4^{=}$
 - if plasma $[K^+] \sim 4-5 \text{ mmol/l}$ \rightarrow ~ 20 mmol/hr ~ 40 mmol/hr
 - < 4 mmol/l \rightarrow
- low dose Heparin ??? anticoagulate e.
- f. investigate & treat cause

• Causes of Death

- a. primary inderlying disease
- b. cerebral infarction thrombosis - haemorrhage
- c. cerebral oedema

HYPOGLYCAEMIA

Clinical Features

- 1. *adrenergic* stimulation
 - \uparrow HR, palpitations, diaphoresis
 - anxiety, tremor, irritability
 - hunger, nausea
 - symptoms may be absent in diabetics with severe autonomic neuropathy
 - also in patients on \mathbf{b}_2 -blockers $\rightarrow \downarrow$ glycogenolysis

2. neuroglycopaenia

- headache, blurred vision, paraesthesiae, weakness, confusion, dizziness, etc.
- hemiplegia, seizures, coma
- cerebral oedema & death

Investigation

- 1. fasting plasma glucose < 2.8 mmol/l generally significant
- 2. insulin:glucose ratio < 50 normally
- 3. plasma C-peptide & pro-insulin
- 4. prolonged 72 hr fast

• plasma obtained 6 hrly for first 24 hrs, then 4 hrly

 \rightarrow plasma glucose, insulin & C-peptide levels

5. 6 hr glucose tolerance test

Management

1.	dextrose 50%	~ 0.5 ml/kg	
2.	dextrose 20%	~ 50-100 ml/hr	10-20g/hr
3.	glucagon	~ 0.5 mg IM/IV	
	standard dos	e of 1 mg \rightarrow	excessive rise in BSL and N&V

Causes of Fasting Hypoglycaemia

<u>Underproduction of Glucose</u>

1.	substrate deficiency	 severe malnutrition, wasting post-gastrectomy, gastroenterostomy late pregnancy ketotic hypoglycaemia of infancy prematurity
2.	enzyme deficiencies	 G-6-phosphatase, F-1,6-diphosphatase liver phosphorylase, glycogen synthase pyruvate carboxylase idiopathic leucine sensitivity
3.	acquired liver dysfunction	 severe hepatitis, FHF any cause hepatic congestion, cirrhosis uraemia (multiple mechanisms) hypothermia
4.	endocrine	 hypopituitarism (ACTH, GH) Addison's glucagon deficiency autonomic nervous dysfunction hypothyroidism
5.	drugs	alcoholpropranolol, salicylates

• Overutilisation of Glucose

1. hyperinsulinism

i.	islet cell tumours	~ 85% benign / ~ 15% malignant
ii.	exogenous insulin	

- iii. sulphonylureas
- iv. infant of diabetic mother
- v. immune disease with insulin and/or receptor Ab's
- vi. drugs quinine, disopyramide, pentamidine
- vii. endotoxic shock

2. normal insulinism

ii.

- i. factitious leukocytosis
 - tumours adrenal cell carcinoma, ? carcinoid
 - Ca of stomach, hepatoma, fibrosarcoma
- iii. systemic carnitine deficiency
- iv. enzyme deficiencies oxidation of fatty acids, 3-OH-3-MG-CoA lyase
- v. cachexia with fat depletion

Alcoholic Hypoglycaemic Ketoacidosis

- a disorder of CHO metabolism after heavy alcohol intake
- ethanol is metabolized by *alcohol dehydrogenase* to acetaldehyde and then to Acetyl-CoA
- results in reduction of NAD⁺ to NADH and increased H^+

$\label{eq:hadden} \begin{array}{ccc} NAD^+ @ NADH + H^+ \\ C_2H_5 - OH & \circle{343434} @ Acetaldehyde & \circle{343434} @ Acetyl-CoA \\ (alcohol dehydrogenase) & \end{array}$

- glycolysis and gluconeogenesis are impaired because of the deficiency of NAD^+

• regeneration of NAD⁺, through complete metabolism of ETOH through the CAC would limit hepatic metabolism of alcohol

- *ketogenesis* allows continued ETOH metabolism close to the v_{max} of alcohol dehydrogenase
- *starvation* and lack of glucose intake are usually present
- hypoglycaemia stimulates *lipolysis*, which then results in both a *lactic acidosis & ketoacidosis*
- this may produce coma before, or after the blood alcohol returns to a low level
- the presentation therefore comprises,
 - 1. coma
 - 2. hypoglycaemia
 - 3. ketoacidosis
 - 4. lactic acidosis

• predisposition is predominantly from heavy alcohol intake, other factors frequently include,

- 1. younger individuals
- 2. exercise
- 3. diabetes
- 4. Addison's disease
- 5. hypopituitarism
- 6. hyperthyroidism

Treatment

- a. IV fluids (rehydrate)
- b. glucose
- c. *thiamine* required as cofactor for *pyruvate dehydrogenase* - when ketoacids fall, will require gluconeogenesis for brain
- NB: insulin is not required & in fact contraindicated

DIABETES INSIPIDUS

• suspected clinically with the presence of *polyuria & hypernatraemia*

	Diagn	ostic Features	3
Severe Forms			Mild Forms
• polyuria	≥ 200	ml/hr	• polyuria
• hypotonic urine	~ 1001-1005	SG	• SG < 1020
• urine osmolality	~ 50-200	mosm/kg	• urine \leq 700 mosm/l
• urine [Na ⁺]	< 20	mmol/l	
• high serum osmol	lality & raised [Na	• raised serum osmolality	
• unresponsive to w	vater deprivation		
absence of hyperv	volaemia		

Central DI

a.	idiop	pathic	~ 30%
b.	trau	matic	~ 30% - CHI, neurosurgery
c.	ischaemia		
	i.	hypoxic brain dat	mage
	ii.	vascular lesions	post-partum necrosisaneurysmhyperviscosity syndrome
d.	infec	tion	- TB
e.	infla	mmatory	sarcoidosisother granulomatous diseases
f.	neop	lastic	 - 1° or 2° - commonly breast or lung

Nephrogenic DI

- congenital / familial a.
 - *x-linked* recessive •
 - variable expression in female carriers ٠
- b. acute renal failure
 - i. post-obstructive renal disease
 - ii. recovery phase of ATN
 - iii. pyelonephritis
 - iv. post-transplantation
 - polycystic kidney disease v.
- c. drugs - methoxyflurane, enflurane, F ion - diuretics, lithium - demeclocycline
- d. biochemical
 - i. hypercalcaemia
- hyperparathyroidism, malignancy ii. - Conn's syndrome hypokalaemia - Bartter's syndrome - chronic depletion systemic disease - amyloidosis e. - multiple myeloma - sickle cell disease f. - high vasopressinase ADH resistant DI of pregnancy

Treatment

a.	fluid and electrolyte replacement		
b.	ADH analogues	vasopressin (IV, SC, nasal)DDAVP	
c.	other drugs	 thiazides chlorpropamide, chlofibrate 	

HYDROGEN ION

arterial blood	~ 39 nmol/l	7.4
venous blood	~ 45 nmol/l	7.35
interstitial fluid	~ 45 nmol/l	7.35
CSF	~ 47 nmol/l	7.33
ICF	~ 100 nmol/l	7.0 range ~ 4.5-7.4
urine (maximal)	~ 30,000 nmol/l	4.5

Def'n: elemental gas, atomic number and molecular weight = 1.0

Functions / Effects

- 1. sets intracellular H⁺/OH⁻ ratio for optimal *enzyme function*
 - protein & amino-acid ionisation status
- 2. product/substrate in many reactions
 - usually involve NAD⁺/NADP⁺
 - important by-product of anaerobic metabolism
- 3. influences O_2 supply to tissues
 - increases respiration
 - shifts HbO₂ dissociation curve to the right *acutely
 - regional control of blood flow
- 4. *digestion* of foodstuffs in the stomach
- 5. alters binding sites on proteins, especially albumin
- 6. affects myocardial contractility
- 7. influences K^+ & Ca⁺⁺ homeostasis & plasma levels

Sources of Acid

1.	CO ₂	~ 12,500	mmol/d
2.	lactate	~ 1,500	mmol/d
3.	HSO_4^-	~ 45	mmol/d
4.	$H_2PO_4^-$	~ 13	mmol/d
5.	other acids	~ 12	mmol/d
6.	organic acids in disease, eg. ketoacids		

7. alkalinising salts $-K^+$, lactate, acetate, citrate (little importance)

Body Response to Acid

a. dil	<i>dilution</i> - weak			
b. <i>bu</i>	buffering			
i.	extracellular	- HCO_3^- , protei	n (Hb, alb), HPO	= 4
ii.	intracellular		$HPO_4^{=}$	
			ol/l protein	
	1 66	~ 10 mm	5	
	buffers	~ 90% of respin	-	
		~ 60% of metal ~ 30% of metal		
iii.	nonal		Joine alkalosis	
111.	renal		(00/ free)	NUL 250/ 1
	-			$\rm NH_3$ 35%, leucine et al 5%
	• other - cre	atinine, HPO ₄ ⁼ , I		
с. <i>ех</i>	change	- bone (Ca ⁺⁺) /		
		- PTH may play	$v \text{ a role } \rightarrow \text{ pho}$	osphaturia & H ⁺ loss
d. <i>rei</i>	nal acid excretion	~ 70	mmol/day	
i.	free H ⁺	~ 40	µmol/l	(pH ~ 7.4)
ii.	HCO ₃ reabsorpt	ion ~ 4,300	mmol/day	
iii.	\mathbf{NH}_4^+	~ 30	mmol/day	$(\max \sim 500 \text{ mmol/d})$
iv.	$H_2PO_4^-, H_2SO_4^-$	~ 20-40	mmol/d	$(max \sim 40 \text{ mmol/d})$
v.	PT	~ 200	mmol/hr	
			₀₂ , hypokalaemia, arbonic anhydras	, luminal pH, functional ECF, e activity, PTH
vi.	DT	~ 30 mm	$pl/hr \rightarrow pH$	I ~ 4.5
	• influenced by	mineralocortico	<i>id</i> activity	
	• also ICF acide	osis (P _{aCO2}), hype	kalaemia & lumii	nal pH
e. <i>pu</i>	lmonary CO ₂ excre		l/day mmol H ⁺ /day	

Anion Gap

$Def'n: = [Na^+ + K^+] - [Cl^- + HCO_3^-]$

~ 12-17 mmol/l

Unmeasured cations		Uni	neasured a	anions	
Mg ⁺⁺	~ 1.2	mmol/l	albumin	~ 15	mEq/l
Ca ⁺⁺	~ 2.2	mmol/l	$H_2PO_4^-$	~ 2	mEq/l
IgG	small		HSO ₄ ⁻	~ 1	mEq/l
			organic	~ 5	mEq/l
	~ 7.0	mEq/l		~ 23	mEq/l

• *organic anions* include lactate, pyruvate, β -OH-B, acetoacetate, formate, oxalate, salicylate • aetiology of *large anion gap* includes,

a.	renal failure	- $H_2PO_4^-$, HSO_4^- * rarely > 23
b.	lactic acidosis	- types A&B
c.	ketoacids	- diabetes mellitus, starvation, alcohol - β -OH-butyrate, acetoacetate
d.	rhabdomyolysis	- organic acids
e.	 drugs aspirin ethanol methanol paraldehyde ethylene glycol xylitol, sorbitol fructose 	 salicylate, lactate, ketones acetoacetate, lactate formate (<i>formaldehyde</i>), lactate formate, acetate, lactate, pyruvate oxalate lactate lactate

NB: a normal anion gap *does not* exclude a lactic acidosis

• a low or normal anion gap is typically seen with,

a.	hyperchloraemic metabolic acidosis
----	------------------------------------

- b. metabolic alkalosis due to HCO_3^- gain
- c. hypoalbuminaemia
- d. *myeloma* IgG has positive charge, $\therefore \downarrow$'s AG
- e. rarely with increased Mg^{++} or Ca^{++}
- f. artefactually elevated Cl⁻ ? hyperlipidaemia

Acid-Base Correction Factors

a. *metabolic acidosis*

i.	P_{aCO2}	~ last two digits of pH	H ~ 7. 10	
ii.	\downarrow HCO ₃ ⁻	~ 10 mmol/l \rightarrow	$\downarrow P_{aCO2} \sim 12 \text{ mmHg}$	
iii.	P_{aCO2}	~ 1.5 x [HCO ₃ ⁻] + 8	$\pm 2 \text{ mmHg}$	M&K

b. *metabolic alkalosis*

i.	P_{aCO2}	~ last two digi	ts of pH	I ~ 7. 60	
ii.	\uparrow HCO ₃ ⁻	~ 10 mmol/l	\rightarrow	$\uparrow P_{aCO2}$	~ 7 mmHg

iii. less well compensated due to hypoxia 2° hypoventilation

c. respiratory acidosis

i.	acute	$\uparrow P_{aCO2} \sim 10 \text{ mmHg}$	\rightarrow	\uparrow HCO ₃ ⁻ ~ 1-2 mmol/l
ii.	chronic	$\uparrow P_{aCO2} \sim 10 \text{ mmHg}$	\rightarrow	\uparrow HCO ₃ ⁻ ~ 4 mmol/l

d. respiratory alkalosis

- i. *acute, or*
- ii. *chronic* $\downarrow P_{aCO2} \sim 10 \text{ mmHg} \rightarrow \downarrow HCO_3^- \sim 2.5 \text{ mmol/l}$?? 10:4 for chronic fall

<i>NB</i> : low P_{aCO2} + normal δP_{A-aO2}	= central hyperventilation
low P_{aCO2} + high δP_{A-aO2}	= probable pulmonary disease

Metabolic Acidosis - Aetiology

• Increased Non-Respiratory Acids

1.	increased intake	
	i. anion gap > 18	
	salicylates	\rightarrow salicylate, lactate, ketoacids
	• ethanol	\rightarrow acetoacetate, lactate
	methanol	\rightarrow <i>formate</i> , lactate
	• paraldehyde	\rightarrow <i>formate</i> , acetate, lactate
	• xylitol, fructose, sorb	Ū
	• ethylene glycol	\rightarrow oxalate
		ninistration of <i>ethanol</i> for methanol toxicity is of dehydrogenase & \downarrow production of <i>formate</i>
	ii. anion gap < 18	
	• always due to accum	
		ulates as HCO_3^- falls \rightarrow hyperchloraemic
	usually <i>hyperkalaem</i>	
	cationic amino acids	
	 ammonium chloride in liver failure	
	 IN INVERTING TABLET IV HCl used to sterili 	\rightarrow hyperammonaemia
		se central mes
2.	increased production $ ightarrow$	nion gap > 18
	i. ketoacidosis	
	 diabetic ketoacidosis 	
	 alcoholic ketoacidosi 	
	starvation	
	ii. lactic acidosis	$ftypes A\&B \pm normal anion gap$
	cardiorespiratory fail	re
	• sepsis, major trauma	
	•	eg. phenformin, cyanide, salicylate
	enzyme defects	
	• vitamin deficiency	
3.	decreased excretion \rightarrow	nion gap <> 18
	i. renal failure with retenti	
	ii. mineralocorticoid deficie	
	iii. "potassium sparing" diu	•
	· · · · ·	•

NB: effectively, any decreased renal H⁺ excretion \rightarrow \uparrow HCO₃⁻ loss

Decreased Bases

- 1. *increased renal losses* *normal anion gap / \uparrow Cl⁻
 - i. carbonic anhydrase inhibitors
 - ii. renal tubular acidosis
 - proximal \rightarrow equilibrium, *no* R_x with HCO₃⁻
 - distal \rightarrow requires R_x with HCO₃
 - iii. early uraemia

2. increased GIT losses

- i. diarrhoea
- ii. SI fistulae
- iii. ureterosigmoidoscopy

Dilutional Acidosis

- if large volumes of low HCO_3^- fluids are given a metabolic acidosis will appear
- this is due to the fact that CO_2 readily diffuses into the solution which then attains a pH ~ 4.9
- it then takes the addition of ~ 24 mmol/l of HCO₃ to raise the pH to 7.4
- Hartman's solution was designed with this in mind, containing 28 mmol/l of *sodium lactate*, which is metabolised in the liver to HCO_3^-

• when hepatic blood flow is low and metabolism slow, the plasma lactate level may rise, however lactate itself is *not toxic*

Blood Gases

 $\uparrow [\mathrm{H}^{\scriptscriptstyle +}] \text{, or } \downarrow [\mathrm{HCO}_{3}^{-1}] \qquad \rightarrow \quad \downarrow \text{ plasma } [\mathrm{HCO}_{3}^{-1}] \quad \rightarrow \quad \downarrow P_{a\mathrm{CO2}} \text{ by dissociation}$

 \downarrow *ratio* of [HCO₃⁻] / P_{aCO2} $\rightarrow \downarrow$ pH

	Acute	Chronic	
pН	decreased	≤ 7.4	
P _{aO2}	normal	normal	
P _{aCO2}	normal	decreases*	
HCO ₃	decreased	\pm decreased	
BE.	negative	negative	
*12 mmHg/10 mmol [HCO ₃] _{pl}			

NB: P_{aCO2} ~ last two digits of pH ≥ 7.10 ~ 1.5 x [HCO₃⁻] + 8

 \downarrow HCO₃⁻ ~ 10 mmol/1 \rightarrow \downarrow P_{aCO2} ~ 12 mmHg

- decreased pH stimulates ventilation, predominantly via *peripheral chemoreceptors*, decreasing P_{aCO2} and compensating the acidosis

• remember P_{aCO2} & intracellular pH are the principal stimuli to distal renal excretion of acid

• the kidney increases excretion of titratable acid *despite* the decrease in P_{aCO2}

• this occurs as the *filtered load* of HCO_3^- decreases to a greater extent than the reduction in distal tubular H^+ secretion

