GENERAL ANAESTHESIA

Criterea for Intubation

- 1. Maintenance of a clear airway
- 2. Airway protection gastrointestinal contents
 - blood or secretions
- 3. Application of mechanical ventilation
- 4. Maintenance of oxygenation control of F_1O_2
 - application of PEEP

5. Pulmonary toilet

Criteria for Extubation General

- 1. Absence of threat of airway soiling, or Ability to protect the airway
- 2. Adequate spontaneous ventilation
- 3. Adequate oxygenation
- 4. Ability to clear secretions

Criteria for Extubation Specific

1. $F_1O_2 < 50\%$	
--------------------	--

- 2. PEEP ≤ 5 cmH₂O
- 3. $PaO_2 > 60$ mmHg
- 4. $PaCO_2 < 50$ mmHg
- 5. IMV ≤ 4 bpm
- 6. VC ≥ 30 ml/kg
- 7. SRR ≤ 30 bpm
- 8. a resolving CXR (ie. no new findings)
- 9. no other major organ system failure or instability

Rapid Sequence Induction

■ Criterea

1. reasonable certainty that <i>intubation</i> will be possible, <i>if not</i> \rightarrow			on will be possible, if not \rightarrow		
	i.	awake intubation under loca	l anaesthesia		
	ii.	awake tracheostomy under l	ocal anaesthesia		
2.	risk	risk of <i>gastric aspiration</i>			
	i.	full stomach	 per fasting guidelines "presumed" due to uncertainty 		
	ii.	trauma			
	iii.	intra-abdominal pathology	 intestinal obstruction inflammation gastric paresis (drugs, pain, diabetes, uraemia) peptic ulcer disease 		
	iv.	oesophageal disease	- symptomatic reflux - motility disorders		
	v.	pregnancy			
	vi.	obesity			
3.	risk	of <i>other aspiration</i>	- blood or secretions		
4.	abnormal facial anatomy		 where mask ventilation is impractical trauma, craniofacial abnormalities 		

Performance

1.	denitrogenation with 100% O_2 for 3 minutes, or at least 4 vital capacity breaths (Gold <i>et al.</i>)					
2.	admi	nistration of a sleep dose of thiopentone	~ 4 mg/kg			
3.	application of cricoid pressure <i>as</i> consciousness is lost, maintained until cuff inflation and confirmation of ETT placement					
4.	rapid	establishment of paralysis				
	i.	suxamethonium 1.5 mg/kg, unless contraindicated				
	ii.	vecuronium or atracurium using the "prin	ning principle"			
	iii.	? rocuronium when available				
5.	endotracheal intubation & confirmation,					
	i.	direct vision if possible				
	ii.	$ETCO_2$ for ≥ 6 breaths if available				
	iii.	breath sounds & chest movement	* unreliable			
	iv.	SpO ₂	* changes occur too late			
6.	confi	rmation of a small leak in children				

Complications of Intubation

Laryngoscopy Mechanical

1.	damage to teeth
----	-----------------

- 2. damage to lips, gums or other soft tissues
- 3. coughing, laryngospasm, bronchospasm[§]
- 4. vomiting \pm aspiration[§] [§]with light anaesthesia
- 5. cervical injury *preexisting disease
- 6. TMJ dislocation

Laryngoscopy Physiological

1.	cardiovascular responses	 hypertension, tachycardia, arrhythmias bradycardias in children myocardial ischaemia
2.	respiratory responses	 coughing, laryngospasm, bronchospasm 2x increase in resistance <i>above</i> R_{ETT}
3.	raised ICP	 - increased CBF ∝ CMRO₂ - raised MAP - decreased venous drainage with coughing
4.	hypoxaemia / hyperbarbia	- difficult or prolonged attempts

Tracheal Intubation

1.	failed intubation	
2.	oesophageal intubation	
3.	mechanical obstruction	 kinking, cuff overinflation/herniation bevel directed into tracheal wall blood, mucus, foreign body endobronchial intubation
4.	mechanical damage	pharynx, larynx, cords, trachea, oesophagusblunt injury, dissection, perforationETT or stylet
5	and obvious of inturbation	

5. endobronchial intubation

Prolonged Intubation

1. laryngeal complications

- pressure at cricoid cartilage & vocal processes of the arytenoids (cords) ٠
- movement during flexion/extension, swallowing, "coughing"
- i. acute post-extubation oedema, hoarseness \pm laryngospasm
- ii. granuloma formation & perisitent hoarseness
- iii. laryngeal stenosis
- iv. swallowing disorders

2. tracheal complications

- i. tracheomalacia \pm perforation
- ii. tracheo-oesophageal fistula
- iii. tracheal stenosis

3. *infective complications*

- i. local infection - retrocricoid abscess
- tracheitis / nosocomial pneumonia ii.
- iii. microaspiration / lung abscess
- iv. sinusitis / otitis
- septicaemia v.

4. dislodgement

dry gases

5.	obstruction	 endobronchial misplacement 		
		secretions blood kinking foreign		

- secretions, blood, kinking, foreign body
- cuff overinflation, herniation
 - dehydration, hypothermia
- thickened secretions, inspissation
- inspissation, segmental / subsegmental collapse 7. loss of cough - infection, V/Q mismatch

Nasal Intubation

6.

1.	failure to pass a tube	
2.	haemorrhage	 coagulopathy pregnancy polyps, adenoids, other local pathology
3.	bacteraemia	CNS spread of infectionendocarditis risk
4	membrane necrosis / u	lceration [§]

- 4. membrane necrosis / ulceration
- sinusitis \pm otitis[§] 5. [§]usually long-term intubation
- 6. basilar skull perforation *usually base of skull #

• Complications of Extubation

1.	failure \rightarrow	 hypoxaemia / hyperbarbia exhaustion
2.	respiratory responses	- coughing, laryngospasm, bronchospasm - vomiting \pm aspiration
3.	cardiovascular responses	 hypertension, tachycardia, arrhythmias bradycardias in children myocardial ischaemia

Laryngeal Mask

Indications

- 1. spontaneous ventilation anaesthesia
 - i. convenience
 - ii. airway difficult by other means
 - iii. measurement of RR, V_E , ETCO₂
 - iv. use of a HME/bacterial filter
- 2. as an aid to intubation
 - i. passage of a bougie through the mask
 - ii. passage of a 6.0 mm uncut ETT through the mask
 - iii. passage of a fibreoptic bronchoscope
- 3. as a failsafe in difficult intubation drills
 - i. can't intubate & anaesthesia must procede
 - ii. can't intubate & can't ventilate
 - iii. prone extubation interim oxygenation

Limitations / Contraindications

- 1. *does not* protect the airway
- 2. causes pharyngeal discomfort in most patients
- 3. insertion may result in pharyngeal trauma
- 4. limited use for IPPV
 - gentle IPPV described, but risks of gastric distension & regurgitation - not recommended
 - ii. high resistance/poor compliance respiratory systems absolute C/I
- 5. failure to pass

i.

