BLOOD TRANSFUSION

Indications for Transfusion

- 1. increase the O₂ carrying capacity of blood $\rightarrow \uparrow DO_2$
- 2. increase circulating blood volume, when DO_2 is low
- *NB*: Hct at which transfusion indicated is *age & disease* dependent, otherwise healthy patients rarely require transfusion at Hct > 30%, whereas transfusion is usually required at Hct < 21% (RDM)

Compatibility Testing

- 1. <u>ABO-Rh typing</u>
 - i. **rbc's** tested with commercial anti-A, anti-B and anti-D
 - ii. serum tested against A-rbc's and B-rbc's

iii.	ABO	0	~ 45%
		А	~ 41%
		В	~ 10%
		AB	~ 4%
iv.	Rh(D)	positive	~ 85%
		negative	~ 15%

2. <u>antibody screening</u>

i. trial transfusion between *recipient serum* and commercially supplied rbc's

(*direct Coomb's*)

~ 60-70% anti-D-positive

(indirect Coomb's)

- looking for commonly occurring rbc antigens other than ABO-Rh
- same 3 phases and similar length to cross-match
- ii. also performed on the *donor serum* shortly after collection
 - primarily preventing reactions with subsequently transfused units

3. cross-matching

- trial transfusion between *donor rbc's* and *recipient serum*
- i. *immediate phase*
 - donor rbc's mixed with recipient serum
 - conducted at room temperature, complete in ~ 5 minutes
 - detects ABO, plus MN, P, and Lewis incompatibilities

ii. *incubation phase*

- incubation of first phase reactions at 37°C in albumin for 30-45 minutes, then in low ionic strength saline for 10-20 minutes
- promotes aggregation of surface Ag, and reduction in surface (-)'ve charge
- aids detection of *incomplete antibodies*, especially *rhesus*, by the 3rd phase,

iii. antiglobulin phase

- polyvalent antihuman antiglobulin reacts with incomplete antibodies
- · detects most of Rh, Kell, Kidd and Duffy

• Effectiveness of Matching

1.	ABO-Rh typing	~ 99.8% compatible	1:500-1000
2.	+ antibody screening	~ 99.94% compatible	1:1700
3.	+ cross-matching	~ 99.95% compatible	1:2000

• Emergency Transfusion

1. type O Rh-negative blood

- universal donor, uncrossmatched blood
- some type O donors produce high titres of anti-A,B immunoglobulins

 \rightarrow *packed cells* better than whole blood

- transfusion of > 2 units of whole type O requires continued use until the blood bank determines levels of anti-A/B have declined (theoretically !)
- continued use of type O results in minor haemolysis & hyperbilirubinaemia
- 2. type specific, partially cross-matched blood
 - ABO-Rh typing plus immediate phase X-match ~ 5-10 minutes
 - only **1:1000** patients has an unexpected Ab found in full X-match
 - greater risk in previously transfused patients ~ 1:100 unexpected Ab

Effects of Blood Storage

Citrate Phosphate Dextrose + Adenine

- a. Citrate prevents clotting by binding Ca⁺⁺
- b. Phosphate $pH \sim 5.5$, acts as a buffer against the large fall in [H⁺] at 1-6°C ? also may increase 2,3-DPG levels
- c. Dextrose allows continued glycolysis & maintenance of ATP
- d. Adenine improves rbc survival by adding substrate for ATP synthesis
 increases survival from 21
 [®] 35 days
- *NB:* duration of storage set by requirement for ³ 70% rbc survival 24 hours post- T_x storage at 1-6°C slows the rate of glycolysis by ~ 40x

i.	whole blood	~ 430 ml blood & 70 ml preservative	Hct ~ 40%

ii. packed cells ~ 230 ml blood & 70 ml preservative Hct $\sim 70\%$

1. <u>metabolic effects</u>

- \downarrow glucose / dextrose / ATP / 2,3-DPG, and \uparrow lactate
- $\uparrow P_{aCO2}, \downarrow pH, \downarrow HCO_3^-$
- $\downarrow Na^+ / \uparrow K^+$
- oxidant damage to membranes with *spherocyte* formation
- \downarrow 2,3-DPG \rightarrow \uparrow O₂ affinity
- changes occur earlier & to greater extent in whole blood cf. packed cells
- 2. <u>microaggregates</u>
 - conventional filters remove particles $> 170 \ \mu m$
 - aggregates of platelets/fibrin/leukocytes range from 20 to $> 170 \,\mu m$
 - clinical significance of microaggregates debated
 - most would no longer use a micropore filter
 - *no change* in the incidence of ARDS

Frozen Storage

- rbc's stored with *glycerol* at -79°C survive well
- all glycerol must be removed prior to use & this is difficult and expensive
 - 1. long-term storage of rare blood types
 - 2. safer in patients susceptible to allergic reactions
 - freezing & washing process decreases HLA antigens
 - 3. reduced risk of hepatitis infection ? since questioned
 - 4. low levels of leukocyte & fibrin aggregates safer for massive transfusion
 - 5. normal levels of 2,3-DPG retained, therefore better O_2 capacity

• Adsol

- shelf-life extended to 42 days
- contains adenine, glucose, mannitol, and NaCl

Heparin

- used for priming CPB pumps etc.
- anticoagulant, not preservative as lacks glucose
- antocoagulant effect decreases with time due to liberation of thrombogenic substances from the cellular elements during storage, therefore must be used within 24-48 hours

Classification

- 1. ultrafresh < 24 hours
- 2. fresh < 7 days
- 3. stored > 7-35 days

Complications

Hazards of Rapid or Massive Transfusion

- 1. <u>impaired O_2 transport</u>
 - i. defective rbc function
 - ii. impaired Hb function
 - iii. fluid overload / underload
 - iv. DIC
 - v. ARDS
 - vi. MOSF
 - vii. microaggregates
- 2. <u>haemostatic failure</u>
 - i. dilution
 - ii. depletion / consumption
 - iii. decreased production
 - iv. DIC
- 3. <u>electrolyte & metabolic disturbance</u>
 - i. hyperkalaemia / delayed hypokalaemia
 - ii. sodium overload
 - iii. acid-base disturbances
 - iv. citrate toxicity
 - v. hypothermia
- 4. <u>vasoactive reactions</u>
 - i. kinin activation
 - ii. damaged platelets & granulocytes
- 5. <u>serological incompatibility</u>
 - i. immediate generalised reaction
 - ii. delayed transfusion reaction
- 6. impaired reticuloendothelial function
- **NB:** the majority are related to the type and time of storage $massive transfusion \ge 1$ times the patients blood volume

?? over what time-frame	\rightarrow	1BV per 24 hours
		¹ / ₂ BV per 2 hours

• Oxygen Transport

- HbO₂ dissociation \propto pH, Temp., P_{aCO2} and 2,3-DPG
 - 1. *citrate* is metabolised to $HCO_3^- \rightarrow L$ -shift • WB & FFP have the greatest effect
 - 2. hypothermia \rightarrow *L*-shift
 - 3. stored blood deficient in 2,3-DPG \rightarrow L-shift
 - 4. $\operatorname{CO}_2/\operatorname{H}^+$ load $\rightarrow \mathbf{R}$ -shift
- good correlation between decrease in rbc 2,3-DPG and \mathbf{P}_{50} after 7 days storage,

i.	2,3-DPG	4.8 μmol/l	\rightarrow	1.2 µmol/l
ii.	P ₅₀	26.5 mmHg	\rightarrow	18 mmHg

NB: specific organ hypoxia *has not* been demonstrated from low P_{50} transfusion, washed rbc's depleted of 2,3-DPG given to patients with anaemic hypoxia, showed no change in mixed venous P_{v02} or cardiac output

• recommendations,

- 1. warm all blood products
- 2. avoid HCO_3^- administration
- 3. attempt to use fresh blood in hypoxic, low CO patients
- 4. use frozen blood if available

microaggregates progressively accumulate with storage & potentially decrease gas exchange
reduced⁺⁺ with micropore filters, however, incidence of ARDS is *unaffected*

Transfusion Coagulopathy

NB: most important factors are volume of transfusion & duration of hypotension

differential diagnosis,

- 1. dilutional thrombocytopenia
- 2. low factor V & VIII activity
- 3. DIC
- 4. haemolytic transfusion reaction
- 5. preexisting coagulopathy
 - i. haemophilia, von Willebrand's
 - ii. anticoagulant therapy
 - iii. aspirin, NSAID's

<u>Dilutional Thrombocytopenia</u>

- total platelet activity in stored whole blood $\sim 60-70\%$ after 6 hrs $\sim 5-10\%$ after 48 hrs
- effects of dilution depend upon,
 - 1. initial platelet count
 - 2. risk of haemorrhage depends upon acute versus chronic,
 - i. acute loss < 50,000-75,000
 - ii. chronic disease < 10,000-15,000
 - 3. volume transfused ~ 2 BV's in children

- thrombocytopathy with massive transfusion

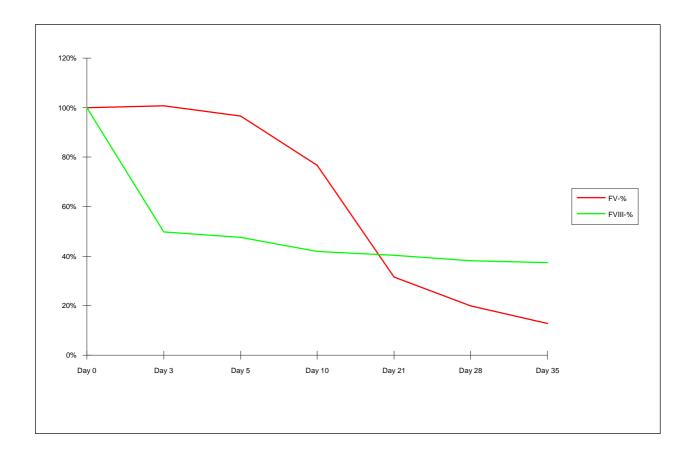
$NB: \rightarrow$ baseline & subsequent *clotting studies*

- · Vietnam war studies & experimental data support,
 - 1. an increased likelihood of a platelet count < 100,000 with > 10-15 unit transfusion
 - 2. bleeding becomes increasingly likely at platelets < **75,000**

· however, counts do not fall as predicted by haemodilution alone, ? release from marrow & RES

- there is no benefit in prophylactic administration of platelets in massive transfusion
- · therapy should be assessed by laboratory data & clinical evidence of disordered coagulation
- · higher counts are required in surgery and trauma
- *platelet concentrates* ~ 50 ml and contain ~ 70% of the platelets of a unit of whole blood
- in a 70 kg adult each unit will raise the platelet count ~ 7,000-10,000 / mm 3

• paediatric doses 0.1-0.3 units/kg \sim 20,000-70,000 / mm³


• Low Factor V & VIII Activity

- respectively, these decrease to ~ 15% and 50% of normal activity in whole blood after 21 days
- packed cells minimal quantities
- however, only 5-20% $F_{\rm v}$ and 30% $F_{\rm viii}$ activity are required for normal haemostasis
- therefore these factors *rarely* decrease below those levels required for coagulation
- · concomitant reductions may increase coagulopathy from other sources, ie. platelets

• RDM study giving FFP to 15⁺ unit transfusions with disordered coagulation, resulted in *no improvement* in coagulopathy, ie. other causes are usually responsible

criterea for *FFP administration* in massive transfusion.