 \rightarrow more H⁺ is available for titration against NH₃ and HPO₄⁼

• the decreased plasma [HCO₃⁻] shows as a *base deficit*

Treatment

- a. treatment of the *causative factor*
- b. <u>NaCl 0.9%</u>
 - assuming normal renal function
 - if the acidaemia is not affecting cardiac function, giving NaCl will allow the kidney to excrete HCl
- c. <u>Na-Bicarbonate 8.4%</u>
 - no studies demonstrate a benefit in outcome, most show deleterious effects
 - 100 mmol produces 2.241 of $CO_2 \rightarrow P_{aCO2}$ will rise if ventilation is fixed
 - is only the R_x of choice where the origin of the acidaemia is *bicarbonate loss*
 - the dose of HCO_3^- is usually calculated on the empirical assumption that the ion has a $V_{dSS} \sim 50\%$ of body weight
 - this takes into account diverse buffer reactions in both ECF & ICF
 - initial correction should be $< \frac{1}{2}$ this amount as the initial action is in the ECF
 - M&K state that this assumption is *inaccurate* at low plasma $[HCO_3^-]$ levels
 - the AHA recommendations for administration include
 - i. CPR > 10 minutes
 - ii. an increase in V_M possible (ie. ventilated)
 - iii. AGA's \rightarrow pH < 7.2
 - iv. $R_x \sim 1 \text{ mmol/kg slowly IV}$
- d. <u>dialysis</u>

Bicarbonate Administration

- *NB*: "unanimous feeling that the routine administration of bicarbonate was counterproductive" AHA (JAMA 1986)
- *no* studies demonstrate a benefit in *outcome*, most show deleterious effects
- 100 mmol of HCO₃ produces 2.24l of CO₂, therefore the P_{aCO2} will rise if ventilation is fixed
- respiratory acidosis has a greater negative inotropic effect cf. metabolic acidosis
- HCO_3^- does not,
 - 1. improve the ability to *defibrillate* the heart, or
 - 2. increase response to *circulating catecholamines*
- is only the R_x of choice where the origin of the acidaemia is loss of bicarbonate
- the dose is calculated on the empirical assumption that the ion has a $V_p \sim 50\%$ of body weight
- this takes into account diverse buffer reactions in both ECF & ICF
- initial correction should be aimed at $\leq \frac{1}{2}$ this amount as the initial action is in the ECF
- · the AHA recommendations for administration include,
 - 1. CPR > 10 minutes
 - 2. when an increase in V_M is possible ie. ventilated
 - 3. AGA's \rightarrow pH < 7.0
 - 4. $R_x \leq 1 \text{ mmol/kg slowly IV}$
 - 5. VF associated with,
 - i. TCA overdosage
 - ii. hyperkalaemia
 - 6. cardiac arrest in children
- problems associated with administration include,
 - 1. paradoxical *ICF acidosis* *significance argued by M&K
 - 2. may produce an *ECF alkalosis*
 - i. shifts the HbO_2 curve to the left, decreasing O_2 availability at a cellular level
 - ii. shifts K^+ into cells and may result in,
 - hypokalaemia & cardiotoxicity in K⁺-depleted patients
 - *tetany* in renal failure or Ca⁺⁺ depletion
 - 3. hyperosmolality
 - the solution is 1M, i.e. 50 ml = 50 mmol
 - the excessive $Na^{\scriptscriptstyle +}$ load may result in cardiovascular decompensation \pm CCF
 - 4. CSF equilibrates slowly with [HCO₃⁻]_{pl}, therefore ventilation may be maintained despite the increase in [HCO₃⁻]_{pl}, resulting in a *respiratory alkalosis*
 - 5. where the acidaemia is due to organic acids, the subsequent metabolism of such acids and regeneration of HCO_3^- will produce a *metabolic alkalosis*

Bicarbonate - Clinical Uses

- a. treatment of *hyperkalaemia*
 - i. $K^+ \ge 6.0 \text{ mmol/l}$
 - ii. widened QRS / P wave loss
 - iii. respiratory insufficiency
- b. treatment of arrhythmias in *tricyclic overdose*
- c. alkalinising the urine
 - i. drug overdosage phenobarb, salicylates
 - ii. rhabdomyolysis
- d. treatment of HCO_3^{-1} losing acidosis
- e. ? treatment of severe persistent acidosis, pH < 7.0
 - lactic acidosis
 - prolonged severe ketoacidosis
 - neonatal cardiorespiratory failure + severe acidosis
 - * no proven benefit, probably harmful
- *NB:* non-CO₂ producing agents carbicarb, THAM, dichloroacetate studies show *no* significant benefit in *outcome*

Body Fluids							
	Vol/day	Na^+	\mathbf{K}^{+}	Cľ	HCO ₃	IVT	+ KCl
Plasma		136-144	3.5-5.0	95-110	25		
Gastric	1-51	30-120	10-15	140	(pH=1.5)	N.Sal	~ 20-50
Bile	< 1000 ml	145	5	100	35-70	Hart	20
Pancreas	< 1000 ml	140	5	60	90	Hart	20
SI	1-31	120	5-10	105	25	Hart	20
LI	100-500 ml	< 80	20-40	< 50	< 45	Hart	20-50
Sweat	~ 400 ml	50	5-10	45		D ₄ W-N/5	20

Lactic Acidosis

 $pyruvate + NADH + H^{+} \quad \longleftrightarrow \quad lactic \ acid + NAD^{+}$

NAD⁺ is necessary for the conversion of phosphoglyceraldehyde to 3-phosphoglycerate
traditional teaching is that under *anaerobic* conditions, this NAD⁺ is supplied by the above reaction, allowing glycolysis to continue

· actually, the 'reverse' events predominate,

- 1. the production of *lactate* $\propto K_A'$.[Pyruvate].[H⁺].[NADH] / [NAD⁺]
- 2. continued anaerobic glycolysis increases both *pyruvate* & NADH:NAD⁺
 - the former is the principal driving force for lactate production
 - a low pH and redox state alone will only marginally increase production
 - however, when present with a raised [pyruvate] produce marked increases
 - production of pyruvate also produces H^+ by, $PGA \rightarrow 3PG$
 - NB: alcohol metabolism reduces NAD⁺:NADH ratio \rightarrow \uparrow lactate

• normal plasma lactate level at rest,

- a. venous $\sim 0.3-1.3 \text{ mmol/l}$
- b. *arterial* ~ 0.3-0.8 mmol/l
- normal *lactate:pyruvate ratio* ~ 10:1 (pyruvate ~ 0.03-0.1 mmol/l) \rightarrow estimate of cytoplasmic redox state
- however, this may not be the same as the mitochondrial redox state
- therefore, lactate production will *increase* with,

а.	high pyruvate production	 high BMR exercise, catecholamines stress, trauma asthma
b.	intracellular acidosis	- eg. ischaemia, hypoxaemia
c.	high NADH:NAD ⁺ ratio	intracellular hypoxiamitochondrial dysfunctionalcohol excess
d.	low uptake & metabolism	liver diseasecirculatory failurethiamine deficiency (PDH cofactor)

NB: the significance of this is that the *plasma lactate* level correlates with disease severity and *mortality*

• daily production ~ 1400 mmol

• the major sites are the GIT and skeletal muscle

• *lactate* is metabolised in the,

- (Cori cycle) liver ~ 50-80% a.
- kidneys ?% b.
- c. heart
- d. muscle

• lactic acidosis may mask a small ketoacidosis in the presence of a low redox state

- more β -(OH)-butyrate & less acetoacetate \rightarrow
- the β -OB:AA ratio is normally ~ 2-3:1, but may be as high as 7-8:1 in lactic acidosis
- β -OB is not measured by ketone tests, \therefore plasma ketone estimations will be artefactually low

• Laboratory Findings

Def'n: plasma lactate ³ 5 mmol/l

1.	pH ≤ 7.25	
2.	± high <i>anion gap</i> (> 16)	~ 100% if lactate > 10 mmol/l ~ 50% if lactate 5-10 mmol/l
3.	hyperphosphataemia	- unreplenished ATP \rightarrow ADP
4.	hyperuricaemia	- competition at PT of nephron
5.	normokalaemia	- lactate enters cells
6.	leukocytosis	- WBC demargination \propto catecholamines

NB: the AG may be normal with a mild lactic acidosis

• Type A Imbalance of Oxygen Supply/Demand

1.	<u>hype</u>	rmetabolic states	 extreme exercise, seizures sepsis, trauma MH, MNS catecholamines, theophylline, amphetamines
2.	<u>impa</u>	ired tissue DO ₂	
	i.	respiratory	 low F₁O₂, hypoventilation lung disease, V/Q abnormality/shunt
	ii.	CVS	 hypovolaemia, cardiogenic shock thromboembolism, other embolism
	iii.	vascular	 vasodilators sepsis spinal shock anaphylaxis
	iv.	haemopoietic	- severe anaemia - methaemoglobinaemia - haemoglobinopathies

<u>Type B</u> Cellular Metabolic Block

1.	common disorders				
	i. diabetes	- insulin regulates <i>pyruvate dehydrogenase</i> - catabolism increases [alanine] $\rightarrow \uparrow$ pyruvate			
	ii. liver failure				
	iii. renal failure				
	iv. neoplasia	 leukaemia, lymphoma, Hodgkin's, oat cell Ca overproduction, liver infiltration inhibition of metabolism by metabolites of tryptophan 			
2.	drug induced	 phenformin, metformin fructose ethanol, methanol, sorbitol, xylol salicylates cyanide 			
3.	enzyme deficiency	 G6PD F-1,6-diphosphatase deficiency pyruvate decarboxylase pyruvate dehydrogenase thiamine deficiency 			
4.	other	 septicaemia pancreatitis <i>d</i>-lactic acidosis (infusions, short gut syndrome) 			

Ketoacidosis

Ketone Bodies

- in many tissues acetyl-CoA molecules condense to form acetoacetyl-CoA
- the liver possesses *deacylase* and free *acetoacetate* is formed
- this β -keto acid is then converted to **b**-hydroxybutyrate and acetone
- these two are metabolised poorly and diffuse into the circulation
- together with acetoacetate \rightarrow *ketone bodies*

• *acetoacetate* is also formed from β -hydroxy- β -methylglutaryl-CoA (**HMG-CoA**) and this is quantitatively more significant

• tissues *other* than the liver transfer CoA from succinyl-CoA to acetoacetate and metabolise the "active" acetoacetate to $CO_2 \& H_2O$ via the citric acid cycle

- · ketones are normally metabolised as rapidly as they are formed
- therefore, normal serum concentrations are low **£1 mg/dl**
- acetyl-CoA accumulates and conversion to ketone bodies in the liver increases if,
 - 1. the entry of acetyl-CoA into the CAC is depressed due to a decreased supply of the products of glucose metabolism, or
 - 2. the entry does not increase when acetyl-CoA concentrations rise
- the capacity of tissues to oxidise ketones is soon exceeded \rightarrow ketosis

• acetoacetate & β -hydroxybutyrate are anions of moderately strong acids and their buffering in plasma is exceeded in a number of conditions resulting in a metabolic acidosis

• 3 conditions lead to deficient *intracellular glucose* supplies,

- 1. starvation
- 2. diabetes mellitus
- 3. a high fat :: low CHO diet

• other causes of *ketoacidosis*,

- 1. ethanol, isopropyl alcohol usually associated with glucose deficiency
- 2. paraldehyde
- 3. von Gierke's disease \rightarrow G-6-phosphatase deficiency
 - \rightarrow hypoglycaemia, hepatomegaly
 - this usually produces a *lactic* acidosis
 - this is due to the absence of a significant path for the conversion of fat to glucose
 - small amounts of glucose will abolish this ketosis and glucose is antiketogenic

Metabolic Alkalosis

Aetiology

NB: commonly associated with *hypovolaemia* and/or *hypokalaemia* *these are associations, *not* 'causations'

- a. common causes
 - i. diuretics
 - ii. vomiting
 - iii. following correction of hypercarbia
- b. any *fluid loss* replaced with *insufficient* $Na^+ \rightarrow H^+$ excretion
- c. *acid loss* is either renal or GIT

d. *increased proton losses*

- i. renal
- \uparrow Na⁺ reabsorption (hypovolaemia, dehydration, etc.)
- Cushing's syndrome, exogenous steroids
- steroid / ACTH secreting tumours
- hyperaldosteronism $1^{\circ} / 2^{\circ}$
- Bartter's syndrome (JGA hyperplasia)
- Liddle's syndrome
- hypercalcaemia $\ / \ hypomagnesaemia \ \rightarrow \ NDI$
- drugs: steroids
 - diuretics

carbenoxolone

- ii. GIT N/G suctioning
 - protracted vomiting
 - rarely diarrhoea

e. increased bases

- i. administration of NaHCO₃
- ii. metabolic conversion of exogenous acid anions citrate, lactate, acetate
- iii. milk/alkali syndrome
- iv. renal conservation of HCO_3^- acidosis

- hypercarbia

- f. factors tending to *maintain* an alkalosis
 - i. hypovolaemia
 - ii. hypokalaemia
 - iii. hypochloraemia
 - iv. hypomagnesaemia
 - v. chronic hypercapnia
 - vi. mild chronic renal failure

Chloride Responsiveness

- 1. chloride *responsive* alkalosis \rightarrow ECF Na⁺ or Cl⁻ deficit
- 2. chloride *resistant* alkalosis \rightarrow
 - i. ICF hypokalaemia and acidosis
 - ii. ECF alkalosis with normovolaemia & Cl⁻
 - iii. renal failure

Blood Gasses

 \downarrow [H⁺], or \uparrow [HCO₃⁻] \rightarrow \uparrow plasma [HCO₃⁻] \rightarrow \uparrow P_{aCO2}

 $\uparrow \textit{ratio} \text{ of } [\text{HCO}_{3}] / P_{aCO2} \longrightarrow \uparrow pH$

	Acute	Chronic	
pН	increased	> 7.4	
P _{aO2}	normal	normal \pm low	
P _{aCO2}	normal	increases ¹	
HCO ₃ ⁻	increased	increased	
BE.	positive	positive	
¹ minimally due hypoxic drive			

NB: $P_{aCO2} \sim \text{last two digits of pH} \le 7.60$

 \uparrow HCO₃⁻ ~ 10 mmol/1 \rightarrow \uparrow P_{aCO2} ~ 7 mmHg

** this is the least well compensated form of acid-base disturbance

• Hypokalaemia & Alkalosis

• Maxwell & Kleeman, mechanisms resulting in hyperbicarbonataemia,

- 1. enhanced proximal tubular HCO_3^- reabsorption
- 2. increased renal tubular ammonia synthesis & ammonium formation
- 3. chloride depletion \rightarrow DT inhibition, nephrogenic DI \rightarrow 1 aldosteronism
- 4. ICF flux of H^+ in exchange for ECF K^+

other workers feel the evidence relating these is weak, and effects are species dependent
in the presence of *normovolaemia* these effects are mild, however with volume contraction marked alkalosis can result

• Other Alkaloses

- 1. *diuretic* induced alkalosis
 - the result of *chloride deficiency* and is corrected by replacement
 - the body defends ECF volume by Na⁺ retention but if Cl⁻ is deficient then only HCO₃⁻ is available to maintain electroneutrality
- 2. *steroid* induced alkalosis
 - the result of increased DT exchange of $Na^{\scriptscriptstyle +}$ for $K^{\scriptscriptstyle +}$ & $H^{\scriptscriptstyle +}$
 - this leads to ECF overload, hypokalaemia and alkalosis
 - chloride replacement does *not* correct this condition as the normal mechanisms for the excretion of HCO₃⁻ are inhibited
- 3. *hypercalcaemia* probably acts via the same mechanism
 - nephrogenic DI & chloride depletion
- 4. *hypomagnesaemia* may only be associated, eg. thiazides

■ <u>Treatment</u>

- a. treat the causative factor
- b. prevent tubular (PCT) loss of $H^+ \rightarrow$ increase *functional ECF*
 - i. NaCl 0.9% ± KCl
 - ii. NSA-5%, albumin or blood transfusion
 - iii. inotropic support of cardiac output and GFR
 - iv. acetazolamide
- c. prevent DCT loss of H^+
 - i. replace K^+ and Cl^- deficits
 - ii. inhibit aldosterone effects with *spironolactone*
 - iii. triamterene, amiloride

d. addition of HCl to ECF

i.	IV HCl infusion	~ 200 mmol/l D_5W
		~ 10-15 mmol/hr
ii.	NH ₄ Cl	- weak acid, $pK_a \sim 9.3$
		- doesn't alter pH rapidly or require CVC line
		- NH_4^+ dissociates and is metabolised to urea
		- H ⁺ thus formed correcting the alkalosis
iii.	arginine-HCl, lysine-HCl	- also metabolised to urea and HCl by liver

Hydrochloric Acid Infusion

- CVC infusion of HCl,
 - a. concentration ~ 120-240 mmol/l
 - b. *rate* £0.2 mmol/kg/hr
- complications of infusion include,
 - a. haemolysis
 - b. thrombophlebitis
 - c. reduction in some amino acids
 - d. precipitation of intralipid
 - e. tissue necrosis
 - f. hyperventilation and hypocapnia at > 400 mmol/day
 - g. metabolic, non-anion gap acidosis

• indications include,

- a. persistent metabolic alkalosis
- b. ? CVC infection
- c. ? CVC thrombosis

• requisites for infusion include prior correction of,

- a. hypovolaemia
- b. hypokalaemia
- c. steroid excess
- d. renal failure

CO₂ Transport

a.	artei	rial content	~ 48	ml/1	00ml
b.	venc	ous content	~ 53	ml/1	00ml
c.	CO_2	added by tissues	~ 3.75	ml/1	00ml
	i.	by location			
		• plasma	~ 2.1	35 ml	(65%)
		• rbc's	~ 1.4	4 ml	(35%)
	ii.	by type			
		• HCO_3^{-}	~ 2.4	43 ml	(65% - 90% in rbc's)
		Hb carbamino	~ 1.0	0 ml	(26%)
		• dissolved CO ₂	~ 0	3 ml	(8%)
		• pl. protein carbamin	o < 1.	0%	

Def'n: the Haldane effect	\rightarrow	<i>left shift</i> of the HbCO ₂ dissociation curve
	×	<i>decrease</i> in HbO_2 saturation

• this limits the rise in $P_{_{vCO2}}$ which would otherwise occur at the tissue level • this is partially responsible for the acute rise in $P_{_{aCO2}}$ with administration of O_2 to chronic respiratory failure patients in extremis

	Arterial	Mixed Venous
P _{aCO2}	40 mmHg	46 mmHg
C _{aCO2}	49 ml/100ml 22 mmol/l	53 ml/100ml 24 mmol/l
pН	7.4	7.37
P _{aO2}	100 mmHg	40 mmHg
S _{aO2}	97.5 %	75 %

Effects of Hypocapnia

- 1. cerebral vasoconstriction
- 2. placental vasoconstriction
- 3. ↑ TPR
- 4. \downarrow cardiac output
- 5. \downarrow ICP
- 6. \uparrow pain threshold
- 7. hypoventilation
- 8. respiratory alkalosis
- 9. *left shift* of the HbO_2 dissociation curve
- 10. hypokalaemia \rightarrow ICF shift
- 11. \downarrow HCO₃⁻ reabsorption by the kidney
- 12. \downarrow plasma ionized Ca⁺⁺ \rightarrow tetany

• Effects of Hypercapnia

- 1. cerebral vasodilatation
- 2. ↑ ICP
- 3. \uparrow CNS sympathetic outflow
- 4. ↑ cardiac output & BP indirect effect
- 5. direct depressant effect upon the CVS
- 6. cardiac arrhythmias
- 7. hyperventilation
- 8. respiratory acidosis
- 9. *right shift* of the HbO_2 dissociation curve
- 10. hyperkalaemia
- 11. \uparrow HCO₃ reabsorption by the kidney

Respiratory Alkalosis

i.