6. obstruction of the upper airway

Assessment of Airway

- 1. *history*
 - i. letters etc. re previous difficult intubation
 - ii. previous anaesthetic records

2. *examination* \rightarrow "MOUTHS"

- i. **M**andible
 - thyromental distance > 6 cm, 3 "finger-breadths"
 - alveolar-mental distance < 2 cm
 - "receeding", length
 - subluxation
 - obtuse mandibular angles
- ii. Opening
 - incisor gap > 4 cm
- iii. Uvula
 - Mallampati grades I-IV as per Samsoon & Young
- iv. Teeth
 - prominent upper incisors, "buck" teeth
 - solitary incisors, "nuisance" teeth
 - loose teeth
 - crowns, caps, plates & dentures
- v. Head & Neck
 - flexion, extension, lateral flexion & rotation
 - · tracheal position, neck masses, upper mediastinal masses
- vi. Silhouette
 - obesity
 - Dowager's hump
 - "no neck"
 - craniofacial anomalies

3. *investigations*

- i. direct or indirect awake laryngoscopy
- ii. fluoroscopy
- iii. XRays (Bellhouse)
 - mediastinal masses & tracheal position / diameter
 - effective mandibular length
 - atlanto-occipital distance & C₁-C₂ interspace
 - anterior-posterior thickness of the tongue
- iv. CT scan
 - tracheal deviation, luminal diameter
 - intrathoracic trachea, mediastinal masses

Therapeutic Applications of Ventilation

- 1. general anaesthesia with muscle relaxation
- 2. cardiopulmonary resuscitation
 - i. respiratory / cardiac arrest
 - ii. severe LV failure / acute pulmonary oedema
- 3. acute / chronic respiratory failure

4.

i.	maintenance of adequate gas exchange	\rightarrow	parenchymal failure
	minimics work of breathing	、	numn failura

11.	minimise work of breathing	\rightarrow	pump failure
man	nipulation of CO_2 excretion		

	i.	induced hypocapnia	 metabolic / respiratory acidosis raised ICP acute head injury
	ii.	$\propto \uparrow CO_2$ production	- MH, thyroid storm
	iii.	manipulation of PVR	 pulmonary hypertension ± cor pulmonale CHD with R→L shunt transitional circulation in the newborn
5.	"pro	phylactic" ventilation	 severe flail chest major, chest & upper abdominal surgery unstable patients for transport

Guidelines for Institution of Ventilatory Support		
Factor	Unacceptable Limit Normal Values	
<u>Mechanical</u> respiratory rate tidal volume vital capacity peak inspiratory pressure	> 35 bpm < 5 ml/kg < 15 ml/kg < 25 cmH ₂ O	10-20 bpm 5-7 ml/kg 65-75 ml/kg 75-100 cmH ₂ O
$\frac{Oxygention}{P_aO_2} (F_IO_2 > 0.6) \\ P_{A-a}O_2$	< 60 mmHg > 350 mmHg	75-100 $F_1O_2 = 0.21$ 25-65 $F_1O_2 = 1.0$
$\frac{\text{Ventilation}}{P_{a}CO_{2}} V_{D}/V_{T}$	> 60 mmHg > 0.6	35-45 mmHg 0.3

Hypoxia

- *Def'n:* a disorder of oxygen metabolism, characterised by failure of mitochondrial *oxidative phosphorylation*, due either to,
 - i. an insufficient mitochondrial P₀₂
 - ii. a metabolic block of oxygen utilisation within the mitochondria

Medical Classification

- a. *hypoxaemic* hypoxia
- b. *anaemic* hypoxia
- c. stagnant, or *cardiogenic* hypoxia
- d. *histotoxic* hypoxia

<i>NB</i> :	not well suited to anaesthesia / ICU	\rightarrow	causes are often <i>multifactorial</i>
	∴classify by	\rightarrow	Supply / Demand

Decreased Supply

1.	anaes	sthetic machine	 hypoxic mixture, O₂ delivery < VO₂ pipeline error, crossed lines to/within machine low pressure leak, blockage, rotameter configuration line failure / empty cylinders
2.	anaes	sthetic circuit	leak, blockage, entrainment, valve malfunctionmisconnection
3.	<u>venti</u>	<u>lator</u>	 - V_T / V_D too low → inadequate V_A - incorrect settings, failure, leak - overpressure, barotrauma
4.	<u>ETT</u>		 - oesophageal intubation, RMB intubation - cuff failure, herniation - obstruction, intraluminal / extraluminal
5.	pulm	<u>onary</u>	
	i.	ventilation	- \overline{V}_A :obstruction, $\uparrow R_{AW}$, FRC < CC
	ii.	circulation	$\mathbf{Q}_{s}/\mathbf{Q}_{T}$: congenital, age, smoking, drugs, posture - hypovolaemia: \downarrow zone III, $\uparrow V_{D}^{Alv}$, $\uparrow P_{AW}$ - embolism: air, CO ₂ , clot, AFE - RVF: $1^{\circ}/2^{\circ}$ failure
	iii.	alveolar membrai	 alveolar-capillary block infection, oedema, fibrosis, infiltration, contusion

6.	<u>cardiovascular</u>		
	i.	1° pump failure	- AMI: RVF \downarrow zone III, $\uparrow P_{AW}$ effects
			$LVF \downarrow DO_2, \downarrow P_{VO2}$
			- valvular heart disease
			- arrhythmia, contusion, post-CABG
		••	- infection, infiltration, inflammation
	ii.	2° pump failure	- hypovolaemia: $\uparrow V_D^{Alv}$, \downarrow zone III, $\uparrow P_{AW}$ effects- RVF:pulmonary hypertension, PTE, AFE- LVF:systemic hypertension, anaemia- tamponade:blood, effusion, constriction, tumour- metabolic, <i>hypoxaemia</i> , post-CABG
	iii.	$R \rightarrow L$ shunt	- ASD/VSD + Eisenmenger's, cor pulmonale - CHD
			- severe CAL, hepatic failure
			- Osler-Rendu-Weber syndrome, AV malformation
	iv.	circulatory failure \rightarrow	 \$\Lambda\$ systemic shunt, failure of distribution SIRS (sepsis syndrome), MOSF, post-CABG DIC, microvascular angiopathy anaphylaxis, toxins, metabolic / nutritional spinal shock, drugs (vasodilators)
	v.	local vasculopathy	- coronary artery disease
			- cerebrovascular disease
			- peripheral vascular disease, etc.
	vi.	HbO ₂ failure	
		• anaemia	$-\downarrow C_{a02}, \downarrow P_{v02}, \uparrow LVF/IHD$
		 left shift 	- \uparrow pH, \downarrow P _{aCO2} , T., 2,3-DPG (mostly theoretical)
		 dyshaemoglobin 	- MetHb, COHb, SulphHb
		haemoglobinopathy	- HbS, thallasaemia
7.	<u>tissu</u>	e/cellular	
	i.	interstitial	- oedema, infection, infiltration
	ii.	cellular/mitochondrial b	block \rightarrow causes of <i>lactic acidosis</i> type II
		• drug induced	- phenformin, metformin, fructose
			 ethanol, methanol, sorbitol, xylol salicylates cyanide
		• enzyme deficiency	- G6PD, F-1,6-diphosphatase deficiency
		• other	- septicaemia - diabetes
			- renal failure, liver failure, pancreatitis
			- tumour (lymphoma, leukaemia)
			- thiamine deficiency

Increased Demand

- 1. exercise, sexual activity
- 2. pregnancy
- 3. paediatrics
- 4. sepsis & SIRS
- 5. hyperthermia
- 6. malignant hyperthermia
- 7. thyrotoxicosis, thyroid storm
- *NB:* increased demand *per se* is infrequently a cause of hypoxia, (except MH), unless combined with decreased supply

HYPOXIA			
Cause	P _{aCO2}	δP_{A-aO2}	δP _{aO2} μ 100%
low F _I O ₂	low	low	large increase
hypoventilation	high	normal	large increase
V/Q mismatch	normal	high	large increase
low DO ₂	normal	high	increase
$R \rightarrow L$ shunt	normal	very high	small increase

Smoking & Anaesthesia

Policy Document P12 (1991)

Adverse Effects

1. carboxyhaemoglobin

- normal range < 1-2%, smokers < 15%
- normal half-life ~ 4 hrs on room air, 40-80 min at $F_1O_2 = 1.0$
- shifts HbO₂ curve to the *left* & decreases available Hb for O₂ carriage
- increases frequency of arrhythmias & negatively inotropic
- tolerated in "normal" individuals, may be significant with decreased CVS reserve
- theoretical beneficial effects with cessation > 12 hrs
- long-term results in *polycythaemia* & increased blood *viscosity*
- these require cessation for several days

2. nicotine

- results in \uparrow HR, BP (SAP & DAP), and SVR
- improvement is seen with cessation for several days

3. respiratory

- i. hypersecretion of mucus
 - declines over a 6 week period, majority in the first few weeks
- impaired ciliary activity & clearance of secretions ii.
- iii. small airways narrowing & increased airways irritability
 - improved after 1 month, further at 2 months and continuing to 6 months
 - irritability & sputum production may actually worsen in the first few weeks
- \uparrow postoperative chest infections iv.
- \uparrow frequency & severity of hypoxaemic events post-surgery, v. greater requirement for supplemental O₂
- ↑ CAL vi. - predominantly obstructive or restrictive
- ↑ bronchogenic carcinoma vii.