- 1. generalised bleeding uncontrollable by surgical means
- 2. APTT > 1.5x normal
- 3. platelet count > 70,000 ie. correct the platelets first !

NB: data from actual quality control on Red-Cross banked whole blood, Feb '89

Disseminated Intrvascular Coagulation

- 1. relatively uncommon entity
- 2. microvascular *thrombosis* occurs rarely
- 3. rarely results in specific organ damage or infarction
- 4. accompanying large vessel thrombosis is not uncommon, but is probably *not* directly a result of DIC (ie. low flow)
- 5. *bleeding* is common, but usually originates from sites of local pathology
- 6. *heparin* is seldom useful and frequently worsens bleeding
- 7. DIC is associated with a *high mortality*, 2° underlying disease severity
- 8. ? may be regarded as an incidental preterminal event in many patients

• Metabolic Effects

1.	citrate toxicity	
	• citrate itself is nontoxic \rightarrow	hypocalaemia
	~	to citrate content of unit
	~	rate of infusion, hyperventilation
	• $\leq 1.5-2.0$ ml/kg/min rarely a problem	m ($\leq 1^{U}/5$ min in average adult)
	• FFP has higher % citrate than WB	$\rightarrow \leq 1.0 \text{ ml/kg/min}$
	• decreases in Ca ⁺⁺ are <i>transient</i> and	are restored immediately following T _x
	• RDM \rightarrow CaCl ₂ very rar	ely required
	monitor by EC	CG at higher rates
	• factors ↑'g citrate toxicity	- hypothermia (↓ ~ 50%, 37→31°C) - hypovolaemia
		- liver disease, transplantation
2.	hyperkalaemia	
	• generally only with whole blood	\propto to the shelf-life of the unit
		\leq 19-30 mmol/l after 21 days
	• rate of infusion important	\leq 1.5-2.0 ml/kg/min
	• again, CaCl ₂ administration rarely re	equired & should be based on biochemistry
	• ABP's better for <i>neonates</i>	 check unit [K⁺] for neonates monitor by ECG at higher rates
3.	<i>hypothermia</i> \rightarrow L-shift of HbO ₂ c	urve
	• all banked products stored at $\sim 2-6^{\circ}$	^o C and T_x should be warmed 38-40 ^o C
	• reduction of core temperature < 30° coagulation	$^{\circ}C \uparrow$'s <i>cardiac irritability</i> and impairs
	• decreases of 0.5-1.0°C may induce	postoperative <i>shivering</i> & \uparrow MRO ₂ ~ 400%
	• \geq 42°C results in RBC destruction	
	• warming with <i>radiofrequency</i> warr	ners is OK, microwaves result in rbc damage
4.	<i>acid-base</i> * depends upon reason	for T _x
	• pH of CPD ~ 5.5	~
	• freshly collected blood pH ~ 7.0-7.1	1, decreasing to pH ~ 6.9 after 21 days
	• most acid in WB is CO ₂ ~ 150 mm	$Hg \rightarrow lungs$
	*	hen this is removed by adequate ventilation
		erates HCO_3 and acidosis is rarely a problem
	providing <i>hypovolaemia</i> is avoided	
	• NaHCO ₃ may have be harmful \rightarrow	use according to AGA's only

Transfusion Reactions

• Classification

- 1. time of onset \rightarrow immediate vs. delayed
 - as actual mechanisms are uncertain in many cases, the terms anaphylactic / anaphylactoid are not used → *immediate generalised reaction*
- 2. aetiology \rightarrow immune vs. non-immune

Immune Reactions

1. <u>donor rbc</u> serological incompatibility

 \rightarrow

i. acute incompatible transfusion reaction / immediate generalised reaction

high titre anti-A or anti-B in recipient plasma acute haemolytic transfusion reactions

- ii. delayed (X-match compatible) transfusion reaction
- 2. reactions against <u>donor plasma protein</u> antigens (eg. F_{VIII} Ab's)
 - i. anti-IgA antibodies in selective IgA deficiency
 - IgA deficiency ~ 1:900 / anti-IgA ~ 20-60%
 - not all patients will have an IGR, but those who react will do so repeatedly
 - use autologous blood or IgA deficient donors
 - may also have subclass specific anti-IgA, with milder symptoms
 - ii. anti-IgG antibodies
 - iii. reactions to exogenous donor antigens dietary, drugs
 - iv. serum sickness

 \rightarrow

- 3. high titre alloantibody in donor plasma
 - i. ABO incompatible donor plasma
 - ii. high titre atypical rbc alloantibody in donor plasma
 - pregnancy or previous transfusion
 - usually Rhesus or Kell & results in lysis of recipient rbc's
 - interdonor incompatibility
 - screen all plasma for high anti-A/B, or atypical Ab's refrain from using ABO incompatible plasma unless unavoidable
 - iii. delayed reactions to donor reaginic IgE Ab's (transfer of allergy)
 - iv. leukoagglutinins \rightarrow transfusion associated lung injury (TRALI)
 - plasma from multiparous females, frequently use of FFP post-CPB
- 4. reactions due to contaminants
 - i. plasma "activation" \rightarrow complement and kininogen/kinin systems
 - ii. histamine release in stored blood
 - iii. generation of cytokines
 - iv. chemical additives

<u>Non-Immune Reactions</u>

- i. incorrectly stored or out-of-date blood
- ii. inadvertently frozen blood
- iii. overheated blood
- iv. infected blood
- v. mechanical destruction (infusion under pressure)

• <u>Acute Haemolytic Transfusion Reactions</u>

1.	incid	lence	~ 1:4000-1	14,000
2.	mort	ality	~ 1:100,00	00 (2.5-10%)
3.	aetio	ology		i-A, 12% anti-D, 23% anti-Fy ^a (mainly IgM) nent fixing with direct intravascular haemolysis
4.	sym	ptoms & sign	- che - nau - ble - hyp	ver & chills est pain, dyspnoea, apprehension usea, flushing eeding diathesis [§] potension [§] [§] may be the only signs <i>under GA</i> emoglobinuria [§]
5.	comj	plications	- hae - DIO	aemia emoglobinuria (? <i>acid haematin</i> precipitate $\rightarrow ARF$) C, thrombocytopaenia RDS, MOSF
6.	inves	stigations		
	i.	CBP		, platelets, helmet cells, ghosts e Hb, haptoglobin, urine [Hb]
	ii.	APTT, OS	PT, FDP/XI	DP's
	iii.	fibrinogen	- not	t \downarrow 'd with storage, $\downarrow = DIC$
	iv.	return used	l unit for rec	erossmatch
	v.	sample to l	blood bank f	for Ab screen & direct antiglobulin test
	vi.	MBA_{20}	- K ⁺ ,	, renal function
7.	mana	agement		
	i.	cease T_x in	nmediately	
	ii.	ABC		- increase $FiO_2 \pm IPPV$ as required - maintain BP, volume loading \pm inotropes
	iii.	maintain u	rine output	≥ 1.0 ml/kg/hr - IV fluids ± mannitol 12.5-50 g ± frusemide
	iv.	alkalinise u • HCO ₃	ırine	\rightarrow pH > 8.0 ~ 0.5-1.0 mg/kg

Delayed Haemolytic Transfusion Reaction

1.	incidence	~ 1:6000 - F:M ~ 3:1
2.	aetiology	 anti-Jk^a, anti-E, anti-c * non-complement fixing Ab, with removal in RES
3.	symptoms & signs	 may be asymptomatic usually ~ 1 week may occur at 2-3 days, or after 1 month fever & chills jaundice haemoglobinuria
4.	complications	mortality raremay result in anaemia, ARF
5.	investigations	 anaemia jaundice, hyperbilirubinaemia (+)'ve direct Coomb's test
6.	management	usually no active management requiredrare severe reactions managed as abovedetermine rare or low titre Ab's for future

• Nonhaemolytic Transfusion Reactions

1.	incidence	~ 2-3% of all units and up to 8% of patients
2.	aetiology	 Ab's against donor wbc's (HLA or "leukoagglutinins") 2.5 x 10⁹ wbc's / unit of blood Ab's against other plasma protein components
3.	symptoms & signs	fever, chills, myalgias, nausea, non-productive coughresembles early onset of haemolytic reaction
4.	investigations	 as for haemolytic reaction return remaining blood to check matching rule out occurrence of <i>haemolysis</i>
5.	prophylaxis	 washed rbc's (7-10 days old) microfiltration frozen / thawed cells dextran sedimentation antihistaminics (H₁ & H₂), antipyretics, steroids

Post-Transfusion Jaundice

1.	haemolysis	 free Hb stored rbc's immunological 	ightarrow unconjugated
2.	haematoma rea	bsorption / associated injuries	
3.	liver disease	 hypoxia, hypotension drugs sepsis post-transfusion hepatitis pre-existing liver disease 	\rightarrow conjugated (Gilbert's ~ 7-10%)