- a. normal δP_{A-aO2} gradient = *non-pulmonary*
 - pregnancy
 - high altitude
 - ii. drugs salicylates
 - catecholamines
 - progesterone
 - analeptics
 - iii. CNS disease CVA, trauma, hypoxic/ischaemic encephalopathy
 - iv. thyrotoxicosis

physiological

- v. endotoxaemia
- vi. psychogenic hyperventilation
- vii. severe anaemia
- viii. IPPV
- b. high δP_{A-aO2} gradient = *pulmonary*
 - i. ARDS, septicaemia
 - ii. hepatic failure
 - iii. pulmonary emboli
 - iv. pulmonary oedema
 - v. lung disease + increased work of breathing asthma, emphysema

SODIUM METABOLISM

a.	alkaline elemental metal			
b.	atomic number		=	11
с.	molecular weight	Ĵ	~	23
d.	monovalent catio	n	=	the principal extracellular cation
• total bod	• total body content ~ 58 mmol/kg			
a.	exchangeable	~ 70	%	
b.	ECF	~ 50	%	
с.	ICF	~ 5-1	10%	0
d.	bone	~ 40	-45	%
• concentration ranges vary between tissues,				

 daily req minimum	uirements n requirement	~ 2 mmo ~ 5-10 m	0	(150 mmol/d)
b.	ICF muscle rbc 	~ 3-20 ~ 3-4 ~ 20	mmol/l mmol/l mmol/l	
a.	plasma	~ 132-14	6 mmol/l	

Control of Sodium Balance

- 1. - essentially unregulated in humans intake
- 2. losses i.

renal δGFR • - MAP, sympathetic NS - GTB, TGF, intrarenal PG synthesis, angiotensin II, kinins - angiotensin II, hyperkalaemia, ACTH aldosterone \pm hyponatraemia \propto atrial stretch, CVP • ANF GIT ii. • normal losses ~ 5-10 mmol/d • can markedly increase in disease states, eg. the secretory diarrhoeas (cholera) - insensible fluid losses are pure $H_2O \sim 400 \text{ ml/d}$ iii. sweat - $[Na^+]_{sw}$ is directly proportional to rate

NB: control of Na⁺ excretion is via two variables, *GFR* and *sodium reabsorption*, the later being quantitatively more important

Control of Tubular Sodium Reabsorption

- a. glomerulotubular balance
 - the absolute quantity of Na⁺ leaving the PT *does* alter
 - GTB is not perfect, % reabsorption does change with GFR
- b. *tubuloglomerular feedback*
 - · alteration of GFR with NaCl delivery to macula densa
- c. aldosterone
 - the single most important controller of $Na^{\scriptscriptstyle +}$ balance
 - produced in the zona glomerulosa of the adrenal cortex
 - Na⁺ reabsorption dependent on aldosterone is ~ 2% of the filtered load

522 mmol/d 30 g NaCl per day

- · four factors directly stimulate aldosterone secretion
- i. *angiotensin II* most important*
- ii. \uparrow plasma [K⁺]
- iii. ACTH permissive
- iv. \downarrow plasma [Na⁺] minor in humans
- * keyed to release of *renin* which is determined by
- i. intrarenal baroreceptors stimulation
- ii. macula densa
- iii. renal sympathetic NS
- iv. angiotensin II negative feedback

d. *atrial natriuretic factor*

- i. ↑ GFR::RBF efferent vasoconstriction - afferent vasodilatation
- ii. $\uparrow K_{f}$
- iii. \uparrow MBF::CBF ratio
- iv. \downarrow plasma *renin* direct & indirect
- v. \downarrow plasma *aldosterone* direct & indirect
- vi. \uparrow urinary excretion of
- Na⁺, Cl⁻, K⁺
- Ca^{++} , $HPO_4^{=}$, Mg^{++}
- vii. \uparrow urine volume
- viii. systemic vasodilation

- e. other factors
 - i. intrarenal physical factors
 - the interstitial *hydraulic pressure*
 - the peritubular hydraulic and oncotic pressures
 - ii. distribution of RBF
 - iii. direct tubular effects of *catecholamines*
 - iv. direct tubular effects of angiotensin II
 - v. other humoral agents
 - cortisol, oestrogen, growth hormone & insulin \rightarrow \uparrow reabsorption
 - parathyroid hormone, progesterone & glucagon $\rightarrow \downarrow$ reabsorption

f. effects of angiotensin II

i.	vascular smooth muscle	- ↑ tone
ii.	CNS/PNS	 facilitation of sympathetic activity stimulates secretion of <i>ADH</i> stimulates <i>thirst</i>
iii.	adrenal cortex	- ↑ secretion of <i>aldosterone</i>
iv.	kidneys	
	• aa. constriction decreasi	ng GFR but ↑ <i>GRF:RPF ratio</i>

- direct tubular effect increasing Na^+ reabsorption

Hyponatraemia

Def'n: plasma Na⁺ < 135 mmol/l

- determined by TBW, TBNa⁺, and TBK⁺
- ie. this is a whole body water derrangement
- more commonly *water excess*, less often Na⁺ deficit

a. *iso-osmotic* \rightarrow *factitious*

- i. hyperlipidaemia usually only when plasma TG's > 50 mmol/l
- ii. hyperproteinaemia multiple myeloma
- iii. IVT arm sample
- plasma water ~ 93% of plasma volume, ∴increases in *plasma solids* will lower [Na⁺]_{pl} factitiously when *flame emission* & *indirect ISE* methods are used
- osmolality is unaffected, thus no R_x required
- actual $[Na^+] = [Na^+]_{pl} x$ (measured osmolality)/(calculated osmolality)

b. hyper-osmotic \rightarrow - osmolar gap

- i. hyperglycaemia \downarrow [Na⁺] ~ 1 mmol / 3 mmol \uparrow BSL
- ii. mannitol, glycine, glycerol $? \pm$ urea
 - depending upon the concentration used, these may be iso-osmotic
- iii. other solutes not entering cells
 - water is drawn into the ECF from the ICF
 - total body Na^+ may be normal or depleted

c. hypo-osmotic

i.	21	\rightarrow	persistent ADH effect
		k	fluid replacement deficient in Na ⁺
	 extrarenal losses 		- GIT, vomiting/diarrhoea
			- 3 rd space
	 renal losses 		- diuretics, osmotic diuresis
			- salt losing nephritis
			- Addison's disease
			- heparin (aldosterone supression)
ii.	slightly hypervolaemic -	\rightarrow	fluid excess ~ 3-4 l, <i>no oedema</i>
	• SIADH, reset osmosta	at	
	severe hypothyroidism	ı, pit	uitary glucocorticoid deficiency
	• psychogenic polydipsi	a, in	appropriate IV fluids
	• managed by H_2O restr	ictio	n alone
iii.	hypervolaemic –	\rightarrow	fluid excess > ~ 10 l, <i>with oedema</i>
	• CCF [§]		
	 nephrotic syndrome[§] 		[§] 2° hyperaldosterone states
	 cirrhosis[§] 		

• renal failure

Diagnosis

- a. physical examination oedema
 - volume status
- b. plasma biochemistry U&E's
 - glucose
 - measured & calculated osmolality
- c. urinary [Na⁺]
 - i. $[Na^+]_U < 20 \text{ mmol/l}$
 - extrarenal losses with normal renal function
 - $[Cl^{-}]_{U}$ usually parallels $[Na^{+}]_{U}$ except in RTA and hypovolaemia, where HCO_{3}^{-} losses are high and $[Cl^{-}]_{U}$ low
 - 2° hyperaldosteronism, with a low effective circulating blood volume
 - ii. $[Na^+]_U > 20 \text{ mmol/l}$
 - states where there is renal wasting of sodium
 - ARF/CRF
 - SIADH, cerebral salt wasting syndrome
 - Addison's
 - diuretics
 - hypothyroidism
- d. water challenge
 - giving a patient a water load will differentiate between SIADH and reset osmostat
 - the later being able to excrete the load, the former reducing [Na ⁺] further
 - obviously if hyponatraemia is severe this is *contraindicated*
- e. saline infusion
 - will normalise those patients shedding $Na^{\scriptscriptstyle +}$ rich fluids and being replaced with low $Na^{\scriptscriptstyle +}$ fluids
- f. response to fluid restriction
 - will tend to correct the ADH excess group

Clinical Manifestations

• these depend upon both the *extent* of the derangement and the *aetiology* to a greater extent than the absolute $[Na^+]$

• isotonic/factitious hyponatraemias cause little problem, eg. *glycine* 1.5% absorption during TURPS, etc.

• the use of agents such as glycine, which do not alter *tonicity*, avoid the problems associated with water shifts across membranes

• however, they *do not* prevent problems associated with a low $[Na^+]_{ECF}$

• also, agents which are metabolised, leaving free water behind may produce delayed true hyponatraemia

a.	CNS	- symptoms and signs are more severe with rapid falls in $[Na^+]_{pl}$
		> 10% change

- i. confusion
- ii. decreased conscious level

iii. coma/convulsions $\leq 120 \text{ mmol/l } [\text{Na}^+]_{\text{pl}}$ ~ 50% mortality

• NB: mortality ~ 50% where $[Na^+]_{pl}$ falls below 120 mmol/l within 24 hours

b. *CVS*

i.	\uparrow QRS duration	@	$[\mathrm{Na}^+]_{\mathrm{pl}} < 115 \mathrm{mmol/l}$
----	-------------------------	---	---

- ii. ST segment elevation @ $[Na^+]_{pl} < 115 \text{ mmol/l}$
- iii. VT/VF @ $[Na^+]_{pl} < 110 \text{ mmol/l}$
- iv. volume overload
 - \uparrow BP/HR unreliable
 - CCF, pulmonary oedema

c. neuromuscular

- i. muscle cramps
- ii. muscle fasciculations
- iii. neuromuscular irritability

Treatment - Severe

a. ABC

b. IVT - initial ECH

- initial ECF resuscitation should be with 0.9% NaCl
- Na⁺ deficit calculated against TBW, viz.

$$\delta[Na^+]_{TBW} = \left[\frac{140 - [Na^+]_{PL}}{140}\right] \times Weight \times 0.6$$

 although sodium is only in the ECF, *total body osmolality* must be corrected (except - * below)

- the aim is to raise the $[Na^+]_{PL}$ £2 mmol/l/hr
- rates greater than this may be associated with *central pontine myelinolysis*, or *osmotic demyelination syndrome*
- demyelination is mostly seen in *alcoholics*
 - \rightarrow quadriplegia, bulbar & pseudobulbar signs
- may use 8.4% NaHCO₃ in an emergency
- strong NaCl 29.2% (5 mmol/ml) may be used to bring plasma Na⁺ up to 120-130 mmol/l range if,
- i. rapid development of severe hyponatraemia & CNS signs, ie. fitting
- ii. failure of above therapy
- iii. complicated by fluid overload (CRF)
- d. loop diuretics
 - help prevent fluid overload & pulmonary oedema
 - may exacerbate hyponatraemia
 - others suggest mannitol better

Treatment - Mild

a. discontinuation of aetiological agent

b.	fluid restriction	≤ 15 ml/kg/d - hypervolaemic (SIADH, reset osmostat)
c.	normal saline	hypovolaemicreplacement at 0.3x*
d.	demethychlortetracycline	- blocks renal ADH effects (\rightarrow "nephrogenic DI")

- e. high protein, low CHO/fat diet reduces H₂O intake
- f. underlying pathology

Hypernatraemia

Def'n: plasma Na⁺ > 145 mmol/l

• these are always associated with *increased osmolality*

• Classification

- a. *hypovolaemic* \rightarrow H₂O loss > Na⁺
 - most fluid losses have a $[Na^+]$ lower than plasma
 - therefore there is a net loss of water greater than $\mathrm{Na}^{\scriptscriptstyle +}$

i.	i. renal		 diuretics, glycosuria ARF/CRF rarely with diabetes insipidus partial obstruction 		
ii.	ii. GIT losses		- diarrhoea, vomiting - fistulae, SBO		
iii.	respi	ratory losses	- IPPV with dry gases		
iv.	skin 1	losses	 fever high ambient temperature thyrotoxicosis vasodilatory states exfoliative skin disorders 		
•	(i)	[Na ⁺] _U increases	/ U_{Osm} decreases		
	(ii-iv) $[Na^+]_U$ decreases		/ U _{Osm} increases		
ie., with extrarenal loss			osses there is renal compensation,		

the net effect is a decrease in ICF > ECF

b. $iso \rightarrow hypovolaemic$

- these result from pure water loss
- 67% of TBW resides in the ICF
- dehydration increases plasma osmotic pressure, tending to maintain intravascular volume
- : these patients do not become *hypotensive* until $[Na^+]_{PL} \sim 160-170 \text{ mmol/l}$
- .: this group are sometimes called "isovolaemic"
- · produces a mild-moderate decrease in both ECF & ICF

i.	inadequate water replacement	- iatrogenic
		- inadequate IVT
		- unconsciousness
ii.	reset osmostat	
iii.	central diabetes insipidus	 head injuries post-surgical
	1 • 1• 1 / • • • 1	

- iv. nephrogenic diabetes insipidus
 - $1^{\circ} =$ congenital renal resistance to ADH
 - 2° = hypokalaemia, hypercalcaemia lithium, methoxyflurane multiple myeloma, sickle cell anaemia, nephrocalcinosis, amyloid

c. *iso* \rightarrow *hypervolaemic* \rightarrow Na⁺ gain > H₂O gain

• usually not sufficient H₂O gain to produce oedema

i.	iatrogenic \rightarrow	* the major cause - NaHCO ₃		
		- feeding formulae, TPN		
		- drinking sea water		
ii.	mineralocorticoid excess	- Conn's, Cushing's syndrome		
		- steroid excess		
• the later group usually have 1-31 of excess TBW				

- the later group usually have 1-3 l of excess TBW
- the increased plasma osmolality increases ADH secretion, which in turn increases ECFV, with subsequent renal escape
- oedema in this group is therefore *rare*
- · ECFV is generally increased while ICFV decreases

Diagnosis

- a. history & examination
- b. plasma biochemistry
- c. urinary $[Na^+]$ & urinary osmolality
- d. administration of desmopressin
- e. water deprivation challenge

Clinical Manifestations

NB: as for hyponatraemia, these depend more upon the *rate of change* than the absolute change

a. <u>CNS</u>

i.	confusion	- membrane irritability - brain shrinkage
ii.	decreased LOC	haemorrhage, venous thrombosisspasticity, convulsions
iii.	<i>coma</i>acute mortalitchronic morta	- adults ~ 70%

b. <u>CVS</u>

i.	\downarrow contractility	$\propto [Ca^{++}]/[Na^{+}]^2$
••	COL	1 1

- ii. CCF \propto volume overload
- c. other loss of weight
 - ↑ plasma Na⁺
 - \uparrow serum osmolality
 - thirst

Treatment - Severe

- a. ABC
- b. IVT

iii.

i.	Hartman's solution	- slightly hypo-osmolar ~ 260 mosmol/l
		- resuscitation if hypotensive

- ii. 0.45% saline use for replacement of H_20/Na^+ deficit
 - aim to replace deficit in 24/48 hrs ≤ 2.0 mmol/l/hr rate of reduction
 - 5% dextrose for H_2O losses in Na^+ excess

$$H_2O_{(deficit)} \approx \left[\frac{[Na^+]_{PL}-140}{140}\right] \times Weight \times 0.6$$

- c. diuretics for Na⁺ excess
- d. dialysis for Na⁺ excess
- e. cease aetiological drugs
- f. decrease Na⁺ intake

Treatment - Mild

- a. cease/decrease Na⁺ intake
- b. cease aetiological drugs
- c. D₅W
- d. DDAVP for central DI

Osmolar Gap

Def'n:	=	the difference between the measured and calculated osmolality		
	~	10 mmol/l normally, but may be up to 24 mmol/l		

• Calculated Osmolality	 ~ (2 x [Na⁺]) + [urea] + [glu]mmol/l ~ 272-283 mmol/l normal range
• Measured Osmolality	 = osmometer freezing point depression ~ -0.001865°C/mmol ~ 285-295 mmol/l normal range

NB: 1. some suggest using a value of 2 x [Na⁺], as the *osmotic coefficient* of 0.93 and the percentage of plasma water (~ 93%) cancel out

- 2. the RCPA uses $1.85x ([Na^+] + [K^+]) + [urea] + [glu]$
- thus, *hyperosmolar* states may exist despite a normal or low [Na⁺]
- · OG increases due to an increase in unmeasured osmotically active particles,
 - a. alcohols ethanol, methanol
 - mannitol
 - sorbitol, propylene glycol
 - b. hyperlipidaemia
 - c. hyperproteinaemia (multiple myeloma)
 - d. glycine

• these particles fall into one of two groups,

- a. *impermeate* solutes \rightarrow hypertonic state
- b. *permeate* solutes \rightarrow isotonic states

• acute changes are more important than chronic

• *hyperosmolality per se* may decrease *insulin* release, therefore raising the BSL and establishing a vicious cycle

• thus, some patients with non-ketotic hyperosmolar coma may not require insulin once the plasma glucose is normalised

• with substances which affect *tonicity*, eg. mannitol,

- 1. the reduction in ICFV may result in cellular shrinkage, with confusion and coma
- 2. reciprocal expansion of the ECFV may result in CCF

• usually, providing renal function is normal, the ECFV is also decreased due to the subsequent osmotic diuresis

SIADH

Def'n: clinical syndrome produced by continued secretion of ADH in the absence of appropriate *osmotic* or *haemodynamic* stimuli

*original report by Schwartz & Bartter (AJM 1957) of 2 patients with *bronchogenic carcinoma*

Diagnosis

- 1. hypoosmolar hyponatraemia
- 2. urinary $Na^+ > 20 \text{ mmol/l}$
- 3. urine relatively hypertonic cf. serum
- 4. normal renal, adrenal, cardiac and hepatic function
- 5. absence of *drug therapy* resulting in "SIADH"
- 6. corrected by water restriction alone
- *NB*: the definition of *true SIADH* requires the absence of drugs, normal cardiac, renal, adrenal and liver function, and correction by *water restriction* alone

Aetiology

4.