4. cardiovascular

iv.

- i. ↑ *coronary artery disease* - major risk factor
- ↑ peripheral vascular disease/cerebrovascular disease ii.
- \uparrow hypertension iii. factors
 - polycythaemia
 - increased viscosity
 - increased platelet adhesiveness
 - hypoxaemia
 - vasoconstriction

5. *immunoparesis*

decreased function demonstrable & requires ~ 6 months for recovery

Recommendations

- 1. patients should be encouraged to cease *6-8 weeks* prior to an operation
- 2. they should not be allowed to smoke for *12 hours* preceeding operation
- 3. they should be encouraged to abstain from smoking for as long as possible postoperatively
- 4. all patients should be encouraged to give-up smoking indefinitely

Blood Transfusion

Indications

- 1. increase the O₂ carrying capacity of blood \rightarrow \uparrow DO₂
- 2. increase circulating blood volume

• Complications

1.	rate dependent		
	i.	over / under-transfusion	
	ii.	hypothermia	
	iii.	impaired O ₂ transport / delive	ery
	iv.	coagulopathy	 thrombocyotpaenia factor deficiency DIC
	V.	electrolyte disturbance	 hyperkalaemia / delayed hypokalaemia citrate toxicity / hypocalcaemia hypernatraemia
	vi.	acid-base disturbance	- acidaemia
	vii.	vasoactive reactions	- kinins, platelet aggregates, etc.
2.	rate	independent	- relatively !
	i.	acute haemolytic transfusion	reaction - immediate generalised reaction
	ii.	delayed haemolytic transfusion	on reaction
	iii.	febrile, non-haemolytic trans	fusion reaction
	iv.	non-immunogenic reactions	out-of-date, incorrectly storedfrozen, or overheated bloodmechanical destruction
	v.	infection	- primary - secondary
	vi.	immunoparesis	
	vii.	post-transfusion jaundice	- more dependent upon volume cf. rate
3.	chro	onic transfusion	
	i.	iron overload	- haemochromatosis

Infection & Anaesthesia

Unversal Precautions

- *Def'n:* strategies to be used with *all* patients, in an attempt to reduce transmission of blood-borne diseases to the health care worker
- 1. <u>engineering controls</u>
 - i. protective barriers & clothing especially hands, eyes & face
 - ii. needle-free injection ports
 - iii. protected needle devices
 - iv. artificial ventilation devices to prevent the need for mouth-to-mouth ventilation
 - v. puncture resistant "sharps" containers in workplaces
- 2. <u>work practice controls</u>
 - i. prohibition of "recapping"
 - ii. meticulous routines for disposal of sharps
 - iii. non-exposure of personnel with open skin lesions/wounds
 - iv. handwashing following removal of gloves & as soon as practicable following exposure to infected material
- 3. <u>employee education</u>
 - i. risks of transmission
 - ii. modes of transmission
 - iii. risk reduction techniques
 - iv. immediate action upon exposure
 - v. follow-up & documentation
- 4. <u>vaccination</u>
 - i. HBV
 - ii. TB

• Hepatatis B

- 1. *seroconversion* from percutaneous exposure HBeAg (+)'ve ~ 30%
- 2. \uparrow risk proven by higher incidence of serum markers in anaesthetic personnel
 - i. USA blood donors ~ 3-5%
 - ii. anaesthesia residents ~ 9-18%
 - iii. specialist anaesthetists ~ 19-49% ?? immunisation
- 3. strategies for prevention

ii.

- i. universal precautions
 - HBV vaccination ~ 95% seroconversion after 3 doses
 - use of "booster dose" after several years

Hepatatis C

- 1. seroconversion from percutaneous exposure HCV (+)'ve $\sim 3\%$
- 2. majority of cases of non-A-non-B hepatitis
 - i. non-A-non-B hepatitis $\rightarrow \sim 90\%$ of post-transfusion hepatitis
 - ii. post-transfusion $\rightarrow \sim 6-10\%$ non-A-non-B hepatitis ? remainder IV drug users etc.
- 3. increased serum markers of HCV in health care workers
 - 2-3% of all cases of HCV in USA occur in HCW's
- 4. *hyperimmune IgG* suggested as prophylaxis following needle-stick injury
- 5. no vaccine presently available

Human Immunodeficiency Virus

1. *seroconversion* from,

- i. percutaneous exposure HCV (+)'ve $\sim 0.3-0.5\%$
- ii. mucous membrane exposure $\sim 0\%$ (0/162 & 0/3058)
- iii. blood transfusion
 - USA ~ 1:40,000-100,000
 - UK < 1:3,000,000
- Australia < 1:1,000,000 unknown, probably < UK

~ 0%

iv. social contacts

- longitudinal studies of households in USA
- no reported cases in non-sexual partners, or outside of birth

2. patients may be *Ab negative* and infectious,

- i. acute infection in window period ~ 4-6 weeks
- ii. non-seroconverters
- 3. patients may be *Ab positive* and *virtually noninfectious*
- 4. average time from HIV to AIDS syndrome ~ 8 years
- 5. long relatively noninfectious period following initial infection
 - \rightarrow 2nd infection wave anticipated
- 6. some centres offer prophylactic therapy with *zidovudine* (*AZT*)

Laparoscopic General Surgery

- first reported series of laparoscopic general surgery in 1989
- now treatment of choice for *cholecystectomy*
- other procedures for which laparoscopic surgery has been advocated,
 - i. heriorrhaphy
 - ii. appendicectomy
 - iii. hemicolectomy, colectomy, anterior resection
 - iv. oesophagectomy, oesophagomyotomy, fundoplication
 - v. vagotomy
 - vi. thoracic procedures
 - vii. nephrectomy
 - viii. pelvic lymph node dissection

Advantages

- 1. smaller wound, less tissue trauma
- 2. less postoperative pain, lower analgesic requirements
- 3. shorter hospitalisation periods, earlier return to normal activities
- 4. suitable for day surgery in some individuals
- 5. reduction in cost

gynaecological laparoscopy in fit young women → *mortality* ~ 4-8:100,000
 however, patients for general laparoscopic surgery are,

- 1. usually older
- 2. have a greater incidence of concurrent disease
- 3. may be being operated upon for acute pathology

Intraoperative Problems

- 1. *trauma* to intra-abdominal structures
- 2. gas insufflation
 - i. peritoneal
 - ii. extraperitoneal
 - iii. venous gas embolism
- 3. tension *pneumoperitoneum*
- 4. *hypercarbia* & systemic absorption of CO_2
- 5. patient *position*

Inadvertent Damage to Intra-Abdominal Structures

- 1. liver, spleen
- 2. stomach, small & large intestines
- 3. uterus
- 4. aorta, IVC, iliac, epigastric or splenic arteries
- **NB:** presentation may be delayed, and may be 2° to *haemorrhage* or *sepsis*

Gas Insufflation

- 1. arrhythmias \rightarrow bradycardia, AV dissociation, nodal rhythm, asystole
 - more pronounced with *rapid inflation* and at the begininning of insufflation
 - vagally mediated
 - worsened by *hypercarbia & halothane*
- 2. extraperitoneal insufflation
 - subcutaneous emphysema
 - pneumomediastinum, pneumopericardium, pneumothorax
 - · dissection into the diaphragm, falciform ligament or retroperitoneally
- 3. displacement of intra-abdominal fluid
 - ascites or peritoneal lavage
 - most commonly \rightarrow *pleural effusion*