4. post-hepatic obstruction

Infective Complications

NB:	donor blood tested for \rightarrow	HBV, HCV	7
		HIV, HIV-	2
		syphilis	(only room temperature storage)
	malaria excluded by donor hi	istory	

Human Immunodeficiency Virus

• except for triple-washed red cells, the transmission rate from an infected component is 100%

- 123 cases of transfusion-acquired HIV prior to testing in May 1985
- 78% of a cohort of severe haemophilia A patients tested HIV positive in NSW

1.	declaration form & private interview	- late 1984

- 2. heat treatment of F_{VIII} by CSL late 1984
- 3. ELISA screening of all donors May 1985

NB: no documented case of transfusion-acquired HIV since then in Australia

• first 5 years, 1985-90	\rightarrow	46 positive donors		
		overall incidence	~	1:120,000
		NSW incidence	~	1:70,000

NB: USA estimated risk from *screened products* ~ 1:40,000

• theoretical risk of donation within the "window" period remains

- transmission also reported from *organ donation* from seronegative donors
- theoretically, seronegative transmission may be detected by antigen (p24) testing
- · however, large studies have not supported the cost-effectiveness of this method
- · presently used in Thailand in an attempt to curb the spread in that country

Hepatitis Viruses

- *NB: most common* post-transfusion infection, likely to remain so despite introduction of hepatitis C testing
- *hepatitis A* is potentially transmissible by transfusion and cases have been reported
 - there is no carrier state and the window of infectivity is small
 - the only effective means of prevention is screening *history* from donors
- 2. hepatitis B
 - HBsAg testing introduced in 1970, making Australia the first country to test all donors
 - prior to HCV screening, still accounted for ~ **5-10%** of post-transfusion hepatitis, despite sensitive screening test
 - reduction of non-A non-B hepatitis with HCV screening will increase percentage of HBV cases
 - infective donors are missed due to,
 - i. low titre HBsAg
 - ii. donation during the "window" period,
 - where donor has lost detectable HBsAg but remains clinically infective
 - · testing for HBcAb has been advocated, but low specificity and controversial
 - currently in NSW ~ 3:10,000 donations are HBsAg positive
 - incidence increasing with immigration from S-E Asia
- 3. *hepatitis C*
 - non-A non-B hepatitis commonest post-transfusion infection for the past 20 years
 - NSW mid-80's \rightarrow ~ 1.7% of CABG's transfused got biochemical hepatitis
 - incidence fell by ~ 50% with introduction of *donor declaration form*
 - HCV identified in 1989, thought to be responsible for ~ 90% of non-A non-B hepatitis
 - 2^{nd} generation ELISA tests \rightarrow ~ 0.3% of donations positive (NSW)
 - ~ 0.1% confirmed by RIBA test

NB: risk is now *unknown*, but "likely to be so low that it will be difficult to carry out a large enough study for it to be established" AIC 1993

4. delta hepatitis

- defective RNA virus, dependent upon HBV for replication
- may occur concurrently with HBV, *coinfection*, or *superinfection* in a carrier
- management is through prevention of HBV
- 5. *hepatitis E*
 - endemic form of non-A non-B hepatitis
 - mode of spread similar to HAV, ie. fecal-oral
 - theoretically transmissible through blood but no reported cases

Cytomegalovirus

- member of the herpes virus family
- geographical prevalence varies from ~ 40-100%
- primary infection usually unnoticed, unless the host is *immunocompromised*
- most frequent cause of *death* in bone marrow transplantation \rightarrow *pneumonia*
- may contribute to disease progression and/or activation in *HIV*
- at risk patients include,
 - i. low birth weight & premature neonates
 - ii. congenital immunodeficiency syndromes
 - iii. splenectomised patients
 - iv. those on immunosuppressive chemotherapy
 - v. transplant recipients
- managed by transfusion with CMV negative blood, but limited supply due to high prevalence
- · leukocyte filters have been shown to be effective in neonates but are expensive

• <u>HTLV-1</u>

- retrovirus related to HIV \rightarrow T-cell leukaemia ~ 1% of infections tropical spastic paraparesis
- endemic within some Aboriginal groups within Australia, and in areas of the Western Pacific
- screening is carried out for donors having been to high risk areas
- pilot study in the NT screening all donors

• no proven transmission in Australia, but 4 donors (+)'ve in the NT and 1 of 212 haemophiliacs found to have evidence of infection

• problems as ELISA screens also get HTLV-II, the pathogenicity of which is unknown

Syphilis

• Treponema pallidum is more likely to be present in the serum during the seronegative phase

• routine screening therefore offers limited protection, however it does act as an aditional surrogate test for HIV infectivity

• the organism is destroyed by storage at 4 °C, thus *platelets* are the likely medium

• there has been no recorded transmission in Australia in the past 20 years

Malaria

- Australian donors are excluded for 12 months following overseas travel
- this is increased to 24 months if chemoprophylaxis was taken
- a recent case of *P. falciparum* malaria in Victoria is believed to be the first case in 20 years
- in transfusion transmitted disease, the *exoerythrocytic phase* in the liver is bypassed
 - \rightarrow therefore relapses *do not* occur
- · frozen red cells and cell-free blood components have been associated with infection

• Other Transmissible Diseases

- 1. Chagas' disease *Trypanosomiasis cruzi*
- 2. Lyme disease Borrelia burgdorferi (spirochaete)
- 3. Jakob-Creutzfeldt
- 4. toxoplasmosis
- 5. brucellosis
- 6. filariasis
- 7. salmonellosis, typhus, measles

• Methods to Reduce Infection Transmission

- 1. exclude donors from high risk groups
 - donor declaration form & interview
- 2. screen all donors for HIV, HBV, HCV & CMV Ab's, VDRL
- 3. avoid homologous transfusion & transfuse minimal unit requirement
- 4. avoid multiple donor components unless absolutely required
- 5. use autologous blood where possible

Leukocyte Transfusion Effects

Beneficial Effects

- 1. longer renal graft survival
 - inactivation of alloreactive clones by high-dose immunosupressive therapy
 - induction of suppressor cells
 - induction of anti-idiotypic antibodies
 - improved by donors sharing one HLA-DR Ag
 - largely abandoned following the advent of *cyclosporin* therapy
- 2. graft versus leukaemia effect
 - increase in bone marrow transplant remission rates
 - 1 study only, not supported by subsequent study

• Adverse Effects

- 1. HLA alloimmunisation
 - i. non-haemolytic febrile transfusion reactions
 - most common effect ~ 1% of all transfusions
 - \leq 50% in multi-transfused patients
 - ii. refractoriness to random donor platelets transfusions
 - occurs in 30-70% of multiple donor recipients
 - refractoriness may be nonimmunologic \rightarrow consumption
 - HLA-Ab's present in ~ 50% of multiple donor recipients
 - critical immunogenic leukocyte load (CILL) for alloimmunisation
- 2. graft versus host disease in immunosuppressed
- 3. transmission or reactivation of CMV
- 4. transmission of HTLV-1

5.	gene	eralised immunosupression	*suggestive evidence
	i.	\uparrow postoperative infection rate	- including 1 prospective study
	ii.	↑ tumour recurrence	- all retrospective studies
		5 studios	1 incidence 2 aquivagel

- 5 studies 7 incidence, 3 equivocal

- 3 studies no relationship

NB: studies pending assessing effects of leukodepleted blood products

Methods of Leukocyte Depletion

1.	prestorage leukodepletion	\rightarrow	centrifugation, washing, freezing & thawing
2.	bedside filtration	\rightarrow	clinically equally effective to date

Recommendations for Leukodepleted Blood Products

- 1. to prevent recurrent NHFTR $< 5 \times 10^8$
- 2. prevent/delay alloimmunisation to HLA-Ag's $< 5 \times 10^6$
- 3. those presently under investigation
 - i. prevention of refractoriness to platelets
 - ii. recurrence of febrile reactions to platelets
 - iii. CMV infection
- 4. those where leukodepleted products are *not recommended*,
 - i. GVHD
 - ii. acute lung injury due to donor anti-leukocyte Ab's
 - iii. reactions or alloimmunisation in patients with limited transfusion exposure
 - iv. reactions or alloimmunisation in patients receiving acellular components

COMPONENT THERAPY

Platelets

1.	random donor platelets	- pooled from 6-8 donors
	Ũ	40-50 ml \rightarrow 5-6 x 10 ¹⁰ platelets
	-	erature and are viable for ~ 3-5 days as < 170 μ m remove significant numbers
2.		- collected by plateletpheresis
	• requires HLA match	ed donor to minimise antigenic differences
• causes for	r a reduction in platelet nun	nbers,
a.	reduced production	 marrow failure (aplastic), marrow infiltration deficient substrate (B₁₂, folate)
b.	sequestration	- splenomegaly
с.	dilution	- massive transfusion ($\geq 1 \text{ BV}$)
d.	accelerated destruction	
	i. consumptive	- coagulopathy (DIC, PIH)
	ii. autoimmune	- SLE, lymphoma, HIV, ITP
	iii. drug induced	- aspirin, heparin (HITS I&II)

NB: \rightarrow 2 groups, gradual vs. rapid reduction in platelet numbers

• requirement for platelets depends upon cause and rate of development

a.	1 unit of platelets	~ 7,000-11,000 / mm ³ / m ²	SA increase
b.	0.1-0.3 units/kg	$\sim 20,000-70,000 \ / \ \mathrm{mm^3}$	(standard dose)

• indications,

1.	platelet count	< 10,000 x 10 ⁹ /l	* varies between institutions
2.	platelet count	< 50,000 x 10 ⁹ /l	+ spontaneous bleeding or surgery

3. platelet dysfunction, *irrespective* of count + spontaneous bleeding or surgery

• important points,

antibody production is ∞ to units transfused a.

> limited effectiveness of future transfusions \rightarrow

- not all hospitals have platelets readily available b.
- they should be administered immediately preoperatively c.
- they should *not* be run through a micropore filter d.