- 1. malignancies \rightarrow autonomous ADH release
 - lung, pancreas, sarcomas, Hodgkin's, thymoma
- 2. non-malignant pulmonary disease
 - TB, lung abscess, empyema, pneumonia, viral pneumonitis, CAL
- 3. CNS disease
 - trauma CHI, fractures
 - vascular accidents SAH, SDH, thrombosis
 - infections encephalitis, meningitis (TB, bacterial)
 - GBS, SLE, AIP
 - miscellaneous IPPV

- hypothyroidism, (? hypoadrenalism)

NB: patient age and anaesthetic technique have no effect on occurrence of SIADH

• clinical features relate to hyponatraemia and cerebral oedema

- a. weight gain, weakness, lethargy, confusion
- b. obtundation, disordered reflexes, convulsions

- ie. not Na⁺ retaining

Biochemistry

- a. urinary sodium > 20 mmol/l
- b. serum sodium < 130 mmol/l
- c. serum osmolality <270 mosm/l
- d. low serum urea, creatinine, urate & albumin
- e. urine *hypertonic* relative to plasma
- f. inability to excrete a water load
- g. \uparrow plasma ADH level

Management

NB: \rightarrow aim ≤ 2 mmol/l/hr change unless seizures

- 1. fluid restriction
- 2. N.saline & diuretics
- 3. hypertonic saline rarely
- 4. *demethylchlortetracycline* $\rightarrow \downarrow$ tubular ADH response \rightarrow "nephrogenic DI"

Drug Induced ADH Excess

- 1. chlopropamide, carbamazepine, clofibrate
- 2. cyclophosphamide, vincristine, vinblastine
- 3. GA's, opioids
- 4. TCA's
- 5. oxytocics

POTASSIUM

a.	alkaline elemental	alkaline elemental metal				
b.	atomic number	= 19				
c.	molecular weight	~ 39				
d.	monovalent cation	= the principal <i>intracellular cation</i>				
• total body content ~ 55 mmol/kg (3,850 mmol/70kg)						
a.	exchangeable	~ 90%				
b.	ICF	~ 98%				
c.	ECF	~ 2%				
d.	bone & brain	~ 10%				
•	tration ranges vary be plasma	~ 3.1-4.2 mmol/l (highly variable, QEH ~ 3.5-4.8) ~ 3.8-4.9 mmol/l				
		~ linear, semi-log relationship to TBK^+				
b.	ICF	~ 150 mmol/l				
с.	gastric secretion	~ 10 mmol/l				
d.	sweat	~ 10 mmol/l				
e.	SI, bile & pancreat	tic $\sim 5 \text{ mmol/l}$				
f.	diarrhoea	~ 40 mmol/l				
■ <u>Daily</u>	Balance					

- a. *intake* ~ 70-100 mmol/d
 - GIT absorption passive down to luminal $[K^+] \sim 5-6 \text{ mmol/l}$
 - the majority of ingested K^{+} is therefore absorbed
- b. *losses* ~ 0.7 mmol/kg/day obligatory
 - i. renal ~ 60-90 mmol/d
 - GFR \rightarrow filtered ~ 720 mmol/day
 - 50-60% reabsorbed in PCT, secretion into late PT and LOH
 - virtually all remainder reabsorbed by distal tubule
 - secretion along late DT & CT \rightarrow 5-15% of filtered load
 - ii. faeces ~ 10-20 mmol/d
 - this can increase greatly with *diarrhoea* or other SI losses
 - usual [K⁺] ~ 30 mmol/l
 - secretory lesions may also increase losses

• Assessment of Potassium Status

a. plasma [K⁺]

٠

- difficult to assess, as ECF is only ~ 2% of body mass
- however, if $[K^+]_{PL}$ is low and the *pH normal*,
 - there is a substantial total body deficit of K^+
- a $[K^+]_{PL}$ < 3.0 mmol/l usually represents a total deficit ~ 200-300 mmol/70kg
- hyperkalaemia may, or may not represent an excess body K^{+}
- $[K^+]_{PL}$ is most important in the short term due to the effects of K $^+$ on transmembrane potentials

b. radioactive isotope dilution ⁴²K⁺

· requires 24 hours distribution and several inaccuracies

c. **urinary** $[\mathbf{K}^+]$

- not very useful due to the limited ability of the kidney to conserve potassium
- a $[K^+]_U > 40 \text{ mmol/l}$ is suggestive of *hyperaldosteronism*

d. **ICF** [**K**⁺]

- RBC, WBC and muscle
- subject to artifacts from preparation
- only really useful for research purposes
- e. **ECG** useful for monitoring acute changes only - individual variation & dependent upon rate of change

• Regulation of ECF Potassium Concentration

• ~ 98% of total body K^+ is intracellular due to the action of the membrane bound Na^+/K^+ -ATPase • thus, the ECF [K⁺] is a function of 2 variables,

- 1. total body K^+
- 2. ECF/ICF distribution

- due to relatively small extracellular component, even small shifts in internal balance can markedly alter the extracellular $[K^{\scriptscriptstyle +}]$

• such shifts are under physiological control, particularly in *muscle & liver*

- these tend to offset alterations of extracellular $[K^{\,\scriptscriptstyle +}]$

- the major factors in this control are,
 - 1. adrenaline
 - results in a net movement of $K^{\scriptscriptstyle +}$ into cells
 - mediated by β_2 -adrenergic receptors \rightarrow predominantly muscle & liver
 - important during exercise or major trauma
 - also seen with β_2 -adrenergic *tocolysis*

2. insulin

•

- at physiological concentration, insulin exerts a tonic *permissive* effect
- promotes entry into muscle, liver and other tissues
- more importantly, elevated plasma [K⁺] stimulates insulin release, promoting its own entry into cells
- conversely, \downarrow [K⁺] inhibits insulin release & worsens hyperglycaemia

3. glucagon

- counteracts effects of insulin
- also directly increases $K^{\!\scriptscriptstyle +}$ secretion in the late DT & CT

4. aldosterone

- DT of the nephron is the main site of action
- increases secretion, ? independent of Na⁺
- facilitates net movement of $K^{\scriptscriptstyle +}$ into cells, esp. with chronic elevated total body $K^{\scriptscriptstyle +}$
- this is independent of renal handling of $K^{\scriptscriptstyle\!+}$
- *NB*: other factors that affect the balance of internal K⁺ are not linked to homeostasis of the internal environment but do affect K⁺ significantly, of these *plasma* [H⁺] is the most important

• Other Influencial Factors

- 1. acid-base status
- 2. Na^+/K^+ -ATP'ase ? endogenous digoxin-like substances
- 3. Gibbs-Donnan effect
- 4. non-absorbable anions in the urine
- 5. diuretics
- 6. ECF volume & its effects on urine output
- 7. intestinal secretion

Functions

1. total body osmolality

- total body osmolality is related to the total exchangeable $Na^+ \& K^+$ and TBW
- changes in either total body Na^{+}_{E} or K^{+}_{E} may result in changes in plasma osmolality, viz.

$$[Na^+]_{pl} \sim \underline{Na^+_E + K^+_E}_{TBW}$$

2. *resting membrane potentials*

- the $[K^+]_{ECF}$ is closely regulated due to the primary importance of K^+ in neuromuscular excitability
- · the resting membrane potential being predominantly determined as follows

$$E_M = -61.5 \log \frac{[K^+]_i}{[K^+]_o}$$

thus,

i. $\uparrow [K^{+}]_{o} \rightarrow E_{m}$ approaches 0 mV

- ii. $\downarrow [K^+]_{o} \rightarrow E_{m}$ more negative
 - changes in ICF $[K^+]$ having only a small effect
 - acute changes having a greater effect than chronic, as with the latter both ECF & ICF levels are likely to move in the same direction
- c. influences *excitable tissues* cardiac - neural
 d. intracellular osmotic pressure and electroneutrality
- e. protein synthesis $\sim 1 \text{ mmol/g of protein intake}$

Hypokalaemia

Def'n:	serum [K ⁺]	< 3.5 mmol/l	
	plasma [K ⁺]	< 3.0 mmol/l	QEH < 3.5 mmol/l

• Causes

- a. decreased intake NBM
- b. *↑ renal* losses
 - i. *diuretics*

• PT agents	- acetazolamide
	- mannitol
 loop diurctics 	- frusemide
	- bumetanide
• early DT	- thiazides

- other drugs amphotericin B
 - anionic drugs, eg. penicillins
- iii. \uparrow DT flow
- iv. hypomagnesaemia
- c. $\uparrow GIT$ losses

ii.

- i. diarrhoea, fistulae
- ii. malabsorption syndromes
- d. *skin* losses extreme sweating
- e. compartmental shifts
 - i. alkalaemia $\uparrow pH \sim 0.1$ $\downarrow [K^+]_{pl} \sim 0.5 \text{ mmol/l}$
 - ii. insulin
 - iii. adrenaline
 - iv. familial periodic paralysis
 - v. *hypomagnesaemia* \rightarrow ICF depletion of K⁺
 - vi. refeeding effect

Manifestations

a.	<i>CVS</i> i.	electrophysiology				
		1 0 00	E_m more negative at $[K^+] \le 3.0$ mmol/l			
		• $\uparrow \uparrow APD$ significant				
		• the following are slip	ghtly <i>i</i>	increased	 δV/δt_{max} phase 0 ERP threshold potential phase 4 depolarization conduction velocity v_c 	
	ii.	ECG	- dep		T segments ersion of T waves <i>'apparent'' long QT</i>	
	iii.	dysrhythmias	- VE * ↑↑	B's, VT / V sensitivity		
	iv.	chronic depletion	\rightarrow	subendoca	urdial necrosis	
b.	neur	romuscular				
	i.	\uparrow sensitivity to NDMR	.'s	\sim	\uparrow resting E_m	
	ii.	muscle weakness / para	alysis	~	severe depletion	
	iii.	chronic depletion		\rightarrow	rhabdomyolysis	
c.	rena	ıl				
	i.	nephrogenic DI		ADH resis	tance	
	ii.	\uparrow NH ₃ production	\rightarrow	?? generati	on of alkalosis	
d.		ocrine				
		insulin release $[K^{\pm}] < 2.5$ mm s 1/1			4. 20	
e.		$[K^+] \le 2.5 \text{ mmol/l}$	\rightarrow	I BSL up	to 20 mmol/l	
	 acid-base balance allegedly hypokalaemia leads to a metabolic alkalosis, due to an, i. ↑ NH₃ production in DT ii. ↑ [H⁺]_{ICF} as K⁺ moves into ECF iii. ↑ PT HCO₃⁻ reabsorption however, most hypokalaemia states coexist with NaCl deficits, and it is the Cl⁻ deficit which produces the metabolic alkalosis severe hypokalaemia leads to ADH resistance and a form of nephrogenic DI, the subsequent volume depletion leading a metabolic alkalosis hypokalaemia and a metabolic acidosis may occur in patients on carbonic anhydrase 					
	-	hibitors, or RTA		chuosis may	occur in patients on carbonic annyc	

f. <u>GIT</u>

• severe hypokalaemia may lead to intestinal ileus

Treatment - Severe

- a. ABC
- b. IV KCl
 - i. ≤ 0.5 mmol/kg/d *with* ECG monitoring
 - ii. $\leq 0.25 \text{ mmol/kg/d}$

without ECG monitoring

c. replace Mg⁺⁺ deficit

■ <u>Treatment</u> - <u>Mild</u>

- a. cease aetiological agent
- b. KCl orally ~ 1 mmol/kg/d
- c. replace Mg⁺⁺ deficit
- d. K⁺ sparing diuretics

• Hypokalaemia & Alkalosis

• if hypokalaemia is associated with hypovolaemic/hypochloraemic alkalosis, then this will*not* be corrected until the Cl^- *deficit* is replaced

• this results from a deficiency of absorbable anion in the renal tubules

- in response the kidney synthesises more HCO_3^- to match Na^+ in the ECF, secreting more H^+ and K^+ into the tubules

• some argue hypokalaemia *per se* will *not* generate an alkalosis, but that it will maintain an alkalosis, once generated

• Maxwell & Kleeman, however would support that even in normovolaemia there is a tendency for hypokalaemia to produce an alkalaemia, though, this effect in mild

Hyperkalaemia

Def'n:	serum [K ⁺]	> 4.8 mmol/l	
	plasma [K ⁺]	> 4.2 mmol/l	QEH > 4.8 mmol/l

Aetiology - 1

Def'n: divide according to HCO_3^- & anion gap

a.	high	HCO ₃ ⁻	? respiratory acidosis (do ABG's)		
b.	normal HCO ₃ ⁻				
	i.	factitious	 thrombocytosis, leukocytosis haemolysis, delayed analysis of sample IVT arm sample, KCl administration EDTA contamination 		
	ii.	drugs	 digoxin overdose succinylcholine cessation of β₂-agonists fluoride 		
	iii.	Addison's	* Na ⁺ /K ⁺ < 25:1 - steroid withdrawal		
	iv.	hyperkalaemic periodic	e paralysis		
c.	low	low HCO ₃ ⁻ & normal anion gap			
	i.	early CRF, ARF	- check urea & creatinine		
	ii.	HCl gain	- HCl infusion - arginine HCl		
	iii. iv. v.	 drugs K⁺ sparing agents ACE inhibitors PG inhibitors Addison's massive transfusion 	 spironolactone, amiloride, triamterene captopril, enalapril indomethacin or steroid withdrawal high K⁺ hypovolaemia, haemolysis 		
d.	low HCO ₃ & high anion gap acidosis				
	i.	CRF	- U&E's		
	ii.	metabolic acidosis	lactate, ketonesexogenous acids (ethanol, methanol, aspirin)		
		\rightarrow	- [K ⁺] ~ 0.5 mmol / ⁻ pH ~ 0.1		
	iii.	tissue damage	- rhabdomyolysis - burns, MH		
	iv.	drug overdose	 methanol, ethylene glycol paraldehyde, salicylates 		

• Aetiology - 2

Def'n: divide according to the origin & time course

a.	factitious		 thrombocytosis, leukocytosis haemolysis KCl administration, IVT arm sample EDTA contamination delayed analysis of sample 	
b.	o. acute			
	i.	excessive intake	- IVT, massive transfusion	
	ii.	shift out of cells	- metabolic acidosis	
			- drugs, drug O/D	
			- low insulin states	
			- familial periodic paralysis	
	iii.	tissue damage	- rhabdomyolysis, burns, MH	
c.	chr	onic		
υ.				
	i.	chronic renal failure	- esp. with acidosis, anuria	

i. chronic renal failure - esp. with acidosis, anuria ii. adrenal insufficiency - Addison's - heparin (aldosterone suppression) iii. K⁺ sparing drugs - diuretics

- ACE inhibitors
 - indomethacin

Aetiology - 3

	Def'n:	divide a	ccording to	the intake /	/ output /	distribution
--	--------	----------	-------------	--------------	------------	--------------

Dej	<i>n</i> : c	uivide according to the mar	ke / output / distribution
a.	increased intake		- rarely a problem - except with marginal renal function
b.	deci	reased losses -	- renal
	i.	renal failure	
	ii.	• 1	- mineralocorticoid deficiency - type IV RTA
	iii.	\downarrow distal tubular flow	
	iv.	\downarrow distal NaCl delivery	
	v.	potassium sparing diureti	ics
		aldosterone antagonis	ts - spironolactone
		• inhibitors of distal Na	+ channels - amiloride, triamterene
c.	com	npartmental shifts	
	i.	acidaemia	− pH ~ 0.1 / - [K ⁺] ~ 0.5 mmol/l
		• effect is greater with r	non-organic acids (HCl), cf. organic acids (lactate)
		• this may be due to the	e fact that Cl ⁻ is an obligatory ECF anion, the
		unaccompanied move	ment of H^+ into the ECF forcing K^+ from the cell
		 further, the half life fo of H⁺ by the kidney 	or removal of lactate by the liver is shorter than excretion
	ii.	hypoaldosteronism	- plasma K ⁺ is multifactorial,

- $\bullet \quad {\rm K}^{\scriptscriptstyle +}_{\rm \ ICF} \ \rightarrow \ {\rm K}^{\scriptscriptstyle +}_{\rm \ ECF}$
- \downarrow DT flow
- \downarrow DT aldosterone effects
- DKA insulin deficiency
- iv. familial periodic paralysis
- v. suxamethonium

iii.