4. venous gas embolism

- effects are dependent upon,
- i. the rate, quantity and nature of the gas introduced
- ii. pre-existing cardiorespiratory disease
- magnitude of physiological derrangement with $CO_2 \sim 6x$ *less than* that for air, due to the greater blood solubility of CO_2
- · provokes neutorphil clumping, activation of coagulation and platelet clumping
- *PMN degranulation* →

 PMN degranulation →
 pulmonary vasoconstriction & raised PVR
 bronchospasm & pulmonary oedema
 rarely delayed pulmonary haemorrhage gas bubbles adhere to fibrin deposits platelet aggregates marginate on endothelium acute RVF, ↑ CVP & PAP, ↓ PAOP
 arrhythmias, hypotension
- paradoxical embolism through a patent *foramen ovale*
- results in \uparrow West zone 1, \uparrow V_D^{Alv.} and \uparrow P_{aCO2} ETCO₂ gradient
- portal venous embolism may result in trapping of gas in the *liver* and gradual release may result in delayed manifestations in the postoperative period

Tension Pneumoperitoneum

NB: effects are $\propto \uparrow$ IAP

1. respiratory

- \downarrow lung volumes, especially FRC
- \downarrow compliance & $\uparrow P_{AW}$
- \uparrow haemodynamic effects of IPPV & risk of barotrauma
- $\uparrow V/Q$ mismatch \rightarrow hypoxia & hypercarbia
- ↑ regurgitation & *aspiration risk*
- cephelad movement of the diaphragm may result in RMB intubation

2. cardiovascular

- \uparrow SVR \propto \uparrow IAP
- effects upon venous return & CO are pressure & volume dependent
- biphasic response
- i. low \uparrow IAP \rightarrow \uparrow VR & CO \leftrightarrow SVR
- ii. high \uparrow IAP $\rightarrow \downarrow$ VR & CO \uparrow SVR
- the point of inflexion is lower (~ 15 mmHg) in upper GI surgery, due to the requirement for reverse Trendenenburg, cf. gynae procedures (~ 20 mmHg)

3. renal & hepatic function

• IAP > 20 mmHg $\rightarrow \downarrow$ RBF & GFR • massive \uparrow IAP results in lactic acidosis • massive \downarrow IAP results in lactic acidosis • massive \downarrow IAP results in lactic a

• Hypercarbia & Systemic Absorption of CO₂

- 1. hypercapnia- peritoneal absorption of CO₂ (predomonant) - ventilatory effects of pneumoperitoneum & position
- 2. more significant in patients with pre-existing ventilatory insufficiency
- 3. effects are composite of direct & indirect CO_2 effects
 - i. tachycardias, arrhythmias
 - ii. high CO, low SVR
 - iii. increased MRO₂
- $NB: \rightarrow$ main argument for *intubation & hyperventilation* with IPPV

Patient Position

- 1. Trendelenburg "head-down"
 - upward displacement of the diaphragm
 - aggravation of the pulmonary effects of tension pneumoperitoneum
 - high P_{IP} , atelectasis, V/Q mismatch and hypoxaemia
 - reduced alveolar V_D & increased CO 2° venous return limit these effects
 - venous congestion of the head & neck may compromise cerebral perfusion pressure
 - prolonged procedures may be associated with laryngeal oedema
- 2. reverse Trendelenburg "head-up"
 - minimal displacement of the diaphragm
 - decreased venous return and CO
 - increase zone 1 and alveolar dead space
 - exacerbated effects of IPPV
- NB: effects are usually greater with,
 - i. extremes of position
 - ii. obesity
 - iii. high inflation pressures
 - iv. absence of muscle paralysis
 - v. relative hypovolaemia

• Thoracoscopic Procedures

1.

- procedures include sympathectomy, vagotomy
 - oespohagomyotomy, oesophagectomy
 - sealing of ruptured bullae
 - diagnostic
- 2. complete isolation/collapse of one lung is required $\rightarrow DLT$ mandatory
- 3. requires careful regulation of the *deliberate pneumothorax*
 - i. overpressure & tamponade from insufflation
 - ii. suction and evacuation of gases may result in re-expansion or negative 'tension'
- 4. risk of laceration of the lung parenchyma and postoperative pneumothorax
 - *always* insert an intercostal tube postoperatively
- 5. proximity of the heart to the surgical site direct trauma
 - diathermy & arrhythmias

• Anaesthetic Management

1. general anaesthesia

- GA with ETT / IPPV and muscle relaxation
- *muscle relaxation* reduces IAP and mean P_{AW}
- important to avoid excessive mask ventilation and insufflation of the stomach
- may be beneficial to pass *N/G tube* prior to cannulation if difficult mask ventilation
- large minute ventilation may be required for CO₂ excretion, however large tidal volumes may have adverse CVS effects, \ individually optimise ventilation
- use of N₂O is questioned,
- i. *does not* result in significant distension of the bowel
- ii. postoperative *emesis*
 - no increase in general procedures
 - increases in gynaecological procedures ~ 32%
- iii. must be discontinued if *gas embolism* occurs
- halothane increases the incidence of *arrhythmias* \rightarrow *isoflurane*
- due to "learning curve" of surgical team may be a prolonged procedure
- may require conversion to open laparotomy

2. local anaesthesia & sedation

- usually only for short diagnostic procedures
- use N₂O for insufflation as less irritant than CO₂
- SV results in less cardiorespiratory disturbance cf. GA / IPPV
- excessive sedation should be avoided,
- i. potential for regurgitation & aspiration
- ii. increased respiratory embarrasment
- iii. prolonged recovery similar to GA & ∴no advantage in DSU

3. epidural anaesthesia

- technically feasible, but shoulder tip pain and shivering may be problematic
- levels to T₄ are required for upper abdominal procedures,
- i. sympathetic denervation may aggravate *hypotension*
- ii. vagally mediated *bradyarrhythmias* may be potentiated
- intravenous *sedation* should be kept to a minimum

4. monitoring

- i. ECG, NIBP, F_1O_2 / S_pO_2 , ETCO₂, spirometry and P_{AW} are mandatory
- ii. PNS and temperature are optional depending upon length of procedure
- iii. bladder catheterisation lower abdominal procedures for access
 - long upper GI procedures
- iv. N/G tube upper abdominal procedures for access
- v. other monitors as directed by patient status

- 5. *ETCO*₂
 - in healthy patients under GA,

gradient is *increased* by

 $P_{a-ECO2} \sim 2-9 \text{ mmHg}$

- *creased* by intrinsic lung disease
 - hypovolaemia, reverse Trendelenburg
- gradient is *decreased* by
- increased CO or CO₂ production
 eg., pregnancy, paediatrics
- gradient is small in gynaecological procedures, and in relatively healthy patients undergoing general procedures
- valuable in early detection of *gas embolism*

6. *postoperative course*

- following cholecystectomy most patients are discharged the following day
- selected patients may be done as day cases
- N&V is the commonest cause for delayed discharge ~ 7%
- *antiemetics* are required in ~ 50%
- FVC is reduced ~ 27% cf. 48% following open procedures
- pulmonary function returns to normal within 24 hours, cf. 72 hours open
- however, significant decrement may occur in patients with pre-exisitng disease which lasts longer
- pulmonary dysfunction following laparoscopic procedures is *not* improved by epidural anaesthesia

Prolonged Anaesthesia

Def'n: procedures lasting > 4-8 hours

1. preparation

- i. theatre geometry
- ii. drugs, infusions, warming & ancillary devices
- iii. placement of "lines" and monitoring devices

2. *position*

- i. head-up
 - venous pooling & stasis in lower limbs & risk of DVT
 - foot & heal pressure
- ii. head-down
 - oedema & congestion of airway \rightarrow delayed extubation
- iii. pressure care

supine:

•

- heels, buttocks, elbows, knees
- lateral: hip, shoulder, upper/lower arms
- prone: hips, knees, face, eyes, chest
- lithotomy: legs, hip joints
- eyes also require lubrication
- iv. nerve damage