Fresh Frozen Plasma

• 200 ml standard volume contains *all factors*, including,

1.	VIII:C	$\sim 200^{\circ}$	- may be harvested prior to freezing
			- noted on unit label

2. IX ~ 200^{U}

3. fibrinogen $\sim 400 \text{ mg}$

• prepared within 6 hrs, after which the labile factors (V/VIII) begin to diminish, stored -30°C

• for same reason should be used ASAP upon thawing

• contains proportionally more *citrate* than whole blood

• administered as ABO compatible transfusion, volume ~ 200 ml/unit

• *indications* for use,

1.	isolated factor deficiencies	- laboratory proven
2.	massive blood transfusion	 rarely, when V/VIII activity < 25% + OSPT > 1.8 / fibrinogen > 0.8 g/l
3.	reversal of warfarin effect	
4.	antithrombin III deficiency	- thrombotic state
5.	immunodeficiency states	- source of globulins
6.	thrombotic thrombocytopenic purp	ura
7.	haemophilia A	 rarely, as require 10-15 U/kg for an acute bleed 4-5 units of FFP / 70 kg

8. von Willebrand's disease

• Cryoprecipitate

• fresh plasma frozen & thawed at 4-8 °C \rightarrow ~ 3% fails to redissolve, the cryoprecipitate

• then warmed to room temperature with 20-50 ml of supernatant plasma

• single donor preparation, stored for up to 6 months at -30°C

• contains,

i.	VIII:C →	~ 20-85% of the original levels ~ 80-120 units / 10-15 ml of plasma, or ~ $\frac{1}{2}$ VIII:C activity of FFP in 1/10 th the volume ~ 120 ml for R _x acute bleed in haemophilia A
ii.	fibrinogen	 ~ 3-10x original plasma / ml ~ 250 mg / 10-15 ml of plasma, cf. 200 ml of FFP - may result in <i>hyperfibrinogenaemia</i> in haemophiliacs → paradoxical bleeding
iii.	VIII:vWF	~ 40-70% original plasma
iv.	F-XIII	~ 3-10x original plasma / ml
v.	fibronectin	

• indications,

- 1. haemophilia A
 - factor VIII:C deficiency \rightarrow principal use
 - not indicated for haemophilia B, as minimal content of factor IX

2. *fibrinogen deficiency*

- preferrable to commercial fibrinogen preparations, which are pooled from 500-5000 donations and carry a high infection risk
- massive transfusion \rightarrow plasma fibrinogen < 0.8 g/l
- **10 units** increase plasma levels ~ 1 g/l in an adult (N:1.5-4.0 g/l)

• Haemophilia B

• patients with haemophilia B (IX deficiency) are managed with commercial concentrates which contain F-VII, IX and X

• concentrates are from pooled donor sources and have a greater risk of *transmissible disease*

• this has now been reduced by heat treating, or *monoclonal* production

Prothrombinex

- contains factors II, IX and X \rightarrow ~ 250^U / 10 ml for each factor
- has low levels of VII
- prepared from human donor plasma
- presented as a freeze dried powder, requiring reconstitution with water
- screened for HBV, HBC and heat treated for HIV
- average dose ~ 1 ml/kg for acute haemorrhage, then 0.5 ml/kg each 24 hours

Von Willebrands Disease

- heterogeneous disorder of factor VIII:vWF function, three types
 - 1. type I decreased VIII:vWF *concentration*
 - 2. type II decreased VIII:vWF *function*
 - 3. type III rare, combined disorder with severe clinical symptoms

NB: all are *autosomal dominant* except for type III, *incidence* ~ 1:800-1,000

- coagulation studies vary with time and may be *normal* when tested,
 - 1. increased skin bleeding time
 - 2. normal platelet count
 - 3. may have a small increase in APTT

PLASMA & COLLOIDS

- Haemaccel
- synthetic polypeptide plasma volume expander
- 3.5% gelatin solution, with the mean MW ~ 35,000-45,000
- gelatin prepared from hydrolysis of animal collagen, cross linked by urea bridges
- plasma expansion by ~ 70% of infused volume
- renal excretion by GFR complete by 48 hours
- · useful as a synthetic plasma substitute & as an insulin carrier

•	gelatin	~ 35 g
•	Na^+	~ 145 mmol/l
•	Cl	~ 145 mmol/l
•	\mathbf{K}^{+}	~ 5.1 mmol/l
•	Ca ⁺⁺	~ 6.25 mmol/l
•	HSO ₄ /HPO ₄	~ small amounts
•	pH	~ 7.3
•	osmolality	~ 300-306 mosm/l

• advantages,

- a. cheap, safe, reliable synthetic colloid
- b. low incidence of adverse reactions
- c. renal excretion
- d. long shelf half-life ~ 8 yrs at 15°C
 - ~ 3 yrs at 30°C
- disadvantages,
 - a. allergic reactions ~ 0.146% ~ 1:650
 - skin rashes, pyrexia
 - anaphylactoid reaction ? due to *hexamethylene diisocyanate*
 - renal failure rare
 - b. short $t_{t_{2\beta}}$ ~ 1.5-6 hrs (x' ~ 3-4 hrs)
 - c. renal excretion
 - d. Ca⁺⁺ related complications

• Dextrans

- polysaccharides produced by fermentation of sucrose by Leuconostoc mesenteroides bacteria
- · these are then hydrolysed and fractionated into different molecular weights
- advantages,
 - a. stable, cheap, non-toxic
 - b. non-pyrogenic plasma substitutes & expanders

Dextran 40 Rheomacrodex

- 10% (100g/l) solution in normal saline or 5% dextrose
- average MW ~ 40,000, osmolality ~ 350-370 mosm/kg, ie. *hypertonic*
- plasma $t_{\frac{1}{2}\beta} \sim 2-3$ hrs with ~ 5% being metabolised (70 mg/kg/day)
 - i. plasma volume expansion ~ 1.5-2x infused volume
 - thromboembolic prophylaxis $\sim 38\% \downarrow DVT$
 - iii. rheological microcirculatory benefit
 - iv. CPB pump priming
- contraindications,

ii.

- i. thrombocytopaenia
- ii. coagulopathy
- iii. hypersensitivity
- problems,
 - i. hypervolaemia, circulatory overload, CCF
 - ii. anaphylactoid / anaphylactic reactions ~ 0.07% ~ 1:1500
 - reduced by Promit (0.001%)
 - iii. renal failure renal tubular obstruction
- does not interfere with blood cross-matching or Coomb's testing, cf. high MW dextran
- maximum dose ~ 30 ml/kg/day

Dextran 70Macrodex

- 6% (60g/l) solution in normal saline or 5% dextrose
- average MW ~ 70,000, osmolality ~ 335 mosm/kg, ie. mildly *hypertonic*
- plasma $t_{_{1\!\!2\!\beta}} \sim 6$ hrs with ~ 5% being metabolised (70 mg/kg/day)
- problems are the same as for dextran 40, plus, interference with *haemostasis* with large volumes
 - a. fibrinogen coating
 - b. interferes with factor VIII
 - c. decreased platelet adhesion and aggregation

NB: does not interfere with normal X-match & indirect Coomb's, only enzyme assays

SPPS NSA-5%

• heat treated plasma protein solution, was mainly albumin, now marketed as NSA-5%

- prepared from fractionated plasma from pooled human donors
- *pasteurised* to kill HBV, HCV, HIV etc.
- $\cdot \text{ shelf-life } \rightarrow$ 5 yrs at 2-8°C
 - \rightarrow 1 yr at 25°C

• Na⁺-octanoate is added to stabilise the short chain FFA and heat stabilise albumin

• acetate and citrate 1-2 mmol/l are added

• NaOH is added to bring the pH to 7.0

•	human albumin	~ 50	g/l
•	Na^+	~ 140	mmol/l
•	Cl	~ 125	mmol/l
•	octanoate	~ 8	mmol/l
•	pН	~ 7.0	
•	osmolality	~ 300	mosm/kg

• main problem was *anaphylactoid reactions* (~ 0.02%), ? heat labile *pre-kallikrein factor* • other plasma substitutes include,

a. hydroxy ethyl starch

- $t_{_{1\!\!2\!\beta}} \sim 24 \text{ hrs}$ - reactions ~ 0.08%

- b. fluosol DA
- FFP c.
- NSA-20% *cf. old HSA-conc. which was 25% d.

Cl ⁺ 0 150 513 30 109	K+ 0 0 0 0 0 0 5	Ca ⁺⁺ 0 0 0 0 0 0 0	Glu 278 0 0 222	Osm. 253 300 855 282	pH 5 5.7 5.7 3.5-5.5	Lact. 0 0 0 0 0 0	kJ/l 840 0 0 672
150 513 30	0 0 0	0 0 0 0	0 0 222	300 855	5.7 5.7	0	0
513 30	0	0	0 222	855	5.7	0	0
30	0	0	222			Ť	-
		-		282	3.5-5.5	0	672
109	5	0					072
		Ŭ	0	274	6.7	28	37.8
98	5			294	5.5	(27)	84
145	5.1	6.25	0	293	7.3	0	0
125	0	0	0		7	0	?
							?
0	0	0	0	1,098	6.2	0	0
154	0	0	0	300	4-7	0	0
	125 0 154	125 0 0 0 154 0	125 0 0 0 0 0 154 0 0	125 0 0 0 0 0 0 0 154 0 0 0	125 0 0 0 0 0 0 0 154 0 0 0	125 0 0 0 7 0 0 0 0 7 0 0 0 1,098 6.2 154 0 0 0 300 4-7	125 0 0 0 7 0 0 0 0 0 1,098 6.2 0

PLASMA EXCHANGE

i.

Rationale

- 1. removal/reduction of circulating toxic factor
 - antibodies monoclonal
 - autoantibodies
 - alloantibodies
 - ii. immune complexes
 - iii. mediators of inflammation
 - iv. chemicals
 - v. drugs
- 2. replacement of deficient plasma factors
- 3. potentiation of drug action
- 4. enhanced RES function
- 5. altered immunoregulation
- 6. potentiation of other modes of therapy

Acute Diseases

- 1. *immunoproliferative diseases* with monoclonal Ab's
 - i. hyperviscosity syndrome Waldenstrom's macroglobulinaemia
 - ii. cryoglobulinaemia
 - iii. renal failure in multiple myeloma

2. *autoimmune diseases*

- i. Goodpasture's syndrome
- ii. myasthenia gravis
- iii. GBS
- iv. SLE
- v. TTP
- vi. rapidly progressive GN
- vii. coagulation inhibitors
- viii. autoimmune haemolytic anaemia
- ix. pemphigus
- 3. plasma *factor replacement* \rightarrow FFP replacement
 - i. DIC
 - ii. SIRS
 - iii. immunodeficiency states

- 4. Reye's syndrome mechanism unknown
- 5. toxin removal
 - i. paraquat poisoning
 - ii. envenomation
- 6. rapid plasma removal & rbc replacement in severe anaemia with CCF/IHD

Complications

1. technical

iii.