- vi. cellular damage - haemolysis, rhabdomyolysis
 - severe burns, massive ischaemia

- exercise
- thrombocytosis > 750,000
- leukocytosis > 50,000
- increased ECF tonicity vii.
 - the movement of water from cells increases the $[K^+]_{ICF}$ and the gradient for • passive diffusion
 - seen with large doses of mannitol given rapidly (1.5-2.0 g/kg)
 - the hyperkalaemia of DKA is due to this effect in addition to the acidaemia & insulin deficiency

Clinical Effects

a.	<u>CVS</u>	<u> </u>	
	i.	electrophysiology	- \downarrow resting V _m , phase 0 δ V/ δ t _{max} , v _c - \downarrow phase 4 depolarisation & automaticity - little alteration in threshold V _t - \downarrow APD, ERP - \downarrow contractility
	ii.	ECG	 peaked T-waves widening of QRS ↑ PR interval → loss of P-waves
	iii.	rhythm	 effects are increased by decreased [Na⁺]_{pl} /[Ca⁺⁺]_{pl} atrial arrest AV block VT/VF occasionally precede arrest severe elevation → arrest in <i>diastole</i>
b.	<u>CNS</u>	S/NMJ	 ascending weakness cranial nerves affected last decreased sensitivity to NDMR's (2° V_m)
c.	anae	esthesia	 impaired spontaneous ventilation risk of suxamethonium hyperkalaemia cardiac arrhythmias increased toxicity of local anaesthetics
d.	<u>rena</u>	<u>1</u>	 alleged that the increase [K⁺]_{pl} decreases renal H⁺ excretion there is <i>no</i> convincing evidence for this

Treatment Hyperkalaemia > 6-7 mmol/l

- a. ABC
- b. *hyperventilate* if intubated
- c. **CaCl₂ 10%** ~ 5-10 ml \equiv^{T} Ca⁺⁺ ~ 3.4-6.8 mmol
- d. NaHCO₃ ~ 50-100 mmol
 - onset of action is immediate, however duration is only 1 hr
 - * 100 mmol HCO₃ \rightarrow 2.24 l CO₂
- e. dextrose ~ 25g (50 ml/50%) +insulin ~ 10° IV
 - providing the BSL is near normal
 - onset is quick, maximum effect seen ~ 1 hr
- f. look for ECG / muscle changes \pm recheck level
- g. if renal function normal
 IV fluids
 Frusemide 20 mg IV
 h. if renal failure present
 Resonium A 30g PR & NG

Treatment Mild

- a. cease aetiological agent
- b. decrease intake
- c. Resonium A
 - exchanges Na^+ or Ca^{++} for K^+
 - theoretically Ca⁺⁺ exchange is better as there is less Na⁺ load and Ca⁺⁺ counteracts the cardiac effects of hyperkalaemia

- dialysis CVVHD

- may be given orally or rectally
- onset of effect not seen until ~ 1 hr
- d. correct underlying problem volume replacement

- steroid replacement

Familial Periodic Paralysis

NB: three types, dependent upon the K^+ level

1.	<i>hypokalaemic</i> i. inherited		< 3.0 mmol/l
			- <i>familial</i> hypokalaemic periodic paralysis
	ii.	acquired	 precipitated by large meals post-exercise glucose/insulin infusion catecholamines * common
2.	norm	nokalaemic	~ 3.0-5.5 mmol/l - precipitated by alcohol, exercise and stress
3.	hype	rkalaemic	 > 5.5 mmol/l - precipitated by exercise (? release of K⁺ from muscle) - K⁺ infusions - hypothermia (decreased activity of Na⁺/K⁺ pump) - usually localised to tongue and eyelids

• Causes of Episodic Paralysis

- 1. myasthenia gravis
- 2. myasthenic syndrome
- 3. thyrotoxicosis
- 4. hyperaldosteronism
- 5. antibiotics
- 6. botulinism
- 7. multiple sclerosis
- 8. familial periodic paralysis
- 9. TIA, RIND
- 10. hysterical

CHLORIDE ION

- normal plasma range ~ 98-108 mmol/l
- normal ratio of Na⁺:Cl⁻ ~ 1.4:1

• the kidneys reabsorb Na⁺:Cl⁻ ~ 1:1, therefore syndromes associated with avid Na⁺ retention often have associated *hyperchloraemia*

• Hyperchloraemia

- a. any hypernatraemic state
- b. respiratory alkalosis decreased availability of HCO_3^{-1}

- RTA

- c. *metabolic acidosis* with normal anion gap
 - i. renal
- CA inhibitors
- hypoadrenalism
- early uraemia
- ii. non-renal diarrhoea
 - ureterosigmoidoscopy
 - treated DKA
 - exogenous HCl

Hypochloraemia

- a. hyponatraemic states
- b. metabolic alkalosis increased HCO_3^-
- c. respiratory acidosis
- d. chloride loss
- gastric suction, vomiting
- upper GIT obstruction, eg. pyloric stenosis
- chloride (secretory) diarrhoea

CALCIUM

- a. elemental alkaline earth metal
- b. atomic number = 20
- c. molecular weight ~ 40
- d. divalent cation fifth most plentiful cation in the body
- total body content ~ 380 mmol/kg ~ 1100 g/average adult \rightarrow ~ 27.5 mol of Ca++ ~ 99% bone a. ICF ~ 0.004% b. ECF ~ 0.01% с. ~1% d. exchangeable
- the daily requirement in the adult $\sim 0.11 \text{ mmol/kg}$
- concentration ranges vary between tissues,

a.	ECF		~ 2.2-2.8 mmol/l	
	i.	45%	- ionized Ca ⁺⁺	
	ii.	15%	- complexed to low MW anions (citrate, $HPO_4^{=}$)	
	iii.	40%	reversibly bound to plasma proteins (alb, glob.)non-filterable fraction	
b.	ICF		~ 1 mmol/l total ~ 10^{-4} mmol/l as free ionized Ca ⁺⁺	

- ~ 99% bound to enzymes in SR, cisternae, & tubules
- only plasma ionized Ca⁺⁺ is biologically active
 - \rightarrow normal range ~ 1.2-1.3 mmol/l
- the most important influence on protein binding is *plasma pH*

 $\begin{array}{l} \uparrow pH \rightarrow \quad \uparrow \text{ binding of } Ca^{\scriptscriptstyle ++} \qquad \ \ \, \propto \text{ exposure of anionic sites on albumin} \\ \rightarrow \quad \downarrow \text{ ionised } Ca^{\scriptscriptstyle ++} \end{array}$

Important Functions of Calcium

- a. cytoplasm
 - i. excitation-contraction coupling in *all muscle*
 - ii. enzyme cofactor
 - iii. regulation of mitotic activity

b. *cell membrane*

- i. *excitability* of nerve / muscle membrane
 - setting the *threshold* V_m for excitation
- ii. *automaticity* smooth muscle - SA & AV nodes
- iii. *neurotransmitter* release at nerve terminals (NMJ)
 - \propto calmodulin & vesicle coupling
- iv. neuro-hormonal release & activity

• 1. α_1 -adrenergic (NA)	- smooth muscle
	- hepatic glycogenolysis
	- salivary secretion
• 2. ACh	- smooth muscle
	- GIT, GB, bladder contraction
• 3. ADH	- vascular smooth muscle (V_1)
• 4. angiotensin II	- aldosterone secretion from Z.G.
• 5. oxytocin	- uterine & myoepithelial
• 6. CCK	- pancreatic secretion
	- GB contraction
• 7. histamine (H_1)	- bronchial contraction
· •	- GIT smooth muscle contraction

c. extracellular

- i. platelet function & haemostasis
- ii. coagulation cascade I, II, VII, IX, X
- iii. fibrinolysis

- iv. complement cascade
- v. bone & teeth formation Ca^{++} hydroxyapetite

• Effector Sites for Calcuim Homeostasis

- a. *GIT*
 - *absorption* major variable under control
 - GIT secretes up to 600 mg/d
 - this is reabsorbed along with the above 10%
- b. kidney
 - ~ 60% of plasma Ca^{++} is ultrafilterable
 - reabsorbed throughout the nephron, except in the *DLH*, similar to Na⁺
 - $\sim 60\%$ in the PT, remainder in the ALH and DT
 - ~ 98-99% of filtered mass is reabsorbed
 - ~ 5% of an increment in dietary Ca^{++} appears in the urine
 - reabsorption is under control of *PTH*
 - affected by large number of other inputs, especially Na⁺ and acid-base changes
 - there is some coupling of Na⁺/Ca⁺⁺ in the PT and ALH
 - this is lost in more distal segments
 - *aldosterone* & *PTH* <u>do not</u> affect distal handling of both ions
 - *thiazides* inhibit distal tubular Na⁺ reabsorption, however \uparrow Ca⁺⁺ reabsorption
 - · proximal or loop diuretics increase excretion of both ions
 - chronic *metabolic acidosis* markedly *increases* Ca⁺⁺ excretion with subsequent loss from bone
 - alkalosis produces the opposite
- c. bone
 - ~ 99% of total body Ca⁺⁺ held as hydroxyapetite
 - interchanges of Ca^++ between ECF and bone affect the internal distribution not body mass of Ca^++
 - acts as an enormous sink for exchange with the ECF

Control Mechanisms

- 1. $[Ca^{++}].[HPO_4^{=}]$ solubility product $> 6 \rightarrow \uparrow$ *ectopic calcification*
- 2. parathyroid hormone
- 3. vitamin D 1,25-dihydroxycholecalciferol
- 4. calcitonin

~ 1000 mg typical daily intake ~ **10%** absorption

Secondary Influences

a.	acid-base status		
	i. acidosis	$-\uparrow Ca^{++}$	
	ii. alkalosis	$-\downarrow Ca^{++}$	
b.	steroids	$-\downarrow Ca^{++}$	
c.	glucagon	$-\downarrow Ca^{++}$	
d.	growth hormone	- ↑ Ca++	
e.	albumin levels	~ 0.02 mmol Ca ⁺⁺ / gram albumin (0.2 mmol/10g)	
f.	renal function	- GFR - tubular excretion - 1-hydroxylation of 25-(OH)-D ₃	
g.	thyroid hormones	~ 15% of <i>hyperthyroid</i> patients are hypercalcaemic - rarely clinically significant	

Hormonal Control of Effector Sites

1. parathyroid hormone

- i. \uparrow movement of Ca⁺⁺ and HPO₄⁼ out of bone
- ii. \uparrow renal tubular reabsorption of Ca⁺⁺
- iii. $\overline{}$ renal tubular reabsorption of HPO₄⁼
- iv. \uparrow production of Vit. D \rightarrow *indirect effects*
- inhibits proximal tubular H⁺ secretion & HCO₃⁻ reabsorption $\rightarrow \downarrow pH$ $\rightarrow \rightarrow displaces Ca^{++}$ from plasma protein and bone
- \uparrow HPO₄⁼ excretion \rightarrow aids further reabsorption from bone due effect on [HPO₄⁼].[Ca⁺⁺] solubility product

• NB: hyperparathyroidism causes,

- i. an elevated plasma calcium with a low to normal phosphate
- ii. enhanced bone reabsorption with cysts
- iii. ectopic calcification
- iv. renal stones
 - renal Ca⁺⁺ excretion increases, despite the elevated PTH, as the filtered mass increases >> the reabsorptive increase
 - rarely may result in *nephrocalcinosis*

- 2. vitamin D
 - actually a group of closely related *sterols*,

7-dehydrocholesterol	+ UV light	\rightarrow	D_3
D_3	+ liver 25-hydroxylation	\rightarrow	25-(OH)-D ₃
25-(OH)-D ₃	+ kidney 1-hydroxylation	\rightarrow	$1,25-(OH)_2D_3$

- by definition this is a *hormone* not a vitamin
- also absorbed from the GIT, the plant form differing only slightly
- **1-hydroxylation** is increased by PTH and a low plasma $HPO_4^{=}$
- also increased by oestrogen and prolactin (ie. pregnancy)
- the major actions of vitamin D are,
- i. \uparrow GIT absorption of Ca⁺⁺ and HPO₄⁼
- ii. \uparrow reabsorption of Ca⁺⁺ and HPO₄⁼ from bone
- iii. stimulates the renal tubular reabsorption of Ca⁺⁺ (the significance of this is unsettled)
- NB: hypervitaminosis D, results in an elevated Ca^{++} and HPO_4^{--}

3. *calcitonin*

- secreted by the *parafollicular cells* of the thyroid gland in response to a raised plasma Ca⁺⁺
- lowers the plasma calcium principally by inhibiting bone reabsorption
- overall contribution to homeostasis is very *minor*

Hypocalcaemia

Aetiology

a. *factitious* - hypoalbuminaemia (N: 37-55 g/l) - Ca⁺⁺ ~ 0.2 mmol / - 10g per litre - K-EDTA tube sample

b. acute

- i. acute post-surgical hypoparathyroidism most common
- ii. respiratory alkalosis
- iii. acute pancreatitis
- iv. rhabdomyolysis, MH
- v. hypomagnesaemia $* \downarrow$ PTH release
- vi. citrate toxicity

c. chronic

- i. primary hypoparathyroidism
 - iatrogenic post-thyroid or parathyroid surgery, ¹³¹I⁻ therapy
 - infiltrations neoplasia
 - granulomatous diseases
 - haemosiderosis, Wilson's disease
 - idiopathic hypothyroidism
 - persistent neonatal form
 - branchial dysembryogenesis (DiGeorge's syndrome)
 - * multiple endocrine deficiency autoimmune candidiasis (MEDAC)
- ii. chronic renal failure
- iii. disordered vitamin D metabolism
 - deficiency reduced intake, liver / renal disease
 - resistance renal disease, familial
- iv. high dietary PO_4 intake

Polyglandular Autoimmune Syndrome Type 1

• at least 2 of the following, not necessarily simultaneously

- 1. mucocutaneous candidiasis ~ 3-6 yrs of age
- 2. hypoparathyroidism ~ 5-8 yrs
- 3. Addison's disease ~ 8-11 yrs
- NB: previously called multiple endocrine deficiency autoimmune candidiasis (MEDAC)

Clinical Features

a.	CNS	 increased irritability, personality oculogyric crises, extrapyramida tetany & <i>convulsions</i> 	6
b.	NMJ	 reduced threshold V_m neuromuscular excitability, Chvo ↓ ACh release at NMJ cramps ± tetany stridor ± <i>laryngospasm</i> 	ostek's sign, Trousseau's sign
c.	CVS	 -↓ SVR* - negative inotropy* - negative chronotropy* - <i>prolonged QT_c</i> = QT / √RR - atrial & ventricular <i>ectopics</i> 	* \rightarrow hypotension > 0.45 s female > 0.40 s male
d.	other	 cataracts rickets, osteomalacia coagulopathy (very rare) 	

• Anaesthetic Considerations

• management of hypoparathyroidism is not surgical, \ usually presenting for unrelated reasons

- prolongation of the QT interval may progress to 2:1 AV block
- QT_c is a reliable marker of hypocalcaemia in a given *individual*, but not within a population
- CCF rarely results from hypocalcaemia, but in the presence of preexisting heart disease,
- correction of plasma Ca⁺⁺ and Mg⁺⁺ will improve LV performance
- similarly hypotension from any cause will be worse in the presence of hypocalcaemia
- patients may suffer petit mal, focal, Jacksonian or grand mal seizures
- these are resistant to normal therapy, and may actually be made worse due to an anti-vit.D effect

• post-surgery for hyperparathyroidism, marked falls in $Ca^{++} \& Mg^{++}$ may be seen in patients with

advanced osteitis & "hungry" bones

• potentially fatal complications include *laryngeal spasm & seizures*

• hypomagnesaemia results principally in,

- 1. ventricular tachyarrhythmias
- 2. hypocalcaemic tetany and neuromuscular irritability

NB: which are *independent* of calcium

- management,
 - 1. ionised Ca^{++} , Mg^{++} and HPO_4^{-} should be measured before & after surgery
 - 2. QT_c should be checked on a 12 lead ECG
 - 3. significant or *symptomatic* levels should be corrected

■ <u>Treatment</u>

- a. Ca Gluconate 10% \equiv^t Ca⁺⁺ 0.22 mmol/ml
 - administer at ~ 2-4 mmol every 6-8 hrs (1-2 10ml ampoules) ~ 0.5 ml/kg to a maximum of 20 ml
- b. $CaCl_2 10\%$ =^t $Ca^{++} 0.68 \text{ mmol/ml}$ x 10 ml
 - the injection rate should be slow ≤ 1 ml/min
 - faster rates may \rightarrow high concentration and cardiac arrest
 - this is an *acidifying salt*, therefore undesirable in the setting of renal insufficiency
 - the solution is very irritating and should never be injected into the tissues
 - injections are accompanied by peripheral vasodilation and vessel irritation
- c. Vit. D \rightarrow calciferol ~ 1.25 mg twice weekly
- d. R_x associated conditions
 - i. hypomagnesaemia
 - ii. hypokalaemia
 - iii. fitting

Hypercalcaemia

Aetiology

NB: incidence \uparrow 's in the 3-5th decades, F:M ~ 3:1

1.				asis sample, post-prandial aemia, dehydration, high plasma albumin
2.	. 1° hyperparathyroidism			
	i.	solitary adenoma	~ 80%	
	ii.	MEN I		adenoma and pancreatic islets trinaemia with Zollinger-Ellison syndrome
	iii.	MEN II	•	y carcinoma of the thyroid (<i>p</i> arafollicular) <i>romocytoma</i> & <i>p</i> arathyroid adenoma
	iv.	lithium therapy	~ 10% sho	w \uparrow parathyroid function
	v.	rarely carcinoma		
3.	mal	ignancy		
	i.	solid tumour with bony	2°'s	- breast, prostate
	ii.	ectopic parathormone		- lung (~ 10-15%), kidney, ?? PGE ₂
	iii.	iii. haematological malignancies		 <i>m. myeloma</i>, leukaemia, lymphoma * osteocyte activation factor
4.	incr	ncreased bone turnover		 <i>thiazide diuretics</i> hyperthyroidism immobilization vitamin A intoxication
5.	vita	min D		
	i.	vitamin D intoxication		* high Ca^{++} & HPO ₄ ⁼
	ii.	↑ 1,25-(OH) ₂ -D ₃		 <i>sarcoid</i> & other granulomatous diseases TB, berylosis
	iii.	idiopathic hypercalcaer	nia of infanc	² y
6.	fami	ilial hypocaliuric hyperca	lcaemia	- FHH
	• a	utosomal dominant trait	\rightarrow	> 99% renal calcium reabsorption
	• P	TH levels are usually no	rmal, no meo	dical or surgical intervention is required
7.	rena	enal failure		 severe 2° hyperparathyroidism milk/alkali syndrome, Al⁻ intoxication
8.	othe	other causes		 Addisonian crisis phaeochromocytoma excess IVT/ TPN