3. *temperature control*

- warmed IV fluids
- warming blanket on top better than on table
- HME or humidified gases
- cover exposed parts
- · removal of wet drapes, or sheilding from moisture
- monitoring
- use of convective air-heaters postoperatively

4. *fluid therapy*

- i. maintenance fluids
- ii. replacement of 3rd space losses (child replacement figures)
 - peripheral procedures \rightarrow 0-2 ml/kg/hr
 - intracavity procedures \rightarrow 3-5 ml/kg/hr
 - major abdominal/thoracic $\rightarrow \leq 15 \text{ ml/kg/hr}$
- iii. replacement of blood-loss
- iv. monitoring
 - all should have a urinary catheter & hourly output
 - · requirement for CVP/PAOP on an individual basis

5. *anaesthetic maintenance*

- *IPPV* mandatory in all but "exceptional" circumstances
 - use high volume/low pressure cuffed ETT
- ii. *nitrous oxide* (Nunn, BJA)
 - $\leq 0.5 \text{ hr} \rightarrow \text{no effect, but cumulative if interval} < 3 \text{ days}$
 - $\geq 2 \text{ hr} \rightarrow$ hepatic *methionine synthetase* will be depressed effects on DNA synthesis unpredictable
 - ~ 24 hr \rightarrow reasonable for healthy patient megaloblastic bone marrow & abnormal dU-suppression
 - $\bullet > 24 \text{ hr } \rightarrow \quad \text{absolute contraindication}$
- iii. *air*

i.

- absolute requirement if N₂O not used
- development of *absorption atelectasis* with high F_IO_2 's
- iv. *volatile* \rightarrow isoflurane \propto low tissue solubility & % metabolism
- v. neuromuscular blockade
 - long half-life agents pancuronium, doxacurium, pipercuronium
 - short half-life agents use by infusion
 - more rapid offset for any given level of blockade
 - monitoring TOF with PNS
 - relaxograph, closed-loop systems
 - ? requirement for deep paralysis & relationship to DVT

vi. IV agents

•	supplemental analgesia	opioid infusionsintermittent doses
•	supplemental hyponosis anaesthesia	 propofol, midazolam/diazepam favourable kinetics with propofol * excessive cost

vii. attention maintenance routine for the anaesthetist

6. *emergence / recovery*

- i. residual anaesthetic effects amplified
- ii. pain management
- iii. all require supplemental O_2 for first 24-48 hours
- iv. requirement for observation in HDU/ICU

Acute Pain

• Factors

1.	neuroendocrine	 - catecholamines ↑ MRO₂, glucose intolerance, catabolism
2.	protein catabolism	\uparrow urinary nitrogen excretion
3.	respiratory reserve	 decreased diaphragmatic function atelectasis, hypoxia
4.	\uparrow myocardial work	
5.	thrombosis	

- 6. sleep, anxiety, perception, psychological dysfunction
- 7. hyperalgesia, wind-up, spasm
- 8. chronic pain \uparrow cFOS, δ DNA

Patient Controlled Analgesia

- medical staff under-treat & under-administer (Donovan 1987)
- i. $\sim 61\%$ awake in pain
- ii. ~ 58% describe this as terrible
- iii. on average patients receive ~ 25% of the prescribed dose

2. improved drug delivery

- i. \downarrow administration variability
- ii. \downarrow absorption variability
- iii. \downarrow peaks & troughs

3.	interpatient variability	\rightarrow	kinetic & dynamic variation ~ 8x variation in dose requirement * <i>age</i> >> <i>weight</i> as factor
4.	intrapatient variability	\rightarrow	varying requirement over postoperative course $*$ major \downarrow dose days 1-4

• Stapleton (FMC 1980): patients vary from severe to no pain over a very narrow concentration range \rightarrow *minimum effective analgesic concentration*

• lead to graphical comparison of IM vs. IV infusion vs. infusion + bolus vs. PCA

• Owen (FMC) studied boluses using 0.5 and 1.0 mg, patients *did not* titrate to a plasma corridor

• \therefore concluded that MEAC was not a valid concept \rightarrow *fixed demand*

 $\boldsymbol{\cdot}$ study criticised as used background infusion rates, $\boldsymbol{\cdot}.$ some may have been within MEAC

Mechanisms

- 1. MEAC ?? fact or artifact
- 2. fixed demand concept
 - diminution of pain perception with administration
 - "placebo"-like effect
- 3. control vs non-control
 - ie. an internal locus versus an external locus

Modes of Delivery

- 1. demand dosing
- 2. continuous infusion
- 3. demand dosing & continuous infusion
- 4. demand infusion
- 5. variable rate infusion & demand dosing

Parameters

- 1. loading dose
- 2. loading dose infusion rate
- 3. patient bolus dose
- 4. patient bolus dose infusion rate
- 5. lockout interval
- 6. drug concentration

Safety Features

- 1. locked syringe cage
- 2. locked program sequence
- 3. safety program default settings
- 4. set protocols for administration
- 5. set protocols for dose increase/reduction
- 6. set protocols for treatment of side-effects
- 7. nursing protocols for cross-checking
- 8. acute pain services daily review by accredited personnel
- 9. continuing education medical & nursing

Background Infusions

- no evidence to suggest people use less, or require less during the night
- · studies poorly controlled or retrospective
- presently studies looking at background & non-background and the "catch-up" dose requirements in the early morning hours

NSAID's

• prostaglandins are cofactors with bradykinins & other tissue factors in nociception

• side effects include,

- 1. *gastric* \downarrow mucosal blood flow
 - \downarrow basal cell migration
 - petechiae, errosions
 - silent ulcers ~ 0.33:1,000 patients on NSAID's cf. normal ~ 0.22:1,000
 - Ketorolac $> 120 \text{ mg/d} \rightarrow \text{petechiae, errosions on endoscopy}$ \therefore use < 120 mg/d
- 2. *renal* \downarrow RBF, renin secretion
 - \uparrow renovascular resistance
 - \uparrow susceptibility to ATN from hypovolaemia
 - Kenny showed no change in creatinine clearance, but this was not a good study
 - generally recommended *not* to be used with \downarrow RBF, hypertension, CCF, CRF

3. *platelet inhibition*

- *in vitro*, 30 mg \rightarrow no significant \uparrow bleeding
- however, there were a number of "outliers" with severe bleeding, \therefore ? sensitive gp.
- in vivo, surgical studies show no increase in blood-loss, but this is a poor marker
- .: use *clinical criteria* of the risk of bleeding
- 4. \downarrow coronary blood flow
- 5. altered stress/immune response to surgery

Use of Ketorolac

- 1. *opioid sparing* effect ~ 20-35% reduction in dose
 - 30 mg ~ 10 mg of morphine
- 2. combination therapy \rightarrow additive or *synergistic*
- 3. pretreatment
- 4. no use in major surgery due to risk of haemorrhage
- 5. cost more expensive
 - no advantage over other oral/enteral preparations
- *NB*: recently withdrawn from routine use at RAH due to occurrence of *rhabdomyolysis* and myoglobinuria; predominantly in young muscular individuals ~ 1:500,000

• US cohort study comparing ketorolac & opioids, factors associated with an increased risk of *GIT bleeding*,

- 1. age > 65
- 2. history of peptic ulceration
- 3. concurrent R_x with anticoagulants or other NSAID's
- 4. total daily dose > 120 mg
- 5. duration of treatment > 2 days

• recommendations of the Committee on Safety of Medicines (UK),

- 1. starting dose reduced to 10 mg
- 2. subsequent doses 10-30 mg, 4-6 hourly prn
- 3. total *daily dose* < 90 mg *adults* < 60 mg *elderly*
- 4. maximum duration of therapy is 2 days in *all* age groups

• Contraindications

- 1. history of peptic ulceration or GIT bleeding
- 2. haemorrhagic diathesis
- 3. history of a confirmed or suspected intracerebral bleed
- 4. operations associated with a high risk of haemorrhage
- 5. a history of asthma
- 6. moderate or severe renal impairment serum creatinine > 160 μ mol/l
- 7. hypovolaemia or dehydration from any cause
- 8. hypersensitivity to aspirin or other NSAID's
- 9. pregnancy
- 10. therapy with the following drugs
 - i. other NSAID's
 - ii. anticoagulants *including* low dose heparin

• Causes of Death

- 1. GIT bleeding / perforation $\sim 48\%$
- 2. renal impairment / insufficiency $\sim 20\%$
- 3. asthma / anaphylaxis~ 7%
- 4. haemorrhagic reactions $\sim 5\%$
- 5. unexplained / miscellaneous $\sim 20\%$

Epidural Analgesia

- 1. \downarrow neuroendocrine stress response
- 2. \downarrow catabolism
- 3. \downarrow DVT incidence
- 4. \uparrow respiratory function
- 5. \uparrow coronary blood flow & \downarrow ischaemic episodes

• Epidural Opioids

1. complications of *morphine*

- i. respiratory depression age, dose, respiratory disease, operation site
- ii. nausea & vomiting
- iii. pruritis

vi.