- i. vascular access pneumothorax, arterial puncture
- ii. air embolism
 - acute hypo/hypervolaemia unilateral pump failure
 - incorrect setting
- iv. heat loss especially children

2. circulatory

- i. hypo/hypervolaemia need fluid balance chart, daily weight
- ii. vasovagal reactions
- iii. vasoactive reactions
- iv. immediate generalised response

3. haemostasis

- i. require heparinisation unless existing coagulopathy
- ii. altered procoagulant / anticoagulant protein levels
 - \rightarrow variable effects, haemorrhagic & thrombotic
- iii. decreased antithrombin III & altered response to heparin

4. immunology

- i. frequently pre-existing immunosuppression
- ii. reduction in immunoglobulin & complement levels with repeated exchange
- iii. bacteriacidal & opsonic properties impaired unless FFP used as replacement \rightarrow use 2 units after large or frequent exchange
- iv. risk of post-transfusion infection hepatitis

5. *metabolic effects*

- i. disequilibrium syndrome less than with haemodialysis
- ii. alterations of COP & oedema formation
- iii. altered transport & binding protein levels

HAEMOSTATIC FAILURE

Normal Coagulation

- **NB:** the "classical" division of coagulation into *intrinsic & extrinsic systems* is not applicable to humans *in vivo*,
- 1. no coagulopathy, nor disease state, is associated with deficiencies of several of the proteins of the *intrinsic system*
- 2. *thrombin* generation is via
 - i. tissue factor, factor VII, factors IX and X, plus
 - ii. an absolute requirement for *platelet phospholipid*, *VIII:C* and *V* as cofactors

• Critical Events

- 1. the binding of *von Willebrand Factor* to the exposed *subendothelium*
 - this may be deficient due to,

i. diminished levels of vWF	(vWD - type I)
-----------------------------	----------------

ii.	structural abnormality of vWF, or	(vWD - type IIa, IIb)
-----	-----------------------------------	-----------------------

- iii. abnormality of collagen
- 2. subendothelial bound vWF exposes & binds multiple glycoprotein platelet receptors (GPIb receptors)
 - the vWF-GPIb interaction is probably central to many surgical coagulopathies
 - manipulation of this event is the likely 1° role of *aprotinin*
 - this step fails when,

i.	too few platelets	$<$ 50,000 \rightarrow critical impairment of surgical haemostasis
ii.	circulation failure	demargination is seen at PCV < 20%functional dilution by blood flow
iii.	lack of GPIb	 arises during CPB due to proteolytic degradation absent from platelets stored > 3 days <i>Bernard-Soulier</i> syndrome
iv.	GPIb dysfunctional	 abnormal protein or already occupied myeloma, ITP dextran infusion

NB: the next 2 steps of haemostasis, generation of the *platelet plug*, and solidification of that plug by *coagulation*, are completely dependent upon adhesion of platelets to the site of injury

Murphy *et al.* (BJA 1993) state that the *bleeding time* is the only practicable test of this axis, although it has poor predictive value as a *screening test*, in the patient with clinically manifest coagulopathy it is a useful indicator (??)

Platelet Plug Formation

• activation of platelets occurs via *thrombin*, *ADP*, and possibly the GPIb-vWF complex

• release of procoagulants and ligands from alpha and dense granules results in further activation and platelet adhesion

• a satisfactory platelet plug will not be formed if,

- 1. there are too few platelets
- 2. they are functionally inert -storage > 3 days

- CPB

- aspirin, uraemia, alcohol

- congenitally impaired

- subsequent activation of the coagulation cascade results in the formation of *thrombin*, with the generation of *fibrin* from fibrinogen
- this self-polymerising species is then converted by X-linking of strands by $factor XIII_a$
- abnormalities of this step may be due to,
 - 1. congenital deficiencies

- haemophilia A & B

- 2. acquired deficiencies
 - i. anticoagulant therapy/overdose
 - ii. vitamin K deficiency
 - iii. liver disease, malnutrition
 - iv. complex acquired coagulopathies DIC
 - massive transfusion, dilution
 - CPB
 - liver transplantation

• Anticoagulant Mechanisms

- 1. antithrombin pathways
 - i. antithrombin III
 - ii. proteins C & S
- 2. extrinsic pathway inhibition \rightarrow VII_a-thromboplastin complex inhibitor
- 3. fibrinolytic system
 - i. tPA released by endothelial cells & incorporated into fibrin clot
 - ii. fibrinogen-bound plasminogen \rightarrow *plasmin*
 - iii. plasmin cleaves several proteins fibrinogen & fibrin
 - factor VIII:C and platelet GPIb

Routine Tests of Coagulation

1.	blee	eding time		
	i.	Simplate II	 modified Ivy technique torniquet @ 40 mmHg & standard template incision normal range < 9 <i>minutes</i>, operator dependent 	
	ii.	Duke or Ivy	- less reproducible than Simplate II	
2.	<u>plat</u>	elet count	~ 150-400 x 10 ⁹ /l	
3.	<u>thro</u>	mbin time	- normal range 14-16s	
	•	tests final conver	sion of <i>fibrinogen</i> [®] <i>fibrin</i>	
	•	bypasses intrinsi	c & extrinsic systems, and is abnormal in,	
	i.	afibrinogenaemia	, hypofibrinogenaemia, dysfibrinogenaemia	
	ii.	heparin therapy	- corrects with protamine	
	iii.		- partially corrects with protamine	
4.	inte	rnational normalise	d ratio / prothrombin time	
	•		<i>c pathway</i> , normal range ~ 13-17s	
	•		ated plasma is recalcified & brain thromboplastin added	
	•		t is measured as a ratio of control reagent	
	•	standardised control reduces inter-laboratory variation		
	•	recommended Australasian Reference Thromboplastin, ART		
	i.	VII deficiency		
	ii.	liver disease, wa	rfarin therapy, vitamin K deficiency	
5.	acti	activated partial thromboplastin time		
	•	normal range ~ 2	-	
	•	screens for coag	ulation factor deficiency, except VII & XIII	
	•	recalcified, plate	let poor citrated plasma, plus an activator & platelet substitute	
	•	varies with reage	ents used and laboratory	
	•	interpret with cli	nical findings and prothrombin time	
	i.	factor deficiency	\rightarrow corrected by the addition of normal plasma	
	ii.	factor inhibitor	\rightarrow not corrected by normal plasma	
	iii.	heparin therapy	\rightarrow therapeutic range ~ 1.5-2.5 x baseline	
6.	fibri	fibrin/fibrinogen degradation products		
	•	blood collected i	nto a tube containing thrombin & a fibrinolytic inhibitor	
	•	latex agglutination	on test against <i>fibrinogen-related Ag</i> in serum	
	•	standard FDP's d	lon't differentiate between 1° and 2° fibrinolysis	
	•	XDP's measure	D-dimer which indicates fibrinolysis after fibrin formation	
	i.	\uparrow FDP, XDP	 local lysis of fibrin, DIC malignancy, systemic infection, SIRS 	

- ↑ FDP ii. - primary fibrinolysis
- iii. normal XDP's helps exclude *pulmonary thromboembolic disease*

7. <u>fibrinogen</u> - N: 1.5-4.0 g/l

- test either based upon thrombin clotting time, heat precipitation or immunological methods
- discrepancies between functional and immunological methods found in the presence of FDP's and dysfibrinogenaemia

i.	decreased production	- hereditary a/hypo-fibrinogenaemia
----	----------------------	-------------------------------------

- liver diseasesevere malnutrition syndromes
- ii. increased consumption
- DIC
- fibrinolysis

8. <u>euglobulin lysis time</u>

- normal range > 90 minutes
- \downarrow time reflects the presence of activators of the *fibrinolytic system*
- 9. <u>thromboelastography</u>
 - functional assessment of the entire coagulation cascade & fibrinolytic system
 - results may take up to several hours
 - requires multiple samples run sequentially throughout procedure
 - frequently require treatment prior to availability of results

Common Coagulation Disorders		
APTT -	INR -	 usually acquired liver disease, oral anticoagulants, DIC - II, V, X
APTT -	INR «	 ↓ VIII:C, IX - haemophilias ↑ ATIII - heparin ↓ VIII:vWF
APTT «	INR -	 mild liver disease early in oral anticoagulant use ↓ VII - rare congenital deficiency

Acquired Coagulopathies in Surgical Patients

Predisposing Factors

- 1. sepsis
- 2. hypoxia
- 3. hypothermia
- 4. severe tissue damage
- 5. massive blood loss or prolonged hypotension
- 6. cardiopulmonary bypass CPB
- 7. pre-existing liver disease, liver transplantation
- 8. obstetric complications AFE
 - abruption
- 9. pre-existing bleeding diathesis- vWD, thrombocytopaenia

- anticoagulation, aspirin

• *Hypovolaemic Shock / Massive Transfusion*

• diagnosis is based mainly upon *clinical grounds*, with supporting laboratory data

- 2 underlying mechanisms,
 - 1. dilution of platelets and coagulation factors
 - 2. consumption 2° activation of tissue factor & tPA released from traumatised tissues
 - *NB: dilutional thrombocytopaenia* is the most frequent cause, often becoming apparent at transfusions > 1 BV and platelets < $100,000 \times 10^6$ /mm³ the platelet count *does not* determine the functional integrity of platelets

• prolongation of the OSPT and APTT in the absence of DIC is usually due to *hypofibrinogenaemia*, the presence of DIC leads to loss of other factors (V & VIII:C)