Clinical Features

NB:	initially \rightarrow	polyuria, thirst, fatigue, nausea, vomiting & abdominal pain	
a.	CNS	 mental disturbance, personality change paraesthesia, headache, fever, increased thirst cerebral calcifications (basal ganglia) ± epileptic fits 	
b.	CVS	 bradycardia, asystolic arrest ↑ digoxin toxicity 	
	ECG	- \downarrow QT _c , bradyarrhythmias, AV blockade	
c.	renal	 polyuria ∝ nephrogenic DI type II RTA ∝ impaired tubular reabsorption <i>nephrocalcinosis</i> ~ 60-70% 	
d.	NMJ	 ↑ ACh release ↑ excitation / contraction ↑ threshold V_m * but <i>decreased sensitivity</i> of motor EP → weakness, fatigue, paralysis 	
e.	musculoskeletal	 weakness, fatigue, paralysis, arthralgia osteitis fibrosa cystica, bone pain, fractures ~ 5x ↑ bone turnover → ↑ ALP 	
f.	GIT	 nausea, vomiting, anorexia, weight loss constipation, abdominal pain gastric hyperacidity (↑ <i>gastrin</i> secretion), peptic ulcer <i>pancreatitis</i> 	

• Anaesthetic Considerations

NB: moderate hypercalcaemia, in the absence of cardiovascular or renal compromise presents no specific intraoperative problems

- 1. CNS lethargy, *confusion* may compromise recovery
- 2. ECG shortened QT_{C} & risk of *AV blockade* etc.
- 3. biochemistry associated electrolyte disorders
- 4. volume status *polyuria* may result in hypovolaemia
- 5. NMJ blockade sensitivity to nondepolarising agents, difficulty in *reversal*

• Treatment

a.	ABC	- ventilatory/CVS support
b.	correct dehydration	- replace deficit with normal saline
c.	initiate diuresis	 N.Saline at 4-6 l/d frusemide 20-40 mg IV q4-8h beware <i>hypokalaemia & hypomagnesaemia</i>
d.	corticosteroids	 ↓ GIT absorption / increase excretion especially sarcoid, Vit.D, granulomatous diseases <i>not</i> effective in 1° hyperparathyroidism
e.	diphosphonate	- etidronate, <i>pamidronate</i>
f.	correct hypophospataemia	- \uparrow GIT absorption - \downarrow bone uptake & \uparrow reabsorption
g.	decrease bone release	- calcitonin - mithramycin

Pamidronate Disodium

• potent inhibitor of bone reabsorption

- effective in hypercalcaemia of malignancy and hyperparathyroidism
- administered as 30 mg/500 ml saline over 4 hours
- studies against 60 mg doses show no advantage
- results in a gradual decline in plasma Ca^{++} over several days
- effects may last from weeks to months

• side effects,

- 1. mild transient leukopaenia
- 2. *fever* $\leq 2^{\circ}C \uparrow T$

MAGNESIUM

a	•	elemental alkaline earth metal				
b).	atomic number		= 1	12	
c	•	molecular weight		~ 2	24.3	
d		divalent cation		- se	cond mos	t plentiful intracellular cation
• total l	oody	v content ~ 15 mm	ol/kg	,	(~ 100	0 mmol/70 kg)
a	•	ICF	~ 459	%		- highly variable
b		ECF	~ 5%			
c	•	plasma	~ 0.7	5-1.	1 mmol/l	~ 35% protein bound
d		bone	~ 509	%		
e	•	exchangeable	~ 65-	70%	ó	

NB: ICF and ECF concentrations may vary *independently* of each other, ∴ a significant deficit in one may be accompanied by minimal change in the other

Absorption & Excretion

- average daily requirement ~ 0.04 mmol/day
- the average adult ingests $\sim 10-20$ mmol Mg⁺⁺/d

~ 3-6 mmol/d of this is absorbed across the GIT

- this occurs predominantly in the upper SI via an active process, possibly linked to Ca++
- Mg^{++} is excreted principally by the *kidney* \rightarrow freely filtered
- the majority is reabsorbed in the PT $\rightarrow \sim 3-5\%$ appears in the final urine
- control mechanisms for homeostasis are poorly understood,
 - a. PTH & vit.D increase GIT absorption
 - b. follows Ca⁺⁺ flux in bone
 - c. follows K⁺ flux across cells
 - d. excreted by GFR, ∴increased by diuretics
 - e. lost in diarrhoea, intestinal fistulae

Important Functions of Magnesium

- 1. neuromuscular function and excitability
- 2. Na^+/K^+ -ATPase pump cofactor
- 3. enzyme cofactor anabolic functions in brain & liver
- 4. involved in all phosphate transfer reactions
- 5. release of hormones PTH

Hypomagnesaemia

Def'n: plasma Mg⁺⁺ < 0.7 mmol/l

Aetiology

a.	factitious	 haemodilution severe hypoalbuminaemia
b.	common	 GIT losses diuretics, renal failure

c. *acute*

- i. β -adrenergic agonists catecholamines
- ii. diarrhoea, vomiting, SI fistulae
- iii. acute pancreatitis

d. chronic

CHI	unic	
i.		 NBM prolonged Mg⁺⁺ deficient TPN protein/calorie malnutrition infants given cows milk (HPO₄⁼:Mg⁺⁺) ment of hypocalcaemia, with concomitant Mg⁺⁺ deficiency and orption of the later
ii.	cirrhosis & chro	onic alcoholism
iii.	GIT	 diarrhoea, malabsorption SI fistulae NG aspiration
iv.	drugs	 diuretics gentamicin, other aminoglycosides cisplatinum
v.	endocrine	 hyperthyroidism hyperaldosteronism hyperparathyroidism + osteitis fibrosa cystica diabetes mellitus
vi.	renal	 chronic diseases haemodialysis / haemoperfusion
vii.	SIADH	

- viii. familial hypomagnesaemia
- Mg⁺⁺ deficiency is therefore frequently accompanied by *hypokalaemia* and *hypocalcaemia*
- Mg^{++} frequently follows K^+ in the ICF environment
- when deficits of Mg^{++} and K^+ coexist, Mg^{++} repletion is often required to correct the later
 - *NB*: the interaction of the two ions is thought to be mediated by the effects of adrenal *steroids* on renal excretion

<u>Clinical Manifestations</u>

- a. enzyme systems $* Mg^{++}$ is a vital cofactor for,
 - i. all $-PO_4$ nucleotide transfer reactions
 - ii. reversible association of intracellular particles
 - iii. association macromolecules with subcellular organelles eg., mRNA to ribosomes
 - \rightarrow there is a decrease in *energy substrate utilization*
- b. CNS
 - i. increased irritability
 - ii. disorientation, psychotic behaviour
 - iii. athetosis, nystagmus, tremor
 - iv. twitching, tetany \pm convulsions
- c. renal
 - i. microlith formation in the thick ALH
 - ii. damage to tubular cells
 - iii. ± hypokalaemia / hypocalcaemia
- d. neuromuscular function
 - i. \uparrow release of ACh from motor neurones
 - ii. \uparrow sensitivity of the motor EP to applied ACh
 - iii. neuromuscular excitability \pm tetany
- e. CVS
 - i. \pm decreased levels of K⁺ in cardiac cells
 - ii. \pm susceptibility to toxicity with *cardiac glycosides*
 - iii. changes to cardiac muscle $\rightarrow \downarrow$ contractility
 - iv. *tachyarrhythmias* \rightarrow AF, SVT, torsade de pointes
- f. *hypocalcaemia* 2° to decreased PTH release

• <u>Treatment</u>

a.	remove causative factor	
b.	enteral supplementation	- Mg ⁺⁺ citrate, sulphate & hydroxide
c.	parenteral supplementationthe dose is expressed in to	\rightarrow MgSO ₄ erms of the hydrated salt,
	1.0g MgSO ₄ - $(H_2O)_7$	® 4.06 mmol Mg ⁺⁺
	* acute administration	 ~ 0.05-0.15 mmol/kg ≤ 0.5 mmol/min ≤ 15-20 mmol/d, in two divided doses
	• available as ampoules	~ 10 mmol/5 ml (2.5g)

Hypermagnesaemia

i.

Causes

- a. increased intake most common causes
 - Mg⁺⁺ containing cathartics & antacids
 - · especially seen with renal impairment
 - · these undergo rapid absorption in patients with large gastro-jejunal stomas
 - ii. MgSO₄ administration pre-eclampsia/eclampsia
 - SVT, torsade
 - iii. inappropriate IVT / TPN replacement
- b. decreased excretion
 - i. renal impairment any cause
 - ii. hypoadrenalism
- c. compartmental shifts rarely a cause
 - i. metabolic acidosis & diabetic ketoacidosis
 - ii. hypothermia

<u>Clinical Manifestations</u>

- a. CNS
 - a number of effects are \equiv^t to those of $Ca^{++} \rightarrow$ sedation & confusion
 - the flaccid, anaesthesia-like state following large doses is probably due to peripheral NMJ blockade
- b. NMJ
 - direct depressant effect on skeletal muscle
 - \downarrow release of ACh from motor neurones
 - \downarrow sensitivity of the motor EP \rightarrow muscular weakness
 - depressed deep tendon reflexes ± respiratory paralysis (> 7 mmol/l)
 - of these the second is the most important
 - these effects are antagonised by Ca⁺⁺
- c. CVS
 - \uparrow *conduction time* \rightarrow PR, QRS and QT prolongation (> 5 mmol/l)
 - \downarrow discharge rate of SA node
 - may abolish digitalis induced VPC's
 - peripheral vasodilatation ~ direct vascular effect & ganglionic blockade
 - \rightarrow hypotension, conduction disturbances \pm complete heart block

- d. neonate depressed conscious state
 - hypotonia
 - respiratory difficulties

low apgar scores

NB: in infants experiencing *hypoxia* during delivery the unionized fraction increases and toxicity is enhanced

Clinical Manifestations of Hypermagnesaemia			
Plasma Level	Clinical Features		
2.0-4.0 mmol/l	 anticonvulsant ?? vasodilatation sedation mild vasodilatation ↑ AV & intraventricular conduction 		
~ 5.0 mmol/l	 loss of <i>monosynaptic reflexes</i> ↑ PR & QRS duration hypotension respiratory centre depression 		
~ 6.0 mmol/l	• NMJ blockade, severe weakness		
6.0-8.0 mmol/l	respiratory paralysis		
8.0-12.0 mmol/l	• cardiac arrest <i>asystolic</i>		

Treatment

- a. ABC
- b. remove causative factor

c.	IV NaCl 0.9%	- providing renal function is normal
		~ 4-6 l/d
		\pm add Ca ⁺⁺ 2.5-4.5 mmol/l
d.	CaCl ₂ / Ca Gluconate	~ 2.5-5 mmol IV *cases of severe CVS, CNS or respiratory compromise
e.	frusemide	~ 20-40 mg IV
f.	haemodialysis	

Therapeutic Uses of Magnesium

a.	hypomagnesaemia	 weakness & CNS signs torsade de pointes digitalis induced VT suspected severe depletion (alcoholics, malnourished)
b.	enteral preparations	- cathartics - antacids
c.	seizure states	 pre-eclampsia/eclampsia acute nephritis
d.	SVT	
e.	severe acute asthma	? marginal indication

PHOSPHATE

- involved in most metabolic processes and is a major constituent of bone
- normal adult content ~ 1000g, of which 85% is in bone
- present in plasma as *inorganic phosphate* ~ 0.9-1.5 mmol/l
- there is diurnal variation in the level, even during fasting
- ethanol can induce phosphate depletion despite adequate intake
- $HPO_4^{=}$ is well absorbed from the GIT
- *urinary excretion* is the major homeostatic regulator for total body phosphate balance

a. $\sim 5-12\%$ is protein bound, $\therefore \sim 90\%$ is filterable at the glomerulus

b. ~ 75% is actively reabsorbed, mostly in the PT in co-transport with Na^+

• there is no conclusive evidence for tubular secretion of phosphate

• the reabsorptive T_{max} for phosphate is very close to normal filtered load

• therefore even small increases in the plasma concentration result in relatively large increases in renal excretion

- there is increased loss with mechanisms which increase Na^+ loss and also with 1° hyperparathyroidism

- the reabsorptive rate and T_{max} alter over time, in response to alterations in plasma phosphate levels, not as a result of PTH or Vit.D

• the mechanism for this change is still unclear

• factors affecting *tubular reabsorption* of phosphate are,

a.	PTH	\downarrow
b.	Glucagon	\downarrow
c.	Dietary Phosphate	\downarrow
d.	1,25-(OH) ₂ D ₃	\uparrow
e.	Insulin	\uparrow

Hyperphosphataemia

Def'n: $[H_2PO_4^{-}] > 1.35 \text{ mmol/l}$

Aetiology

- a. acute \propto release from cells
 - i. metabolic acidosis
 - ii. diabetic ketoacidosis
 - iii. rhabdomyolysis, haemolysis
 - iv. ischaemic gut
 - v. severe catabolic states
 - vi. malignancies treated with cytotoxic agents
- b. chronic
 - i. renal failure
 - ii. vitamin D toxicity
 - iii. excessive intake (TPN)
 - iv. 1° hyperparathyroidism rare, usually normal
- occurs more commonly in infants, children and post-menopausal women
- · clinical effects include,

a.	hypocalcaemia	- $[Ca^{++}].[HPO_4^{}] < 5$
b.	ectopic calcification	 arteries, skin kidneys, nephrocalcinosis
c.	keratopathy	

- d. 2° hyperparathyroidism renal osteodystrophy
- treatment depends upon renal function,
 - a. normal diuresis
 - b. renal failure oral Al(OH)₃ & dialysis

Hypophosphataemia

Def'n: $[H_2PO_4^{-}] \le 0.8 \text{ mmol/l}$

Aetiology

a.	acut	e ∝ <i>entry into cells</i>	
	i.	\uparrow insulin	post-prandialtreatment of hyperkalaemia
	<u>ii</u> .	R_x of acidosis	- diabetic ketoacidosis - rhabdomyolysis - hypercapnia
	iii.	TPN in malnourished or ano	rexic patient
b.	acut	e ∝ increased loss /	utilization
	i.	phosphaturia from diuresis	- osmotic / diuretic
	ii.	severe illness	- sepsis, hypercatabolic states
c.	chro	onic	
	i.	decreased <i>intake</i>	 prolonged TPN alcoholics, aged & debilitated patients anorexia
	ii.	decreased <i>absorption</i>	 vitamin D deficiency rickets, osteomalacia intestinal dysfunction steatorrhoea / malabsorption syndromes
	iii.	increased loss	 diuresis 1° hyperparathyroidism renal tubular acidosis
	iv.	increased <i>utilisation</i>	 hypercatabolic states multitrauma cancer

Symptoms

а. b. c.

d.

e.

asymptomatic	
anorexia	
weakness, dizzir	iess
dyspnoea	- respiratory muscle weakness
paraesthesia	

f. bone pain (osteomalacia)

• Clinical Signs

- 1. proximal myopathy
- 2. waddling gait
- 3. paraesthesia
- 4. anaemia
- 5. respiratory insufficiency, failure
- 6. cardiac failure

"Clinical Syndromes" of Hypophosphataemia

- a. "GBS-like syndrome"
 - acute muscular weakness
 - · respiratory insufficiency / failure to wean
 - nervous system dysfunction
- b. neurological
 - peripheral neuropathy
 - CNS dysfunction
 - paraesthesia, waddling gait
 - epilepsy
- c. haematological
 - low 2,3-DPG & intracellular ATP \rightarrow *left shift* HbO₂ curve
 - haemolysis
 - WBC dysfunction
- d. metabolic acidosis & osteomalacia
- e. myocardial dysfunction & cardiac failure

Treatment

- a. $H_2PO_4(K)$ ~ 50-100 mmol/day
- b. $H_2PO_4(K)$ ~ 30 mmol/2-3 hrs in DKA
- c. also available is $(Na)H_2PO_4$

Effects of Electrolyte Imbalance						
CNS CVS Muscle GIT Renal					Renal	
Na ⁺	highlow	excite excite	-	-	-	-
\mathbf{K}^{+}	highlow	-	depress excite	weakness weakness	- ileus	- DI-renal
Ca ⁺⁺	• high • low	depress excite	slow depress	weakness excite	N & V -	DI renal -
HPO ₄ ⁼	highlow	- depress	depress depress	- weakness	-	-
Mg ⁺⁺	highlow	depress -	depress excite	weakness -	-	- DI renal

HEAT STROKE

- **Def'n:** excessive heat storage due to combination of overheating and failure of the thermoregulatory system \rightarrow "cardinal features"
 - 1. hyperthermia $\geq 40^{\circ}$ C
 - 2. hot, dry skin
 - 3. \pm hypotension
 - 4. severe CNS disturbance
- predisposing features,
 - a. high environmental temperature
 - b. impaired heat response
 - i. age elderly, neonates
 - ii. obesity
 - iii. underlying disease CCF, debilitating illness
 - c. dehydration
 - drugs phenothiazines - atropine, anticholinergics - diuretics - alcohol
 - e. excessive physical activity (relative)

Clinical Features

d.

a.	CNS	- confusion, convulsions, coma
b.	CVS	 initially high CO / low SVR / hyperdynamic circulation relative & absolute hypovolaemia later CO & SVR fall, and PVR rises δST-T waves ∝ myocardial injury
c.	respiratory	 hyperventilation initially respiratory alkalosis later respiratory / metabolic acidosis aspiration, ARDS, LVF
d.	muscle	- rhabdomyolysis
e.	renal	- ATN, myoglobinuric renal failure
f.	metabolic	 hyperthermia high K⁺, Na⁺, HPO₄⁼, LDH, CK low Ca⁺⁺, Mg⁺⁺ & glucose
g.	haematological	- DIC, coagulopathy, liver failure

Treatment

- a. O_2 and respiratory support
- b. rehydration and CVS support
- c. rapid cooling
- d. prevention of renal failure hydration and mannitol
- e. prevent *hypoglycaemia*
- f. manage *hyperkalaemia*
- hyperventilation
- Ca⁺⁺, HCO₃⁻
- insulin/glucose
- resonium, dialysis
- g. anticonvulsants prn

Fever / Hyperthermia

a. infectious causes

•

- i. common sites
 - surgical wounds
 - UTI, indwelling catheters
 - respiratory tract
 - line infection
 - GIT

- upper & lower
- IA, IV, CVC, PA
- antibiotic induced colitis, ischaemic colitis
- hepatitis
- calculous/acalculous cholecystitis
- ii. uncommon / occult sites
 - SBE
 - subphrenic, other intra-abdominal collection
 - cholangitis, ascending cholangitis
 - sinusitis, periodontal abscess
 - decubitus ulcers
 - prostatitis, endometritis
 - meningo-encephalitis
 - parasitic, eg. malaria
 - TB

b.

non	-infectious causes	
i.	inflammatory	 pancreatitis vasculitis acute arthritis, gout AMI familial mediterranean fever sarcoidosis
ii.	autoimmune	 SLE, RA, PAN, temporal arteritis Wegener's granulomatosis (cANCA⁺) Kawasaki's disease
iii.	allergic	 blood transfusion, blood products drug induced fever (see below)
iv.	blood-borne	 haemolysis, transfusion reaction DVT, pulmonary embolus internal haemorrhage (CNS, joints, AAA, retroperitoneal) cyclic neutropaenia
v.	metabolic	 hypercalcaemia adrenal insufficiency
vi.	hyperthermic syndromes	 MH, malignant neuroleptic syndrome heat stroke hyperthyroidism central anticholinergic syndrome
vii.	neoplasm	 lymphomas, carcinoma (renal, colon) hepatoma, liver secondaries atrial myxoma carcinoid
viii.	drugs	 ↑ production ↓ heat loss disordered central regulation mixed
	withdrawal syndromessympathomimeticsepileptogenics	delerium tremens, opioids, othervasoconstriction & muscle activity
	 salicylates 	- \uparrow VO ₂ , reset hypothalamic set-point
	 phenothiazines 	- CNS regulation
	 anticholinergics MH & MNS triggers	- in overdosage
ix.	others	- Fabry's disease
		- hyperlipidaemias
		- granulomatous hepatitis

• Mechanisms of Drug-Induced Fever

1. overdose

i.