- iv. urinary retention
- v. breakthrough pain
 - HSV-type 1 ~ 24% chance of reactivation
 - ~ 50% of population HSV-Ab positive
- 2. management of *pruritis* \downarrow dose
 - anti-histamines
 - κ-agonists
 - µ-antagonists
 - propofol

3. epidural fentanyl versus IV infusion

- if used at a dermatomal level $\rightarrow \downarrow$ dose requirement \downarrow side-effects
 - \downarrow side-effects
- \ *does* have an effect at the spinal cord level
- 4. PCEA vs. epidural infusions $\rightarrow \downarrow$ dose requirement

5. LA / opioid combinations

• effective providing the bupivacaine dose ≥ 13 mg/hr

Assessment of Outcome

- 1. attenuation of stress response
- 2. decrease in side-effects
- 3. discharge from hospital
- 4. major morbidity
- 5. mortality

Spinal Anaesthesia

Indications

- 1. surgical procedures amenable to spinal anaesthesia
 - predominantly procedures below the umbilicus
 - upper abdominal anaesthesia to T₄ "as invasive" as general anaesthesia
- 2. circumscribed procedures, where physiological trespass is minimal
 - rectal & perianal procedures
 - TURP •
- 3. where an *awake patient* is advantageous
 - i. procedure related - TURP CCF, hypoosmolar syndrome \rightarrow - day case surgery
 - severe cerebrovascular disease, diabetes, elderly ii. patient related
- 4. procedures where there is *proven benefit*
 - i. hip or knee joint replacement surgery
 - lower limb amputation ii.
 - iii. previous history of DVT / PE
- 5. obstetric anaesthesia*
 - i. awake mother
 - absence of neonatal drug effects ii.
- 6. preferrable to avoid GA
 - i. full stomach - arguable as must be prepared to give GA
 - ii. potential, or known difficult intubation*, unstable spine
 - severe respiratory or cardiac disease iii.
 - muscular diseases. MHS iv.
- 7. patient request

Contraindications - Absolute

- 1. patient refusal
- 2. documented allergy to local anaesthetics
- 3. skin/soft tissue infection at the intended injection site
- 4. meningeal infection
- 5. coagulopathy
- 6. severe / uncorrected hypovolaemia
- 7. raised intracranial pressure
- 8. inability to remain still during the procedure

- PE, blood loss, hospital stay
- phantom pain
- ? proven

• Contraindications - Relative

- 1. hypovolaemia
- 2. surgical procedure with a high risk of major blood loss
- 3. systemic sepsis
- 4. "minor" coagulation deficiency mini-dose heparin
 - aspirin
 - chronic renal failure
 - PE with low platelets (> 100,000)
- 5. surgical procedure of indeterminate length
- 6. pre-existing neurological disease
- 7. chronic severe backache, deformities of the spinal column
- 8. major surgical procedures above the umbilicus
- 9. afterload/preload dependent heart disease
 - valvular heart disease
 - HOCM
 - congenital heart disease

10. young patient

- high risk of PDPH

11. inexperienced operator

• Complications

- 1. physiological consequences of blockade
 - i. cardiovascular
 - ii. respiratory
 - iii. other
- 2. failure of blockade
- 3. backache

v.

- 4. post-dural puncture headache
- 5. neurological sequelae
 - i. neurolytic *all* agents are neurotoxic in high concentrations
 - 4 cases of *cauda equina syndrome* described with continuous SA technique
 - ii. direct trauma nerve roots / cord
 - iii. compressive intraspinal / epidural haematoma
 - iv. infective meningeal
 - epidural
 - inflammatory drugs, additives, wrong drug
 - vi. multifactorial anterior spinal artery & cauda equina syndromes
 - vii. by association exacerbation of pre-existing disease, etc.
- 6. local anaesthetic allergy rare & no cross sensitivity

Epidural Anaesthesia

Indications - General

- 1. obstetric anaesthesia *see below
- 2. epidural anaesthesia alone
 - \rightarrow indications for spinal anaesthesia, plus
 - i. where the abrupt *onset* of sympathectomy is undesirable / contraindicated
 - ii. where the *duration* of the procedure is extended / unpredictable
 - iii. where *extension of pain relief* into the postoperative period is desirable
 - iv. young patients where the risk of *PDP headache* is high
 - this has been modified recently by the reduction in PDPH with fine gauge pencil-point needles
- 3. combined epidural & general anaesthesia
 - \rightarrow indications for epidural anaesthesia, plus
 - major and upper abdominal / thoracic procedures
 - ii. prolonged procedures
 - iii. procedures requiring "uncomfortable" positioning
 - iv. patient request ie. epidural but asleep

Indications Obstetric

i.

- 1. *maternal* *minimise *stress response*
 - i. pain relief
 - ii. pre-ecplamsia
 - iii. cardiorespiratory disease
 - iv. other diseases requiring minimal stress
 - diabetes
 - cerebrovascular disease
- 2. *foetal* *high chance of *instrumental delivery*
 - i. multiple foetuses
 - ii. large foetus

3.

- iii. malpresentation
- iv. premature foetus
- v. deformed/dead foetus
- *uterine* *normalisation of *abnormal physiology*
- i. uterine hypertonicity / incoordinate action
- ii. cervical dystocia
- iii. placental vascular insufficiency
- iv. ?? trial of scar

Complications

- 1. allergy to local anaesthetics
- 2. systemic toxicity * CVS & CNS
 - i. relative / absolute overdose
 - ii. accidental intravascular injection

3. local toxicity

- i. nerves *all* agents are neurotoxic in high concentrations
 - * 4 cases of cauda equina described with continuous SA technique
- ii. injection of the "wrong" drug, or a contaminated drug

4. *needle* related problems

- i. backache
- ii. venous puncture
- iii. subdural placement
- iv. dural puncture total spinal blockade
 - post-dural puncture headache

5. *catheter* related problems

- i. venous puncture
- ii. inability to inject *fibrosis is marked at 2-3 days
- iii. accidental displacement
- iv. subarachnoid migration[§]
- v. cutaneous infection

inflammatory

"by association"

6. *total spinal* anaesthesia^{\$}

7. *neurological* sequelae

iii.

iv.

vi.

vii.

- i. direct trauma nerve roots, cord
- ii. compressive haematoma, abscess
 - infective meningitis
 - epidural abscess
 - drugs, additives, wrong drug
 - adhesive arachnoiditis
- v. multifactorial anterior spinal artery & cauda equina syndromes
 - broken catheter rarely a problem in the absence of infection
 - * consensus view is leave it in place

- reduction in preload & afterload

- exacerbation of pre-existing disease, etc.