RDM states that fibrinogen not low in stored blood, \ ↓ fibrinogen = consumption / DIC
this is supported by data from Red Cross BB, virtually no loss of fibrinogen with storage of whole blood, however if transfused large quantities of packed cells then this may become significant

NB: all agree the use of prophylactic FFP or platelets in *massive transfusion*, in the absence of clinical & laboratory evidence of coagulopathy, is *not justified*

<u>Disseminated Intravascular Coagulation</u>

- non-localised activation of the coagulation and fibrinolytic systems
- trigger varies, but the universal pathology is circulating *phospholipid* \rightarrow coagulation activation
- this may be manifest primarily as a,

i.	haemorrhagic disorder	 loss of platelets & soluble clotting factors especially <i>fibrinogen</i>, V and VIII:C
ii.	thrombotic disorder	- distal gangrene & organ infarction
iii.	mixture of both	

• *heparin therapy* is based on the premise that inhibition of *thrombin* will,

- 1. reduce the consumption of fibrinogen, other clotting factors and platelets
- 2. reduce both the thrombotic tendancy and the haemorrhagic disorder
- *NB*: there have been *no trials* which support this view in several studies the heparin treated group have had a *worse outcome*
- treatment is therefore aimed at,
 - 1. correcting the underlying pathology, ie. removing circulating phospholipid, and
 - 2. replacement component therapy

• there is no compelling evidence that administration of clotting factors & platelets increases the incidence of thrombotic complications with DIC

• other treatments which may become viable include antithrombin III and protein C

Liver Transplantation

a. complex coagulopathy from procedure itself

b.	preoperative liver dysfunction	$\rightarrow \downarrow$ II, V, VII, IX, X, XI and fibrinogen
		$\rightarrow \downarrow$ plasminogen, α_1 -antiplasmin
		$\rightarrow \downarrow$ proteins C & S, antithrombin III
c.	hypersplenism	- some patients
d.	massive transfusion	- some patients

NB: a low grade DIC or *consumptive coagulopathy* frequently exists, due to decreased hepatic clearance of activated coagulation factors

• significant *fibrinolysis* may occur during the *anhepatic phase* due to,

- 1. increased release of tPA from hypoperfused distal tissues (?? why)
- 2. lack of hepatic α_1 -antiplasmin

• *aprotinin* is effective in preventing the coagulopathy with orthoptic liver transplantation

· earlier studies suggesting reduced blood-loss with antithrombin-III have not been supported

• Cardiopulmonary Bypass

• recent studies have shown large doses of *aprotinin* reduce blood-loss associated with CPB

• originally studied in the 60's & 70's with no significant effect, but using much smaller (~ 50%) doses than present studies

• Royston 1987 reported a significant reduction in blood-loss associated with CPB for repeat valve replacement procedures

• the aim of this study was to assess the effects upon postoperative pulmonary function, the results on blood-loss were unexpected

• other studies have extended these findings to patients with,

- i. septic endocarditis
- ii. recent aspirin ingestion
- detrimental effects of CPB on haemostasis include,
 - 1. platelets dysfunction / consumption
 - i. loss of membrane structure & granule contents
 - ii. generation of activation markers on the cell surface
 - 2. activation of the fibrinolytic & contact systems
 - 3. activation of granulocytes with degranulation
- the likely, not proven, site of action of aprotinin is platelet *membrane GPIb*
 - a. loss of GPIb is one of the early events during CPB which is prevented by aprotinin
 - b. GPIb contains the binding site for thrombin-induced platelet activation
 - c. enzymatic hydrolysis of GPIb may result in platelet activation
- GPIb is a transmembrane hetrodimer, readily cleaved by plasmin, elastase and calpain
- all of these are direct *platelet agonists* and are inhibited by aprotinin,
 - 1. *plasmin* activity 2° tPA or contact system activation
 - *elastase* generated from activated neutophils during CPB
 inhibition requires greater concentrations cf. plasmin
 - 3. *calpain* cysteine protease present on thrombin stimulated platelets ? also plasmin stimulated platelets
 - *NB*: inhibiton of tPA-induced plasmin on the platelet surface could account for much or all of the observed effect

<u>Ruptured Aortic Aneurysms</u>

- *mortality* is strongly associated with coagulopathy and uncontrollable haemorrhage
- of those who reach hospital the mortality ~ 21-70%, mean ~ 50%
- postoperatively, haemorrhage and MOSF are the major causes of death
- · coagulopathy per se is associated with other factors which increase mortality,
 - 1. increased time for resuscitation
 - 2. more extensive surgical procedures
 - 3. larger transfusion requirement
 - 4. renal failure
 - **NB:** however, coagulopathy itself increases risk, being due to either,
 - i. DIC
 - ii. dilution of platelets and procoagulant factors
 - iii. a combination of both

• patients presenting appear to fall into 2 groups, one with a relatively good prognosis, the other with a mortality ~ 70-100%

• Bell *et al.* (Transfusion Med.1991) in a prospective study, took admission coagulation screens on 23 consecutive acute AAA's,

- a. 6 of 13 patients with abnormal screens died
- b. 0 of 10 with normal screens died
- these findings have been supported by other studies, with 4 of 4 and 11 of 15 dying

• it *has not* been demonstrated that early correction of the coagulation abnormality in these patients will improve survival

• previous attempts to avert the coagulopathy of massive transfusion with platelets & FFP have been unsuccessful

NB: early & aggressive attempts to reverse *tissue hypoxia* probably offer the best chance of preventing the coagulopathy and improving survival in this patient group

• Fibrin Glue

• prepared as a 2-part solution of *fibrinogen* and *thrombin*

• direct application onto the bleeding site bypasses the physiological requirements for haemostasis

may delay nerve and bone repair

• other complications, viral transmission, adhesion formation and unwanted thrombosis remain theoretical

· evidence of efficacy best demonstrated in the presence of congenital or acquired disorders

• recent large prospective trial comparing fibrin with conventional topical haemostasis showed 90% success cf. 12.4%

METHODS OF HOMOLOGOUS TRANSFUSION REDUCTION

- 1. <u>reduction of blood loss</u>
 - i. surgical techniques
 - diathermy & ligature
 - limb torniquets
 - local vasoconstrictor
 - ii. anaesthetic techniques
 - regional anaesthesia
 - controlled hypotension
 - pharmacotherapy
- 2. toleration of a lower haematocrit
- 3. <u>autologous transfusion</u>
 - i. preoperative donation & autologous transfusion
 - ii. acute venesection, isovolaemic haemodilution & autologous transfusion
 - iii. intraoperative cell salvage
- 4. dedicated "homologous" transfusion

Toleration of a Lower Haematocrit

• historically a Hct < 30% has been an indication for perioperative transfusion

• O_2 carrying capacity decreases *linearly* with Hct, however physiological DO_2 may be maximal at a Hct ~ 30%

• Fortune *et al.* (J.Trauma 1987) conducted a prospective study of trauma patients managed at either a Hct \sim 30 or a Hct \sim 40

- 1. no improvement in cardiopulmonary function with a higher Hct
- 2. increased *shunt fraction* in higher group due to greater number of transfusions

• animal data suggest a *critical Hct* ~ 10%, below which cardiovascular reserve is exhausted

- Tremper (ASA 1992),
 - 1. healthy patients with good CVS function tolerate **Hct ~ 20** and below if adequately volume resuscitated
 - 2. in patients with impaired myocardial function, Hct ~ 30% may be required
 - 3. signs of CVS decompensation require assessment of need for transfusion

Controlled Hypotension

Def'n: deliberate induction of a MABP ~ 50-65 mmHg

- 1. reduction of intraoperative *blood loss*
 - first controlled study Eikenhoff & Rich 1966
 - most studies \rightarrow ~ **50%** reduction
 - variable response, some patients do not respond as expected
 - effects appear to be independent of changes in cardiac output
 - more effective than haemodilution in reducing transfusion requirement
- 2. improved *visibility* of the surgical field
 - may be better monitor than absolute pressure reduction
- *NB*: absolute pressure reduction may be less important than hypotension plus positioning & venous drainage

Indications

a.	neurosurgery	aneurysmtumour resection
b.	orthopaedic	 joint replacement bone transplant extensive back surgery
c.	oncology	- large tumours & exenteration procedures
d.	plastic surgery	large tumourshead and neck procedures
e.	ENT	middle ear surgery, rhinoplastyhead and neck tumours

f. patient refusal of transfusion & anticipated major blood-loss

Monitoring

- routine FiO₂, S_pO₂, ETCO₂, NIBP, ECG, temperature, spirometry
 IABP * *radial* not dorsalis pedis

 inaccuracies at low MABP with vasodilatation
- 3. $CVP / PAOP \propto$ estimated blood loss & presence of CVS disease
- 4. mixed venous P_{vO2} where higher doses of SNP used

5. investigational

- i. EEG, processed EEG, SSEP's
- ii. gastric mucosal pH

Methods of Hypotension

- 1. controlled haemorrhage
- 2. regional anaesthesia
- 3. inhalational anaesthetics
- 4. vasodilators
 - i. nitrovasodilators SNP, GTN, hydrallazine
 - ii. ganglionic blocking agents trimethaphan

- α , α/β

- iii. adrenergic blocking agents
- iv. adenosine
- v. PGE₁
- vi. calcium channel blockers & Mg⁺⁺

5. central α_2 -agonists - clonidine, dexmedetomidine

• Organ System Effects

NB: end-organ effects depend upon,

- i. the *method* of hypotension (hypovolaemia $\rightarrow \downarrow$ perfusion)
- ii. the *duration* & *magnitude* of hypotension
- iii. preexisting end-organ dysfunction
- 1. <u>CNS</u>

• assessed by 133 Xe clearance, EEG changes, jugular venous P_{v02}

no permanent changes in cerebral function

- current rationale for lower limit for MABP ~ 50-65 mmHg based upon the lower limit of *cerebral autoregulation*
- curve shifted to the right in chronic hypertensive patients
- possibly some advantage using SNP at lower levels of MABP

better preservation of CBF and BBB function

- deep isoflurane anaesthesia results in better preservation of cellular P_{02} values
- at MAP ~ 50 mmHg, $CMRO_2$ is favourably influenced