- 2. withdrawal syndrome
- 3. allergic reaction
- 4. interference with temperature regulation
 - central hypothalamic set-point
 - sympathetic outflow
 - ii. peripheral skin vasomotor tone, sweating
- 5. alteration of BMR
 - i. alteration of cellular activity basal VO₂
 - ii. uncoupling of oxidative phosphorylation
- 6. hyperthermic syndrome triggers
 - i. malignant hyperpyrexia
 - ii. neuropleptic malignant syndrome
- 7. antibiotic induced superinfection

Hypothermia

Def'n:		e temperature neotherms reg	< 35°C ulate core temperature	~ 36-37.5°C ~ 37 ± 0.4°C	(T.Oh) (RDM)
	1.	mild	> 33°C		
	2.	moderate	~ 30-33°C		
	3.	severe	< 30°C		

NB: demarcation is arbitrary, but effects more pronounced & *loss of compensation* lowest recorded core T in a survivor ~ 18°C

Aetiology

- a. extremes of *age*
- b. debilitating *illness*

	i.	CNS	CVA, head injury, neoplasmprogressive mental deterioration
	ii.	CVS	- CCF, MI, PVD, PTE
	iii.	infections	- septicaemia from any cause, pneumonia
	iv.	renal	- uraemia
c.	exposure		 environment IV fluids, irrigating fluids
d.	drug	<i>75</i>	 alcohol GA, barbiturates, benzodiazepines, etc. antipyretics, chlorpromazine vasodilators
e.	endo	ocrine	 hypothyroidism, panhypopituitarism Addisonian crisis, hypoglycaemia diabetes, hyperosmolar coma, ketoacidosis (~ 20%) protein / calorie malnutrition
f.	spin	al cord trau	ma
g.	skin	diseases	- burns - psoriasis, icthyosis, erythroderma

h. *iatrogenic* - induced hypothermia & inadequate rewarming

Cardiovascular

1. increased sympathetic tone - T plasma N	A/AD and FFA's
--	----------------

		• •			-
2.	initial	$lly \rightarrow$	vasocor	nstri	ction, tachycardia & \uparrow CO
		later \rightarrow	bradyca	rdia	a, hypotension & \downarrow CO
3.	cardia	ac output	- mainly	/ 2°	0-40% at 30°C \propto decrease in VO ₂ to <i>bradycardia</i> , SV well preserved perfusion well maintained
4.	ECG	changes	- exacei	rbat	ed by <i>acidosis & hyperkalaemia</i>
	i.	bradycardia	a / shiver	ing	artefact
	ii.	↑ PR, QRS	S, QT _c du	ırati	on
	iii.	J point elev	vation		\leq 33°C - delayed repolarisation of inferior heart surface
	iv.	AF			$\sim 25-34^{\circ}C$ (commonest arrhythmia)
	v.	AV block	1° 3°		~ 30°C ~ 20°
	vi.	VF			$\leq 28^{\circ}C$
	vii.	asystole			$\leq 20^{\circ}$ C
-	CDV	0 1 0 1 1			. 1

5. CPK & LDH levels are elevated

• ? leakage from cells or microinfarction

• Central Nervous System

• reasonably well preserved to 33°C, below this function deteriorates progressively,

- 1. initial confusion \rightarrow coma at ~ 30°C with *pupillary dilatation*
- 2. $\downarrow \text{CBF} \propto \downarrow \text{C-VO}_2$ ~ 6-7% / °C ~ similar change cf. whole body VO₂
- 3. progressive brainstem depression $\rightarrow \downarrow$ HR & \downarrow RR
- 4. \downarrow *temperature regulation* $\rightarrow \qquad \downarrow$ shivering $\leq 33^{\circ}C$ $\rightarrow \qquad loss of temperature control <math>\leq 28^{\circ}C$
 - .
- 5. cerebral protection
 - i. greater than achieved by metabolic depression
 - ii. deep circulatory arrest
 - iii. recovery from near drowning

Pulmonary Changes

central depression $\rightarrow \downarrow \mathbf{RR} \leq 33^{\circ}\mathbf{C} \sim 4 \text{ bpm } \pm \text{ respiratory arrest at } 25^{\circ}\mathbf{C}$ $\downarrow \mathbf{CO}_2 \text{ drive}$ * no change in <i>hypoxic drive</i>
impaired cough & gag reflexes \rightarrow aspiration risk
↑ V/Q mismatch
i. impaired hypoxic pulmonary vasoconstriction
ii. \downarrow FRC \rightarrow atelectasis
iii. \downarrow gaseous diffusion capacity
$\uparrow \operatorname{VO}_2 \text{ with shivering} \qquad \rightarrow \downarrow \operatorname{VO}_2 \leq 33^{\circ} \mathrm{C}$
\uparrow HbO ₂ affinity / <i>left shift</i> $\rightarrow \downarrow$ O ₂ availability
\uparrow gas solubility
i. $\uparrow \alpha CO_2 / \downarrow P_{aCO2} \rightarrow \uparrow pH$ (but, also \uparrow neutral point of H ₂ O)
ii. anaesthetic gases $\rightarrow \downarrow$ rate of rise of F_A/F_I & elimination - halothane MAC _{27°C} ~ 50% MAC _{37°C}

Metabolic

- 1. $\downarrow VO_2$ ~ 6-7% / °C
- 2. severe *acidosis* \rightarrow HbO₂ curve shifts to the *right* i. respiratory \downarrow CO₂ elimination due to hypoventilation ii. metabolic \downarrow tissue perfusion \downarrow hepatic lactate clearance \downarrow renal tubular H⁺ excretion
 - iii. temperature correction of blood gas values offers no advantage in management

 \rightarrow δ pH ~ -0.0147 / °C

3. hyperkalaemia / hypokalaemia

- causes for expected rise in $K^{\!\scriptscriptstyle +}$
- i. decreased activity Na⁺/K⁺-ATPase $\rightarrow \quad \downarrow Na^+ / \uparrow K^+$
- ii. cellular hypoxia, membrane damage & acidosis
- however, hypokalaemia is more commonly observed
- i. $? 2^{\circ}$ diuresis
- ii. ICF shift
- 4. *hyperglycaemia* $-\downarrow$ insulin secretion & \downarrow peripheral glucose utilisation
 - ? mild pancreatitis

- hypoglycaemia may ensue in longstanding hypothermia

5. \uparrow drug t_{1/2B} ~ \downarrow hepatic blood flow & enzyme reaction rates

 \rightarrow heparin, citrate & lactate

Renal

- 1. \downarrow GFR \propto \downarrow renal blood flow ~ 50% at 30°C \rightarrow \downarrow drug clearance
- 2. decreased tubular function
 - i. cold diuresis volume of urine initially increased or the same
 - ii. hypoosmolar urine
 - iii. glycosuria, kaluria \rightarrow additional diuresis

Neuromuscular Junction

- 1. shivering occurs $\sim 33-36^{\circ}C$
- 2. \uparrow muscle tone \rightarrow *myoclonus* ~ 26°C
- 3. \uparrow sensitivity to *both* depolarising & nondepolarising NMBs with mild hypothermia

Haematological

1.	coa	coagulopathy						
	i.	\downarrow coagulation	\downarrow enzyme activity					
	ii.	thrombocytopaenia	 ↑ portal/splenic platelet sequestration ↑ bleeding time 					
2.	increased blood <i>viscosity</i>		 dehydration, haemoconcentration & ↑ Hct. ↓ rbc deformability ↓ microcirculatory blood flow 					
3.	imn	nunoparesis	- \downarrow WCC (sequestration) & function					
4.	mar	row hypoplasia						

Immunological

- 1. decreased neutrophils, phagocytes, migration, bactericidal activity
- 2. organ hypoperfusion & increased infection risk
- 3. diminished gag / cough reflexes
- 4. atelectasis

Monitoring

a.	central	lower oesctympanic r	phageal & P nembrane	$\begin{array}{cc} A & \rightarrow \\ & \rightarrow \end{array}$	heart brain
b.	rectal	 intermedia changes la 		e/shell duri	ng cooling & warming
c.	shell	skin/periphmay estimation		rictor/vaso	odilator responses
NB:	useful to m	easure both c	ore & shell,		
	core-shell	gradient	\rightarrow better a	assessment	t of overall body temperature

\rightarrow adequacy of rewarming & predicts "afterdrop"

Management

- 1. resuscitation
 - major hazard is peripheral vasodilatation & hypovolaemia
- 2. monitoring
 - i. routine BP, HR, RR, GCS
 - ii. T°, ECG, U/Output
 - iii. EC&U, AGA's, FBE
 - iv. blood cultures & septic work-up
- 3. rewarming
 - i. *passive* $\sim 0.5-1.0^{\circ}$ C / hr in the absence of shivering $\sim 0.5-2.0^{\circ}$ C / hr with shivering
 - adequate for the vast majority of cases
 - only require active rewarming if haemodynamically unstable
 - ii. *active* • sur
 - surface 'Bear hugger' type
 - temperatures no greater than 40 °C, cease at ~ 35° C
 - core CVVHD, CPB, PD
 - should be ceased at $\sim 33^{\circ}C$
- 4. antibiotics broad spectrum cover pending cultures

Hypothermic Cardiac Arrest

- a. defibrillation virtually useless < 30°C
- b. extracorporeal rewarming if possible
- c. don't pronounce dead until $T > 35^{\circ}C$
- d. normally *hypokalaemic*, if markedly hyperkalaemic then unlikely to succeed

MORBID OBESITY

Def'n: body mass index >

> 35 BMI = $kg/ht(m)^2$ ~ 22-28 normal

> 42 M

MO in pregnancy

> 2x ideal body weight, or

> 45 kg over ideal body weight

Pathophysiology

- 1. BMR increased *proportionally* to body weight
- 2. cardiovascular
 - i. \uparrow blood volume, plasma volume & cardiac output $\propto \uparrow$ weight
 - ii. adipose BF ~ 20-30 ml/kg at rest \rightarrow \uparrow CO ~ 1.5 l/min / 50 kg
 - iii. HR usually unchanged, $\land \uparrow CO \propto -SV$
 - iv. $\uparrow CO \propto \uparrow VO_2 \rightarrow \delta Ca-vO_2$ normal
 - v. later develop progressive hypertensive and ischaemic heart disease
 - progressive dilatation of LV, \downarrow exercise response & \uparrow LVEDP
 - vi. reduced *exercise tolerance*

3. respiratory

- i. $\uparrow VO_2 \rightarrow \uparrow CO_2$ production
- ii. altered lung mechanics \propto loading of thoracic wall with fat
 - \downarrow FRC & ERV predominantly
 - encroachment of closing capacity on FRC
 - \downarrow chest wall compliance
 - \uparrow work of breathing
- iii. $\uparrow V/Q$ mismatch increased $\delta P_{A-aO2} \pm hypoxia$
 - the young obese usually have normal blood gases
 - daytime hypoxaemia associated with OSAS
- iv. tendency to hypercapnia with increased loads
 - increase in V_M & max $P_{Insp.}$ with $\uparrow P_{aCO2}$ diminished
- v. central CO_2 / O_2 drive abnormalities -
 - *obesity hypoventilation syndrome* central
 - *obstructive sleep apnoea syndrome* central & peripheral

4. endocrine

- i. higher than normal calorie intake
- ii. ↑ *glucose intolerance*, NIDDM
- iii. \uparrow pancreatic dysfunction

5. gastrointestinal

- i. gastric stasis / reflux due to hiatal hernia \rightarrow \uparrow *aspiration risk*
- ii. > 90% have fasting gastric volume > 0.4 ml/kg & pH < 2.5
 - risk data from Roberts & Shirley in Rhesus monkeys
 - not supported by subsequent studies (Raidoo et al.)
- iii. fatty liver infiltration
- iv. hepatic dysfunction 2° intestinal bypass

6. general

- i. intubation decreased atlanto-axial movement
 - chin & upper thoracic fat pads
 - large tongue, palatal & pharyngeal fat pads
- ii. technical problems
- CVC insertion - IV access
- epidural catheters, etc.
- * patient transfers
- iii. reduced *immune response*
- iv. skin infections bacterial & fungal
- v. psychology
- vi. increased risk of,
 - IHD, CVD
 - DVT/PTE
 - perioperative morbidity & mortality
 - infections

7. pharmacokinetics/dynamics

- i. \downarrow percentage body water & muscle mass / \uparrow percentage fat
- ii. *hepatic dysfunction* \propto fatty infiltration
- iii. high incidence of *cholelithiasis* & *pancreatitis*
- iv. *hydrophilic drugs* NMJ blockers
 - similar absolute volumes of distribution, clearance & elimination half-lives
 - vecuronium administered mg/kg has prolonged activity, suggesting relative
 - overdose \rightarrow dose based on *lean body mass*
 - atracurium recovery similar to non-obese
- v. *lipophilic drugs* STP, BZD's
 - $\uparrow V_{dSS}$ & normal clearance \rightarrow \uparrow elimination half-lives
- vi. fentanyl kinetics similar to non-obese
 - alfentanyl/sufentanyl $\rightarrow \uparrow t_{_{1/2\beta}}$
- vii. \uparrow plasma *pseudocholinesterase* activity \rightarrow SCh ~ 1.5 mg/kg

Anaesthetic Management

1.	premedication	 H₂ blockers, metoclopramide, clear antacid anticholinergics if fibreoptic intubation anticipated sedatives only when the patient can be monitored
2.	monitoring	- ECG \rightarrow II + V ₅ - IABP, NIBP difficult and increased inaccuracy - F ₁ O ₂ , S _p O ₂ , spirometry, ETCO ₂ , Temp., PNS
3.	airway maintenance	* always use an ETT, CP & RSI - mask SV $\rightarrow \uparrow$ ETCO ₂ & \downarrow S _p O ₂ $\leq 13\%$ incidence of <i>difficult intubation</i> , \ prepare ! ? awake fibreoptic if 75% > IBW - skilled assistance where possible

4. general anaesthesia

- STP \leq 7 mg/kg, but allowances for CVS dysfunction
- \uparrow %volatile agents presented to the liver for metabolism \rightarrow *isoflurane*
- supposition of prolonged recovery from volatile agents has been *disproven*
- SV relatively contraindicated \rightarrow hypercarbia, hypoxia
- N₂O would appear logical due to low solubility, but \downarrow 's F₁O₂
- \downarrow FRC & \uparrow VO₂ \rightarrow rapid desaturation, \lor initial F₁O₂ = 1.0
- extubation when fully reversed & awake

5. regional anaesthesia

- SA & epidural dose requirements for MO patients are ~ 70-80% of normal
- SA block to T₅ results in little change in ventilatory function
- SA block > T_5 may produce significant desaturation/hypercarbia, accompanying autonomic blockade may result in CVS compromise
- MO patient should receive supplemental O₂ and minimal sedation
- monitoring should be the same cf. GA

6. *postoperative considerations*

- \uparrow incidence of complications with - PH_x of CVS or RS disease

- thoracic or abdominal operations

- hypoxaemia may persist ≤ 7 days following intra-abdominal surgery & is a universal finding → *all* should have *supplemental oxygen*
- \uparrow incidence of DVT & *all* should have *heparin* prophylaxis \pm leg stockings
- IM drug administration may be unreliable & unpredictable,
 - \ intravascular route should be used
- PCA is preferrable to IV infusions as lesser total dose
- *epidural* administration is associated with a lower incidence of respiratory complications & ? faster recovery
- postoperative analgesic doses (opioid + LA) are the same cf. normal patients
- patients with a strong history of OSAS / OHS should be observed for the first 24-48 hours in a *high dependency area*

PORPHYRIA

Def'n: group of metabolic disorders of porphyrin production, 2 functional groups,

1. *hepatic porphyrias*

- i. porphyria cutanea tarda (PCT) * commonest form
 - \rightarrow uroporphyrinogen decarboxylase deficiency
- ii. acute intermittent porphyria (AIP)
 - \rightarrow uroporphyrinogen synthetase I deficiency
- iii. variegate porphyria (VP)
 - \rightarrow ? protoporphyrin oxidase deficiency
- iv. hereditary coproporphyria (HC)
 - \rightarrow coproporphyrin synthetase deficiency

2. erythropoietic porphyrias

- i. congenital erythropoietic uroporphyria (CEU)*
 - \rightarrow uroporphyrinogen synthetase II deficiency
- ii. erythropoietic protoporphyria (EP)
 - \rightarrow ferrochetelase deficiency
- NB: all are autosomal dominant, except the rare CEU*

Clinical Features								
Туре	AIP	РСТ	VP	НС	CEU	EP		
photosensitivity	-	+	+	±	+	+		
liver affected	+	+	+	+	-	+		
CNS involvement	+	-	+	+	-	+		
barbiturate sens ^y	+++	-	++	++	-	-		
Abnormal Metabolites								
red cells	-	-	-	-	+	+		
urine	+	+	+	+	+	-		
faeces	-	-	+	+	+	+		
urine colour	black	pink brown			red			

• Clinical Features

- usually relate to either skin or neurological abnormalities
- the *hepatic porphyrias* are characterised by the 4 "P's",
 - 1. abdominal *pain*
 - 2. peripheral neuritis
 - 3. psychosis
 - 4. *port-wine* / purple urine

Acute Intermittent Porphyria

- autosomal dominant disorder of porphyrin metabolism
- most serious of the hepatic porphyrias
- *uroporphyrinogen synthetase* deficiency \rightarrow accumulation of *porphobilinogen*
- · diagnostic features include,
 - 1. \uparrow urinary δ ALA and porphobilinogen during an attack
 - 2. urine turns *black* on standing
 - 3. \downarrow RBC uroporphyrinogen synthetase level
- Clinical Features
 - a. usually young to middle aged female
 - b. episodes of acute *abdominal pain*
 - c. variable neurological defects due to *demyelination*,
 - i. motor weakness
 - ii. arreflexia
 - iii. autonomic dysfunction
 - iv. occasional bulbar and cerebellar signs $*\Delta$ GBS
 - d. trigger factors starvation, dehydration - sepsis
 - pregnancy
 - drugs
 - e. alleged trigger drugs * *barbiturates & benzodiazepines*
 - ketamine, althesin, etomidate
 - ethanol, phenytoin
 - glutethimide, pentazocine
 - steroids and sulpha's
 - f. alleged "safe" drugs volatiles, N_2O
 - fentanyl, morphine, pethidine
 - propofol, droperidol, propanidid
 - relaxants, anticholinergics & anticholinesterases
 - promethazine, chlorpromazine

Management

- a. rehydrate
- b. IV *dextrose* decreases porphobilinogen production
 c. *haematin* 3-4 mg/kg/day blocks δALA synthetase
- d. pain control chlorpromazine \pm opioids
- e. IPPV may be required for respiratory failure

Reperfusion Injury

Def'n: pathophysiological changes occurring in ischaemic organs upon reperfusion

· determinants of severity,

- 1. organ type
- 2. organ blood flow
- 3. ischaemic time
- 4. cellular Ca^{++} content
- 5. ?? plasma glucose at onset of ischaemia
- 6. circulatory status upon reperfusion
- 7. oxygen content of reperfusing blood

• "critical" ischaemic times for vital organs,

1.	brain	~ 10 min
2.	heart	~ 60 min
3.	limbs	~ 120-180 min

4. gut ??