- abdominal paralysis & decreased cough, PEFR

8. *physiological* sequelae

- i. cardiovascular hypotension, tachycardia or bradycardia
- ii. respiratory
- iii. other

DAY SURGERY ANAESTHESIA

- 1. why use outpatient surgery advantages & disadvantages
- 2. which patients
- 3. preoperative screening & assessment
- 4. which procedures
- 5. premedication & fasting
- 6. methods of anaesthesia regional vs. general
- 7. discharge criteria

Advantages of Outpatient Surgery

- reduction in *cost* ~ 25-75% for most operations
- 2. less disruption to *patient lifestyle*
- 3. reduction in *nosocomial infection* paediatrics
 - oncology & immunocompromised
- 4. reduction in *postoperative complications* ? PTE, infection
- 5. increased availability of hospital beds for "sicker" patients

Patient Selection

1.

- 1. *willing* to accept surgery on a day case basis
- 2. *reliable* to follow pre/postoperative instructions
- 3. *located* within 1 hour travelling time of a major medical facility
- 4. accompanied by a reliable *guardian* for 24 hours postoperatively
- 5. medically acceptable
 - i. all ASA I & II patients
 - ii. stable ASA III & IV patients
 - iii. absence of contraindication to day surgery
 - MHS, MAO inhibitors, acute substance abuse
 - morbid obesity
- *NB: age* does not appear to affect recovery time or complication rate (Meridy A&A 1982), stable ASA III patients are *not* at higher risk for postoperative complications

FASA (Federation of Ambulatory Surgery Association) in > 87,000 patients,

"little or no cause & effect relationship between *pre-exisiting disease* and the incidence of *postoperative complications*"

Patient Screening

- 1. unscreened $\sim 7\%$ cancellation rate
- 2. medical questionnaire *good correlation with more extensive investigation
 - i. telephone questionnaire
 - ii. medical questionnaire & nursing assessment
- 3. all patients screened by anaesthetist
- 4. laboratory investigation
 - i. routine screening for all costly, inefficient, insensitive, nonspecific
 - ii. *only* as directed by medical history

Procedure Selection

NB: virtually any procedure *except* those with,

- 1. significant risk of *haemorrhage*
- 2. severe postoperative *pain*
- 3. delayed return of normal physiological function,

i.	RS	 airway protection & respiratory function apnoea in neonates < 60/52 PGA
ii.	CVS	 haemodynamic instability significant blood loss & risk of postoperative haemorrhage
iii.	CNS	- airway protection, self injury
iv.	GIT	- ileus, bowel surgery, N&V
v.	GUS	- haemorrhage, obstruction

NB: as a generalisation, this excludes *open* procedures within the cranium, thoracic or abdominal cavities, though exceptions exist,

most authors agree, the selection procedure should be *patient oriented* not procedure oriented

Preoperative Instructions

- 1. required time of arrival & time of surgery
- 2. fasting requirements
- 3. routine medications \pm premedication
- 4. notification of intercurrent illness
- 5. escort arrangments
- NB: these should be written & verbally explained to the patient

Premedication

- preoperative anxiety ~ 65% (Egbert et. al.)
- methods to reduce anxiety include,
 - 1. preoperative anaesthetic visit ~ 35% incidence of anxiety
 - 2. minimal waiting time from arrival to surgery
 - 3. positive, calm support for the patient
 - 4. pharmacotherapy

• most prospective studies have *not* found an prolonged recovery after the use of premedication in the outpatient setting (White, RDM)

- however, these medication may impair reactive & coordination skills up to 12 hours
- sedative analgesic agents *do not* increase the percentage at risk of aspiration pneumonitis
- the use of opioid based regimes is associated with a higher incidence of postoperative N&V
- factors associated with a higher incidence of *N&V* include,
 - 1. body habitus
 - 2. medical condition
 - 3. type of surgery laparoscopy, orchiopexy, stabismus surgery, VTOP
 - 4. use of assisted mask ventilation
 - 5. anaesthetic and analgesic medications volatiles, N₂O, opioids
 - 6. postoperative hypotension

• *droperidol* (5-15 μ g/kg) is effective antiemesis, *does not* prolong recovery time, however does increase postoperative sedation

• combination with *metoclopramide* (0.15 mg/kg) is more effective than droperidol alone

- ultra-low dose droperidol (3-7 μ g/kg, or 0.25-0.5 mg/70 kg) may be as effective, with less sedative effect

· metoclopramide alone produces varying results and is less effective for antiemesis

- Ong *et al.* found ~ 85% of *outpatients* with gastric volumes > 0.4 ml/kg & pH < 2.5
- other studies have found 40-60% of patients "at risk" for aspiration, despite fasting overnight
- however *aspiration*, in the absence of risk factors, is rare < 1:35,000 (Olsson 1986)

• both ranitidine & cimetidine are effective, though the former is associated with fewer side-effects and may be given enterally with a peak effect within 2 hours

• cf. fasted patients, those given ranitidine & clear fluids 2-3 hours preoperatively have significantly lower residual volumes & higher gastric pH's, with less subjective thirst

• metoclopramide will reduce gastric volume without altering pH, and increases LOS tone

• "at risk" patients include,

- 1. hiatal hernia, chronic reflux, peptic ulcer disease
- 2. morbid obesity
- 3. late mid-trimester abortion ?? all VTOPs
- 4. anticipated difficult airways

Anaesthetic Techniques

General Anaesthesia

1. <u>intravenous agents</u>

i. *thiopentone*

- single induction dose \rightarrow impaired coordination/reflexes for 6-8 hours
- familiarity, efficacy, lack of side-effects in healthy patients
- ii. methohexital
 - slightly shorter awakening & recovery times than STP
 - similar duration of impaired coordination
 - greater incidence of pain in injection, hiccup & involuntary movement

iii. *midazolam*

- prominent amnesic action, but prolonged recovery & residual amnesia
- recovery with flumazenil antagonism is still slower than with propofol

iv. etomidate

- minimal depressant effects on the myocardium
- myoclonic movements, pain in injection, N&V, transient suppression of adrenal function
- requires the use of prophylactic antiemetics

v. propofol

- rapid onset/offset of action, subjectively "better" recovery cf. STP & MOX
- low incidence of postoperative N&V
- pain on injection, significant CVS depression & apnoea problematic
- larger variability in dose requirements cf. STP, especially with age
- rare but significant emergence problems (opisthotonus)
- despite quick recovery, still impairs coordination/reflexes for 3-4 hrs
- recovery is comparable to isoflurane for short procedures

2. <u>intravenous analgesics</u>

- · decrease sedative-hypnotic & volatile requirements, may shorten recovery
- · decrease postoperative analgesic requirements
- even small preinduction doses of opioids result in increased *postoperative* N&V
- i. *fentanyl*
 - greater potency, faster onset/offset cf. morphine or pethedine
 - significant kinetic & dynamic variability, plus potential accumulation in adipose storage sites makes "standard" doses unpredictable
 - 1-3 μ g/kg highly effective in reducing incidence of complications, (movement, \uparrow HR/BP, airway reactivity) cf. barbiturate & N₂O
- ii. sufentanyl
 - 7-10x greater potency & slightly shorter elimination half-life
 - cf. isoflurane for laparoscopy, resulted in less analgesic requirement and shorter PACU stay

iii. alfentanyl

- less potent derivative, but faster onset/offset
- decreased lipid solubility, limited ionisation, short elimination $t_{_{y_{2}\beta}}$ (60-90m) and decreased potential for accumulation in lipid storage sites
- most studies show more rapid recovery cf. fentanyl but N&V ~ the same

iv. *ketorolac*

- potent parenteral NSAID, now also available in *enteral* form but no studies showing any increase efficacy cf. other enteral NSAID's
- 30-60 mg significantly decreases postoperative analgesic requirements
- studies have *not* found a decreased incidence of N&V
- opioid related side-effects, eg. respiratory depression, are less

3. <u>muscle relaxants</u>

i. *atracurium* slightly more likely than *vecuronium* to result in haemodynamic changes, but essentially identical in other respects

ii. *mivacurium*

- onset of 2-3 minutes and a spontaneous offset in 30-45 min
- may result in transient reductions in MAP due to *histamine release*
- hydrolysed by BuChE at ~ 90% the rate of suxamethonium
- lower incidence of myalgias and N&V cf. suxamethonium
- ?? need for reversal, plus complicated kinetics, potential for prolongation of action with anticholinesterase agents potential rapid reversal with rDNA-BuChE administration

iii. *rocuronium* ORG-9426

- lower potency non-depolarising agent
- rapid onset, intermediate between vecuronium & suxamethonium
- duration ~ vecuronium