 \rightarrow

- *all* agents may result in increased CBV & ICP, thus should not be used prior to opening of the cranium, unless ICP is monitored
- 2. <u>Respiratory</u>
 - i. \uparrow dead space $\propto \downarrow$ MAP, \uparrow mean P_{AW}, \uparrow head-up tilt
 - prevented by maintenance of CO with *volume loading*
 - ii. \uparrow shunt $\propto \downarrow$ HPV
 - effects are greatest in *normal* subjects, cf. CAL patients \rightarrow no change
 - SNP > GTN >> isoflurane
 - controlled ventilation preferred

3. <u>CVS</u>

- deep halothane was associated with $\downarrow \downarrow CO \rightarrow SNP$, GTN, trimethaphan
- IV agents *are not* associated with regional ischaemia in the absence of *severe stenosis* \rightarrow > 40% reduction in resting CBF
- trimethaphan may offer some advantage in the presence of severe IHD
- *isolflurane* $\rightarrow \qquad \downarrow$ SVR & minimal change in CO
- Reiz *et al.* 1983 \rightarrow isoflurane induced coronary steal
- retrospective & outcome studies show no significance of "steal" during CABG, but ? no direct data relating induced hypotension doses
- further, episodes of clinical "steal" have usually been ascribed to concurrent hypotension, (Merin, Adv.Anesth.1989)
- *adenosine* also appears effective & safe but requires further testing in the presence of IHD
- 4. <u>Renal</u>
 - RBF/GFR decrease but readily return following hypotension
 - no adverse effects & renal dysfunction is infrequently seen
- 5. <u>Gastrointestinal</u>
 - no portal venous autoregulation & minimal hepatic autoregulation
 - no changes in LFT's at MABP ~ 50-65 mmHg
 - severe changes and centrilobular necrosis seen at MABP < 25 mmHg

6. <u>Eye</u>

- uveal and retinal arterial supplies
- no precapillary sphincters in the uveal circulation, \ *pressure passive* flow
- changes in MAP directly transmitted to IOP
- transient visual impairment & rarely blindness may result

Contraindications

- 1. longstanding uncorrected hypertension
- 2. major end-organ dysfunction
 - i. cerebrovascular disease
 - ii. severe ischaemic heart disease
 - iii. hepatic or renal disease
- 3. peripheral vascular disease
- 4. uncorrected hypovolaemia
- 5. severe anaemia
- *NB*: most of these are relative contraindications, depending upon severity, eg. hypotension via GTN is used in the R_x of severe angina !

Complications

1.	mortality	~ 2-10:10,000
		~ 0.01-0.007% directly related to anaesthesia ~ same as for other general anaesthesia (USA figures)
2.	CNS	 dizziness, prolonged awakening cerebral venous thrombosis cerebral, cerebellar infarction
2	. 1.1 1	

- 3. retinal thrombosis
- 4. renal dysfunction, ARF
- 5. postoperative bleeding into the operative site

Pharmacological Reduction in Blood-Loss

- 1. synthetic inhibitors of fibrinolysis epsilon aminocaproic acid
 - tranexamic acid (~ 7x as potent)
 - bind to the same site & inhibit *plasminogen* activity
 - demonstrated to reduce blood loss post-CABG ~ 10-20%
 - possible fatal *thrombotic complications*, but none seen in CABG studies
 - contraindicated in suspected DIC or with thrombotic tendency

2. *aprotinin*

- naturally occurring *protease inhibitor* \rightarrow plasmin, trypsin, kallikrein
- high dose therapy may also have a platelet protective effect during bypass
- exact doses / timing of therapy uncertain, but must be given pre-bypass
- substantially increases the ACT, \land require ACT > 750s on bypass (N > 400)
- one study showed reduction from ~ 1500 ml \rightarrow 300 ml
- 3. *DDAVP*
 - synthetic anologue **1-deamino-8-***d***-arginine vasopressin** (ADH)
 - increases VIII:vWF and VIII:C activity
 - nonspecific increase in platelet activity
 - early reports showed reduced blood loss post-CABG, later reports *no change*
 - indicated for *haemophilia* A and type I von Willebrand's disease
 - it is not effective in types II & III
 - dose 0.3-0.4 μ g/kg ampoules 4.0 μ g/ml

4. *epogen* - recombinant DNA *erythropoietin*

- i. renal failure and other chronic anaemia states
- ii. in combination with preoperative autologous donation programmes
- efficacy in perioperative haemorrhage requires evaluation
- significant elevation of reticulocyte count not evident for ~ 1 week
- very expensive & major side effect is *hypertension* ~ 50%

Autologous Transfusion

- 1. preoperative donation & storage
- 2. acute preoperative phlebotomy & haemodilution
- 3. perioperative salvage from the surgical site

Preoperative Donation & Storage

- 1. minimisation of transfusion reactions excluding *clerical errors*
- 2. minimal disease transmission bacteraemia is an absolute C/I
- 3. stimulation of *erythropoiesis* hidden benefit
- 4. long-term frozen storage in patients with unusual antibodies

• requires ~ 72 hours to normalise *plasma proteins*, therefore last donation should be at least 3 days prior to surgery

• all patients should receive iron supplements

- "high risk" patients are not necessarily unable to donate
 - *NB:* it is *not recommended* to use a unit of autologous blood unless transfusion actually indicated, due to small incidence of clerical error etc.

• Acute Preoperative Phlebotomy & Haemodilution

- fast, easy and inexpensive
- less planning than pre-donation
- limited number of units, with decreasing Hct in each
- not suitable for patients anaemic preoperatively
- will also dilute platelets and coagulation factors, therefore avoid with coagulopathy
- volume replacement either with crystalloid (3:1) or colloid
- the estimated withdrawal volume is given by the estimated blood volume and Hct,

$$V_{W} \sim EBV \times \underline{H_{I} - H_{E}}_{H_{AV}}$$

where $H_{I} = initial Hct, H_{E} = endpoint and H_{AV} = the average$

• blood is collected into standard anticoagulant bags, requiring thorough mixing

- may be kept safely,
 - a. at room temperature ~ 6 hrs
 - b. refrigerated ~ 24 hrs

Intraoperative Blood Salvage

- 1. semicontinuous flow centrifuge \rightarrow washed cells with a Hct ~ 60-70%
- 2. cannister collection & dispossable liner
- 3. single use, self-contained revision

NB: 2 & 3 \rightarrow unwashed cells, little data re Hct

• none of these techniques will have functioning *platelets* or *coagulation factors*

• all are relatively contraindicated in the presence of malignant cell or bacterial contamination

Red Blood Cell Substitutes

i.

- 1. <u>stroma-free haemoglobin</u> SFH
 - free Hb \rightarrow P₅₀ ~ 12-14 mmHg
 - prepared by filtration of outdated, lysed rbc's
 - small size of free α/β chains results in ready *glomerular filtration*
 - plasma half-life ~ 3-4 hours, ∴limited use
 - ii. *modified rDNA Hb*
 - 1 amino-acid change on α -chains maintains tetrameric structure
 - longer plasma half-life
 - $P_{50} \sim 32 \text{ mmHg}$
 - a solution of 7 gm% has an oncotic pressure ~ 25 mmHg
- 2. <u>perfluorochemical emulsions</u> PFC
 - inert, immiscible liquids with an O_2 solubility ~ 20x normal plasma
 - emulsified forming suspensions $\sim 0.1 \,\mu$ m, but problems with stability
 - content *linear* with P_{aO2} therefore require high FiO₂
 - fluorocrits ~ 2% with a $P_{aO2} \sim 500 \text{ mmHg} \rightarrow C_{aO2} \sim 1.5 \text{ ml}\%$
 - "Fluosol DA 20%" trialed in Japan
- *NB*: both of these solutions are cleared by the reticuloendothelial system, and have effective plasma half-lives of ~ 24 hours

THE ANAEMIAS

Classification

- 1. abnormal *iron metabolism*
 - i. iron deficiency anaemia
 - ii. anaemias with 2° iron loading
- sideroblastic anaemias
- transfusional haemochromatosis
- 2. *megaloblastic* anaemias
 - i. cobalamin deficiency
 - ii. folate deficiency
 - iii. other causes
- 3. anaemia of *chronic disease*
- 4. *haemolytic* anaemias
- 5. anaemias with *abnormal haemoglobins*
- 6. primary *marrow* failure & the myeloproliferative disorders

Iron Deficiency Anaemias

1.

- increased utilisation postnatal & adolescent growth spurts
- 2. physiological iron loss menstruation & pregnancy
- 3. pathological iron loss
 - i. GIT or GUS blood-loss
 - ii. pulmonary haemosiderosis
 - iii. intravascular haemolysis
- 4. decreased iron intake
 - i. cereal-rich, meat-poor diets, food faddists
 - ii. elderly & indigent persons
 - iii. malabsorption syndromes, post-gastrectomy

Sideroblastic Anaemias

- 1. hereditary or congenital sideroblastic anaemia
- 2. acquired sideroblastic anaemia
 - i. drugs / toxins alcohol, lead, isoniazid, chloramphenacol
 - ii. neoplasia & inflammatory disease
 - iii. alkalating agent chemotherapy cyclophosphamide

Megaloblastic Anaemias

1.	cobalamin deficiency		
	i.	inadequate intake	- vegetarians, rarely
	ii.	malabsorption	
		• \downarrow intrinsic factor	- pernicious anaemia
			- post-gastrectomy
			- congenital absence or dysfunction (rare)
		 terminal ileal disease 	- tropical sprue, non-tropical sprue
			- regional enteritis
			- surgical resection
			- neoplasms & granulomatous disorders (rare)
		• competition for B_{12}	 selective B₁₂ malabsorption tapeworm
		\mathbf{D}_{12}	- bacteria, blind loop syndrome
		• drugs	- PAS, cholchicine, neomycin
		• other	- N_2O , transcobalamin II deficiency
2.	folio		· · · · · · · · · · · · · · · · · · ·
Ζ.	jouc i.	<i>acid deficiency</i> inadequate intake	- alcoholics, teenagers (fads), some infants
	ı. ii.	-	— • • • •
	11.	increased requirements	infancy, pregnancymalignancy
			- increased erythropoiesis (chronic haemolysis)
			- chronic exfoliative skin disorders
			- haemodialysis
	iii.	malabsorption	
		 intestinal disease 	- tropical sprue, non-tropical sprue
		• drugs	- phenytoin, ethanol, barbiturates
	iv.	impaired metabolism	
		• \downarrow dihydrofolate reductase	- methotrexate
			- pyrimethamine, triamterene, pentamidine, etc.
		 alcohol 	
	congenital enzyme abnormalities		nalities
3. <i>other causes</i>i. drugs which impair DNA metabolism		r causes	
		drugs which impair DNA met	tabolism
		 nitrous oxide 	- \downarrow methionine synthase, <i>10-formyl-THF</i>
		• purine antagonists	- 6-mercaptopurine, azathioprine
		• pyrimidine antagonists	- 5-FU, cytosine arabinoside
		 miscellaneous 	- acyclovir, zidovudine, hydroxyurea
	ii.	metabolic disorders	- rare
	iii.	unknown aetiology	