• cellular events leading to tissue damage,

a.	\uparrow ATP metabolites	- ADP, cAMP
		- adenosine, inosine
		- hypoxanthine / xanthine
		* xanthine dehydrogenase / NAD^+

- b. increased substrate
- c. production of O_2^- instead of NADH (low NAD⁺)
- d. neutrophil chemotaxis
 - \rightarrow production of O₂ radicals occurs in initial *reperfusion*
- production of O₂ radicals is *increased* by,
 - 1. O₂, H₂O₂
 - 2. neutrophils, leukotrienes
 - 3. Fe⁺⁺⁺
 - 4. hyperthermia
 - 5. increased Ca^{++}
 - 6. nitric oxide
 - 7. f-met-leu-phen

- production of O₂ radicals is *decreased* by,
 - 1. vitamins E & C
 - 2. folate
 - 3. selenium
 - 4. PGE_1
 - 5. lipoxygenase inhibitors
 - 6. Ca^{++} entry blockers
 - 7. glutathione
 - 8. SH-group containing compounds
 - 9. xanthine oxidase inhibitors allopurinol
 - 10. hypothermia
 - 11. low O_2

• potentially harmful mediators released during reperfusion,

- 1. CO_2 , H⁺, lactate
- 2. $K^+, HPO_4^{=}$
- 3. activated coagulation factors, FDP's, thromboplastins
- 4. Hb, myoglobin
- 5. prostaglandins, leukotrienes, cellular enzymes
- 6. membrane lipids & metabolites

• these produce a number of deleterious effects,

a.	cellular destruction	protein, DNAmembrane, lysosomesmitochondria
b.	local effects	 vasodilatation increased vascular permeability interstitial oedema extravascular matrix disruption
c.	specific tissue effects	 reperfusion arrhythmias disruption of BBB rhabdomyolysis
d.	systemic	 decreased SVR venodilatation high or low CO
	myoglobin induced repol feil	140

- e. myoglobin induced renal failure
- f. metabolic lactic acidosis

• Clinical Examples

- a. myocardium after CPB
- b. lower limbs after AOX-clamp- AAA
- c. rhabdomyolysis, crush injuries
- d. prolonged hypovolaemic shock
- e. cardiogenic shock
- f. ARDS
- g. brain after hypoxic event, trauma

RHABDOMYOLYSIS

Def'n: the disintegration or dissolution of muscle, associated with the excretion of *myoglobin* in the urine

Aetiology

- 1. skeletal muscle *trauma* | *ischaemia* | *exhaustion*
 - i. crush | compartment syndromes
 - ii. burns, electric shock
 - iii. hyperthermic syndromes
 - heat stroke
 - malignant hyperthermia, malignant neurolept syndrome
 - iv. arterial embolism | thrombosis
 - v. torniquets | antishock trousers
 - vi. drug induced

٠

- suxamethonium in myopathic disorders
 - myopathic alcohol, salicylates, amphetamines
 - aminophylline, phencyclidine, LSD, heroin
- · overdose of any sedative agent & pressure necrosis
- vii. envenomation
- viii. overuse prolonged exercise, pretibial syndrome
 - status epilepticus, tetanus
 - delerium tremens
- 2. infection / inflammation
 - i. viral myositis
 - ii. gas gangrene | synergistic necrotizing "Cellulitis"
 - iii. Legionaires' disease
 - iv. acute polymyositis
- 3. metabolic defects

i.

- severe
- hypokalaemia $\leq 2.5 \text{ mmol/l}$
- hypophosphataemia
- hyperosmolality
- ii. myxoedema | thyrotoxicosis
- iii. McArdle's syndrome
- 4. familial myoglobinuria
- 5. muscular dystrophy
- *NB:* systemic release of *myoglobin* by itself is *not nephrotoxic*, however when combined with hypotension and renal hypoperfusion may result in ATN

Investigations

- 1. muscle compartment pressures
 - normal < 10 mmHg
 - if > 30-40 mmHg, or
 - $> BP_{Dias} 30 \text{ mmHg} \rightarrow fasciotomy$
- 2. biochemistry
 - high CPK ~ 30-50,000 (CK-MM) > 5x or greater
 - high K^+ & HPO₄⁼
 - low HCO_3^{-} & Ca^{++}
 - hyperuricaemia
 - \uparrow LDH, AST
 - metabolic acidosis high anion gap
 - thrombocytopaenia & haemoconcentration
- 3. myoglobinuria
 - false negative tests may occur in up to 36% of cases
 - both haemoglobin & myoglobin test positive to urine "dipstick"

• Crush Injuries & Renal Failure

- 1. activation of renin-angiotensin system, ↑ catechoamines & ADH
- 2. nephrotoxicity of *myoglobinuria* & *uricosuria*potentiated by acidification & concentration in tubules
- acute increase in plasma Ca⁺⁺-PO₄⁼ product
 may result in suppression of renal function
- 4. *microthrombi* in renal vasculature

• Complications

1.	hyperkalaemia	- weakness - bradycardia, cardiac arrest
2.	hyperphosphataemia	- hypocalcaemia, hypomagnesaemia
3.	myoglobinuric renal failure	- ATN
4.	muscle infection	- gangrene - tetanus - gram (+)'ves
5.	systemic inflammatory response	 reperfusion injury ARDS sepsis syndrome MODS, DIC

Management

- 1. early, aggressive IVT to support intravascular volume & urine output
 - saline loading \rightarrow prevent hypovolaemia / dehydration
- 2. mannitol
 - theoretically increases proximal tubular flow & reduces effects of pigmenturia
 - supported by the "Israeli" school but no controlled trials to support use
- 3. bicarbonate
 - alkalinisation of urine improves solubility of myglobin, ∴ reducing cast formation
 - animal studies showing reduction in ATN
 - cf mannitol, no controlled trials to support use
- 4. acetazolamide
 - increases proximal tubular output & alkalinises tubular lumen
- 5. treat hyperkalaemia
 - Ca^{++}/HCO_{3}^{-}
 - insulin/dextrose
 - \pm dialysis

3.

Management Israel (Nephron 1990)

- 1. early aggressive volume replacement, preferrably at the sceen of injury
 - immediate resuscitation

•	N.saline or Ringer's lactate	@	1500 ml/hr	adult
		@	20 ml/kg/hr	child

2. forced mannitol-alkaline diuresis

	•	5% Dextrose	+ + + @	NaCl 70 mmol mannitol 20% bicarbonate 8.4% 500 ml/hr		50 ml 50 ml	= 10g = 50 mmol
	•	12 l/day	\rightarrow	600g dextrose = 840 mmol NaCl = 120 g mannitol		2400 kcal 600 mmol	NaHCO ₃
•	ac	etazolamide	-	asma pH > 7.45 to enhancement of	meta	static calcifi	ication

Intravenous Fluids

- Normal Saline 0.9%
 - Na⁺ ~ 154 mmol
 - Cl⁻ ~ 154 mmol
 - pH ~ 5-7
 - osmolality ~ 308 mmol/l, ie. *hypertonic* (measured)

■ <u>4% Dextrose & 0.18% Saline</u>

•	Na^+	~ 30 mmol/l
•	Cl	~ 30 mmol/l
•	dextrose	~ 222 mmol/l
•	pН	~ 3.3-5.5
•	calories	~ 160 kcal
•	osmolality	~ 282 mosm/l

■ <u>5% Dextrose</u>

٠	dextrose	~ 277 mmol/l	(slightly hypoosmolar)
•	pН	~ 3-5	
•	calories	~ 200 kcal	

<u>Hartmann's Compound Sodium Lactate</u>

• Na ⁺	F	~ 131 mmol/l	
• Cl ⁻		~ 111 mmol/l	
• K ⁺		~ 5.0 mmol/l	
• Ca ⁺	-+	~ 2.0 mmol/l	
 lact 	tate	~ 29 mmol/l	
• pH		~ 5-7 (6.5)	
• osn	nolality	~ 278 mosm/l	- slightly hypotonic

- advantages,
 - i. more physiological than D_5W or N.Saline
 - ii. less postoperative Na⁺ retention
 - iii. less acidosis than D_5W
 - iv. enhances H^+/HCO_3^- excretion

• disadvantages,

- i. lactate converted to glucose
- ii. lactate not metalolised in hepatic failure, hypotensive arrest etc.
- iii. 25-30% retained in the intravascular compartment
- iv. Ca⁺⁺ coagulation

Plasmalyte

•	Na^+	~ 140	mmol/l
•	Cl	~ 98	mmol/l
•	\mathbf{K}^{+}	~ 5	mmol/l
•	Mg^{++}	~ 1.5	mmol/l
•	Gluconate	~ 23	mmol/l
•	Acetate	~ 27	mmol/l
•	Osmo	~ 294	mosm/l
•	рН	~ 5.5	

Haemaccel

- synthetic polypeptide plasma volume expander, 3.5% gelatin solution, MW ~ 35,000-45,000
- gelatin prepared from hydrolysis of animal collagen, cross linked by urea bridges
- plasma expansion by ~ 70% of infused volume
- renal excretion by GFR complete by 48 hours
- useful as a synthetic plasma substitute & as an insulin carrier

•	gelatin	~ 35g	
•	Na^+	~ 145	mmol/l
•	Cl	~ 145	mmol/l
•	\mathbf{K}^{+}	~ 5.1	mmol/l
•	Ca^{++}	~ 6.25	mmol/l
•	HSO ₄ /HPO ₄	~ small am	ounts
•	pН	~ 7.3	
•	osmolality	~ 300-306	mosm/l
• advantages,			

- a. cheap, safe, reliable synthetic colloid
- b. low incidence of adverse reactions
- c. renal excretion
- d. long shelf half-life ~ 8 years at 15°C ~ 3 years at 30°C
- disadvantages,
 - a. allergic reactions $\sim 0.146\%$
 - skin rashes, pyrexia, anaphylactoid reaction
 - ? due to *hexamethylene diisocyanate*
 - renal failure rare
 - b. short $t_{\frac{1}{28}}$ ~ 1.5-6 hrs
 - c. renal excretion
 - d. $Ca^{++} \& K^+$ problems in ARF patients

• Dextrans

- polysaccharides produced by fermentation of sucrose by *Leuconostoc mesenteroides* bacteria
- · these are then hydrolysed and fractionated into different molecular weights
- advantages,
 - a. stable, cheap, non-toxic
 - b. non-pyrogenic plasma substitutes & expanders

Dextran 40 - Rheomacrodex

- 10% (100g/l) solution in normal saline or 5% dextrose
- average MW ~ 40,000, osmolality ~ 350-370 mosm/kg, ie. *hypertonic*
- - i. plasma volume expansion
 - ~ 1.5-2x infused volume
 - ii. thromboembolic prophylaxis
 - iii. rheological microcirculatory benefit
 - iv. CPB pump priming

• contraindications,

- i. thrombocytopaenia
- ii. coagulopathy
- iii. hypersensitivity
- problems,
 - i. hypervolaemia, circulatory overload, CCF
 - ii. anaphylactoid/anaphylactic reactions $\sim 0.07\%$
 - reduced by Promit (0.001%)
 - iii. renal failure
- does not interfere with blood cross-matching or Coomb's testing
- maximum dose ~ 30 ml/kg/day

Dextran 70 - Macrodex

- 6% (60g/l) solution in normal saline or 5% dextrose
- average MW ~ 70,000, osmolality ~ 335 mosm/kg, ie. mildly *hypertonic*
- plasma $t_{_{44B}} \sim 6$ hrs with ~ 5% being metabolised (70 mg/kg/day)
- problems are the same as for dextran 40, plus, interference with *haemostasis* with large volumes
 - a. fibrinogen coating
 - b. interferes with factor VIII
 - c. decreased platelet adhesion and aggregation

■ <u>NSA-5%</u> Albuminex-5%

- · heat treated plasma protein solution
- prepared from fractionated plasma from pooled human donors
- *pasteurised* to kill HBV etc.
- shelf-life ~ 5 years at 2-8°C and 1 year at 25°C
- Na^+ -octanoate is added to stabilise the short chain FFA and heat stabilise albumin
- NaOH is added to bring the pH to 7.0

 Na^+

•

- protein 50g ~ 100% albumin
 - ~ 140 mmol/l
 - Cl⁻ ~ 125 mmol/l
 - octanoate ~ 8 mmol/l
 - pH ~ 7.0
 - osmolality ~ 300 mosm/kg

main problem with SPPS was *anaphylactoid reactions* (~ 0.02%)
 ? due to a heat labile *pre-kallikrein factor*

- other plasma substitutes include,
 - a. hydroxy ethyl starch $-t_{1/2\beta} \sim 24$ hrs
 - reactions ~ 0.08%
 - b. fluosol DA
 - c. FFP
 - d. NSA | Albuminex-20%

Solution	\mathbf{Na}^+	Cl	\mathbf{K}^+	Ca^{++}	Glu	Osm.	pН	Lact.	kJ/l
D ₅ W	0	0	0	0	278	253	5	0	840
NaCl 0.9%	150	150	0	0	0	300	5.7	0	0
NaCl 3.0%	513	513	0	0	0	855	5.7	0	0
D ₄ W / NaCl 0.18%	30	30	0	0	222	282	3.5-5.5	0	672
Hartmans	129	109	5	0	0	274	6.7	28	37.8
Plasmalyte	140	98	5			294	5.5	(27)	84
Haemaccel	145	145	5.1	6.25	0	293	7.3	0	0
NSA-5%	140	125	0	0	0		7	0	?
NSA-20%									?
Mannitol 20%	0	0	0	0	0	1,098	6.2	0	0
Dextran 70	154	154	0	0	0	300	4-7	0	0

Mixed Venous Oxygen Saturation

• rearranging the Fick equation for O_2 uptake,

$$C_{vO2} = C_{aO2} - VO_2/CO$$

- + S_{vO2} and mixed venous P_{vO2} are used for the calculation of,
 - 1. cardiac output
 - 2. oxygen flux
 - 3. pulmonary shunt fraction
- S_{vO2} may be used as a rough guide of cardiac output,
 - ~ 75% normal
 - > 60% acceptable
 - < 60% cardiac failure
 - < 40% cardiogenic shock

Low S _{vO2}	High S _{vO2}
 low cardiac output increased VO₂ low P_{aO2} anaemia 	 high CO and low VO₂ sepsis & peripheral shunting hypothermia CN⁻ toxicity

Monitoring Pitfalls

- a. technical wedged PA sample & factitious high S_{vO2}
- b. influenced by many factors
- c. represents *global* oxygenation & poor indicator of regional ischaemia/organ hypoperfusion
- d. trends more useful than single figures

Wilson's Disease

- *Def'n: autosomal recessive* disorder due to the inability to excrete copper cleaved from ceruloplasmin into the bile, resulting in,
 - 1. accumulation of copper in brain, liver & other organs
 - 2. inhibition of the formation of ceruloplasmin from apoceruloplasmin

Clinical Features

- 1. hepatic
 - i. acute hepatitis
 - ii. chronic active hepatitis
 - iii. cirrhosis
 - iv. asymptomatic hepatomegaly
- 2. CNS
 - i. resting, or intention tremors
 - ii. schizophrenia, manic-depressive psychoses, neuroses
- 3. Kayser-Fleischer rings

Diagnosis

- 1. serum ceruloplasmin < 200 mg/l
 - plus Kayser-Fleischer rings
- 2. serum ceruloplasmin < 200 mg/l
 - plus liver biopsy elevated copper deposition
- 3. treatment
 - lifelong penicillamine

Hyperlipiaemia

Hypercholesterolaemia

- 1. familial lipid disorders
- 2. biliary obstruction
- 3. nephrotic syndrome
- 4. hypothyroidism
- 5. pancreatitis