- refractory megaloblastic anaemia
- Di Guglielmo's syndrome (atypical acute non-lymphocytic leukaemia)
- congenital dyserythropoietic anaemia

• Anaemia of Chronic Disease

- 1. chronic inflammatory disorders
 - i. infection
 - ii. connective tissue disorders
 - iii. malignancy
- 2. uraemia
- 3. endocrine failure hypothyroidism, Addison's
 - hypogonadism, panhypopituitarism
- 4. hepatic failure

Haemolytic Anaemias

- 1. extrinsic abnormalities
 - i. splenomegaly
 - ii. red cell antibodies *immunohaemolytic anaemias* (see below)
 - iii. mechanical trauma

• turbulence

• impact

- march haematuria, CPB pump
- artificial valves, calcific stenoses
- microangiopathic HUS, pre-eclampsia, DIC, TTP
- iv. direct toxic effect malaria, clostridial infection
- 2. membrane abnormalities

•

- i. spur cell anaemia
- ii. paroxysmal nocturnal haemoglobinuria
- iii. hereditary spherocytosis
- iv. rare causes hereditary elliptocytosis, stomatcytosis
- 3. intrinsic red cell abnormalities
 - i. enzyme deficiency
 - Embden-Meyerhof (glycolytic) pyruvate kinase, hexokinase
 - hexose-monophosphate shunt G6PD
 - ii. haemoglobinopathies
 - iii. Thalassaemias

Immunohaemolytic Anaemias

- 1. *warm antibody* immunohaemolytic anaemia
 - i. idiopathic
 - ii. lymphomas Hodgkin's, non-Hodgkin's lymphoma - chronic lymphocytic leukaemia
 - iii. SLE
 - iv. tumours rarely
 - v. drugs
 - α -methyldopa type \rightarrow warm Ab type
 - penicillin type \rightarrow hapten mediated
 - quinidine type \rightarrow "innocent bystander"

2. *cold antibody* immunohaemolytic anaemia

- i. cold agglutinin disease
 - acute mycoplasma infection
 - infectious mononucleosis
 - chronic idiopathic
 - lymphoma
- ii. paroxysmal cold haemoglobinuria

Abnormal Haemoglobins

- 1. sickle syndromes
 - i. sickle cell trait AS
 - ii. sickle cell anaemia SS
 - iii. double heterozygous states
 - sickle β-Thalassaemia
 - sickle C disease SC
 - sickle D disease SD
- 2. unstable Hb variants
 - congenital Heinz body haemolytic anaemia
- 3. variants with high O_2 affinity
 - familial erythrocytosis
- 4. M haemoglobins familial cyanosis

Myeloproliferative Disorders

1. chronic myeloid leukaemia

- massive splenomegaly & leukocytosis ~ 50,000 200,000
- chronic, relatively indolent, phase & the blastic phase which is rapidly fatal
- characteristic chromosomal abnormality, *Philadelphia chromosome*

2. polycythaemia rubra vera

- increased rbc mass with \uparrow wbc's and platelets ~ 50%
- pruritis, plethoric facies, retinal vein engorgement, symptoms of impaired cerebral blood flow
- accelerated atherosclerotic and thrombotic disease, or haemorrhagic disease
- splenomegaly ~ 75%

3. myelofibrosis

- fibrosis of bone marrow and extramedullary erythropoiesis, mainly the liver and spleen \rightarrow hepato-splenomegaly
- thrombotic tendency, haemorrhage is uncommon

4. essential thrombocytosis thrombocythaemia

- excessive megakaryocyte proliferation, with platelets $\geq 800,000$
- symptoms resemble PRV, with haemorrhagic or thrombotic complications

ANAPHYLAXIS

Def'n: anaphylaxis: symptom complex following exposure of a *sensitised* individual to an antigen, produced by immediate hypersensitivity or a type I hypersensitivity reaction, associated with IgE mediated mast cell degranulation

anaphylactoid reactions: are indistinguishable from true anaphylaxis, however the immune nature of the reaction is either unknown, or not due to a type I hypersensitivity reaction

\ *immediate generalised reaction* may be a better term

Aetiology

- 1. anaphylaxis
 - i. prior sensitisation to an antigen, either alone or in combination with a hapten
 - ii. synthesis of antigen specific IgE, which attaches to mast cells & basophils
 - iii. subsequent exposure
 - mast cell & basophil degranulation
 - release of *histamine* + SRS-A (LT C_4 , D_4 , E_4) ECF-A, NCF PAF, heparin

 \rightarrow

2. anaphylactoid reactions

- i. exposure & combination of antigen with **IgG**, **IgM** \pm a hapten
- ii. activation of *complement* via the classical pathway (C_{1q}, C_4, C_2)
- iii. formation of *anaphylatoxins* $-C_{3a}, C_{5a}$
 - mast cell & basophil degranulation \rightarrow *histamine*, SRSA, etc.
- 3. direct release of histamine

Common Antigens

- 1. blood & blood products
- 2. XRay contrast media
- 3. antibiotics
- 4. STP, muscle relaxants
- 5. sulphonamides

Presentation

NB: variable latent period, but usually within 30 minutes of exposure

- 1. respiratory
 - dyspnoea, chest tightness
 - stridor, laryngeal obstruction
 - **bronchospasm** $(*LTD_4)$
 - raised peak P_{AW} , \uparrow slope of alveolar plateau, \downarrow ETCO₂
 - pulmonary oedema
- 2. cardiovascular
 - *hypotension*, tachycardia ± arrhythmias
 - most common and may be sole finding
 - cardiovascular "collapse"
 - pulmonary oedema is a common finding at autopsy
 - ? existence of "myocardial depressant factors"
- 3. cutaneous
 - erythematous blush, generalised urticaria
 - angioedema
 - conjunctival ingection & chemosis
 - pallor & cyanosis
- 4. gastrointestinal
 - nausea, vomiting, abdominal cramps & diarrhoea

Management

- NB: multiple actions simultaneously / conclude surgery / call for experienced help
- 1. cease administration of the likely antigen
- 2. maintain oxygenation
 - i. maximal O_2 via face mask
 - ii. IPPV via bag/mask
 - iii. intubate & 100% O₂ ASAP *cease anaesthetic agents

3. support circulation

- i. CPR if no output
- ii. *adrenaline*
 - inhibits mast cell degranulation, \uparrow SVR, venous return, \downarrow bronchospasm
 - hypotension: 10-50 µg boluses prn or infusion if available
 - collapse: 0.5-1.0 mg stat, then infusion
- iii. volume expansion*"whatever is available"
 - Haemaccel, NSA-5%, CSL, N.saline
 - CVP monitoring once situation under adequate control

4.	manage <i>bronchospasm</i>				
	i.	maximise FiO ₂			
	ii.	slow RR, high E:I ratio ventilation			
	iii.	adrenaline	~ 0.5 mg IM if no access		
			- IV dependent upon MAP & ECG monitoring		
	iv.	aerosol bronchodilators			
	v.	aminophylline	 additive effects with adrenaline 5-6 mg/kg loading dose over 30-60 		
	vi.	suction ETT			
	vii.	volatile agents	- if isolated bronchospasm with maintenance of MAP		
5.	monitoring				
	i.	ECG, NIBP, IABP when possible			
	ii.	S_pO_2 , ETCO ₂ , AGA's			
	iii.	CUD, CVP	\pm PAOP		
	iv.	transfer to ICU			
6.	othe	er therapy			
	i.	antihistamines	 no benefit in acute episode H₂ blockers contraindicated acutely may be useful for ongoing angioedema require both H₁ & H₂ for prophylaxis 		
	ii.	sedation	- if intubated & resuscitation successful		
	iii.	steroids	 marginal benefit in acute episode may be useful for ongoing bronchospasm & angioedema required in addition to antihistamines for prophylaxis 		
7.	followup				
	i.	blood specimen			
		• <i>tryptase</i> level	- released from mast-cells/basophils, stable in plasma		

- complement levels decreased with anaphylactoid responses
- re-type screen & cross-match if due to blood reaction

ii. return unused blood products to the blood bank

- iii. intradermal *skin testing*
 - histamine releasing agents ~ 1:10,000
 - non-histamine releasing agents ~ 1:1,000
 - graded reponses of limited value, use *absolute* result
- iv. medic-alert bracelet & accompanying letter(s)

Mechanisms of Immunological Injury				
Mechanism	Pathophysiology	Disease types		
Type I • immediate hypersensitivity • IgE mediated	 basophil & mast cell degranulation histamine, SRSA, ECFA, NCF immediated wheal & flare 	 anaphylaxis atopy		
Type II • cell cytotoxicity • IgG, IgM mediated	 direct phagocytosis or cell lysis activation of complement, classical tissue deposition of complement 	blood transfusionsGoodpasteur's syndromeautoimmune cytopaenias		
Type III • immune complex • IgG, IgM, IgA mediated	 tissue deposition of Ag-Ab complexes accumulation of PMN's, macrophages & complement 	 SLE serum sickness necrotising vasculitis 		
Type IV • delayed hypersensitivity • T-cell mediated	 T-cell induced mononuclear cell accumulation release of lymphokines & monokines often with granuloma formation 	 TB, sarcoid Wegener's granulomatosis granulomatous vasculitis 		