4. <u>inhalational agents</u>

i. sevoflurane

- methyl-isopropyl ether
- B:G solubility ~ 0.6-0.7, MAC ~ 1.7-2.6%, SVP_{20C} ~ 21%
- non-pungent, :: excellent for *gasseous induction*
- degraded by soda-lime, but only at high temperature & no toxic metabolites clinically, with ~ 2% being biotransformed & excreted in the urine

ii. desflurane

- fluorinated, methyl-ethyl ether
- B:G solubility ~ 0.42, MAC ~ 5-10%, SVP ~ 87-92%
- similar pungency cf. isoflurane, ∴not recommended for gasseous induction
- very rapid kinetics, ∴potential for overdosage / awareness
- $T_{BP} \sim 23.5$, \therefore requirement for specialised administration equipment

iii. nitrous oxide

- non-flammable, non-pungent, non-irritating gas with low B:G solubility
- significantly decreases the requirement for other amnesic/analgesic agents
- problems of expansion of gas-filled spaces, diffusion-hypoxaemia, and probably an increased incidence of *postoperative N&V*

Intravenous Sedation / Analgesia

• 85% of patients in a cross-over study preferred surgery under LA + sedation to LA alone

• patient satisfaction is higher with more profound sedation, irrespecitive of the form of administration

• risk of ventilatory depression necessitates the use of respiratory monitoring,

i. S_pO_2

ii. CO_2

iii. precordial stethescope

• 40% of patients who *do not* receive supplemental O_2 during sedation experience clinically *significant desaturation*

• large doses of benzodiazepines impair driving skills for at least 10 hrs, and may prolong recovery to a *greater* extent than general anaesthesia

• with respect to sedation, *midazolam* is \sim 2-4x as potent as diazepam

• the apparent recovery time may be reduced with the use of *flumazenil*

• use of supplemental opioid, *fentanyl*, increases the incidence of desaturation and administration of O_2 is mandatory

• combination with ketamine has the advantage of relatively little cardiorespiratory depression,

- a. midazolam ~ 0.07-0.15 mg/kg ~ ~ 7 mg
- b. ketamine ~ 0.25-0.5 mg/kg ~ 25 mg

• the α_2 -agonists, such as *clonidine* also provide supplemental analgesia, but are asociated with an increased incidence of bradycardia, hypotension and sedation

QUALITY ASSURANCE

- *Def'n: Quality Assurance:* a *system* or program that provides an organised procedure for the *evaluation* of the *level of care* provided (quality of care assessment) and establishment of mechanisms for *improvement* of such care.
- *Def'n: Risk Management:* programs devised to reduce or eliminate injuries (and their costs) to persons and to prevent or minimise losses to property, usually related to specific risks.

• <u>Reasons for Prominence</u>

- 1. *ethical responsibility* to provide "best possible" health care
 - "primum non nocere" \rightarrow above all do no harm
 - extended to "do good (*beneficence*) but at least do no harm (*non-malificence*)
 - other ethical aspects include *autonomy* & *justice*
- 2. raised public expectations with increased education, consumer awareness
- 3. health care *costs* in terms of %GDP
 - requirement to provide the maximal health care per \$ spent
- 4. *medicolegal* costs

Study Types

- 1. mortality & severe morbidity studies
 - Beecher & Todd (1954)
 - Confidential Enquiry into Perioperative Deaths (CEPOD, UK)
 - NH&MRC triennial Report on Deaths Associated with Anaesthesia 1988-1990
 - definitive end-point, but "tip of iceburg" assessment
 - small frequency occurrence cf. total volume of anaesthesia
 - may not reflect factors contributing to "near misses"

2. closed claims studies

- biased population sample, USA only ~ $1/8^{th}$ of injured patients enter a claim
- assessment bias, due to the tendency to link inappropriate care with severe injury
- shown by cross-over assessments of the adequacy of care, using different outcomes
- this may impede the objective evaluation of risk factors for adverse outcome

3. critical incident reporting

- requirement for voluntary reporting system
- collection and analysis of large amounts of data
- APSF formed in May 1987 & several thousand AIMS entries

Outcome Predictors

- 1. ASA status
- 2. age
- 3. emergency or elective procedure
- 4. minor or major procedure

• Monitoring & Evaluation JCAHO / USA

- 1. assign responsibility
- 2. delineate the scope of care provided
- 3. identify the important aspects of care
 - i. problems which occur frequently
 - ii. problems associated with serious morbidity or mortality
 - iii. high volume / high risk / problem-prone aspects
- 4. identify *indicators* related to these aspects of care
 - i. death, cardiac arrest, AMI, respiratory arrest, acute pulmonary oedema
 - ii. failed intubation, reintubation in recovery, aspiration, dental trauma
 - iii. brain / spinal cord injury, PDPH, eye injury, peripheral nerve injury
 - iv. unplanned admission from DSU
 - persistent N&V, excessive pain, bleeding
 - v. unplanned ICU admission
 - vi. patient satisfaction
- 5. establish *threshold limits* related to indicators, ie. what incidence is "acceptable"
 - i. unplanned admission from DSU < 1.5%
 - ii. dental trauma $\sim 0\%$
- 6. collect data & analyse at determined intervals
 - tends to be labour intensive & costly
- 7. formulate plans / procedures / protocols / training to improve the standard of care
- 8. assessment of the effectiveness of the implemented change
- 9. communicate & disseminate the relevant information
- *NB*: steps $6 \rightarrow 7 \rightarrow 8$ may be repeated as required as the body of data grows, the "value" of individual indicators may be assessed, the chosen indicators may then be reviewed to provide greater specificity &
 - sensitivity of the evaluation process

Ancillary Activities

1. credentialling

- i. education & training
- ii. current competence more difficult
 - recertification[§] * cf. airline pilots

2. *safety activities*

iii.

- i. evaluation of equipment prior to use
- ii. routine servicing of equipment
- iii. checklists for activities
- iv. routine machine checking
- v. RSI, etc.

NB: [§]recertification is no longer the preferred term,

 \rightarrow certification of maintenance of standards

RECOVERY

<u>Common Problems</u>

- 1. respiratory insufficiency
- airway obstructionhypoventilation
- hypoxaemia, $\downarrow S_pO_2$
- 2. prolonged "sedation"
- 3. agitation / disorientation
- 4. pain
- 5. nausea & vomiting
- 6. hypotension / hypertension
- 7. arrhythmias
- 8. bleeding
- 9. oliguria

Assessment

- 1. airway, breathing & circulation
- 2. routine postoperative vital signs
 - i. HR, BP, S_pO_2 , urine output
 - ii. confirm aberrant readings
- 3. patient history
 - i. preoperative
 - ii. anaesthetic / intraoperative
 - iii. recovery
- 4. appropriate physical examination
- 5. investigations as directed by history & exam
- 6. consultation with allied specialists where appropriate

Hypoventilation

1. central depression • residual effects of anaesthetic agents - especially elderly - absolute / relative overdosage intracranial pathology - stroke, ICH, oedema metabolic/endocrine - hypothermia - hypoglycaemia - hypo/hypernatraemia - hypothyroidism post-hyperventilation pain • 2. neuromuscular weakness residual neuromuscular block - absolute/relative overdosage - renal or hepatic disease - aminoglycosides, tetracycline drug effects - phenytoin, procainamide, quinidine - frusemide, lithium - chlorpromazine, d-penicillamine, azathioprine metabolic/endocrine - hypokalaemia, hypermagnesaemia - hyperthyroidism, hypothyroidism - Addisonian crisis, Cushing's - Myasthenia gravis, myasthenic syndrome neuromuscular diseases - motor neurone diseases, etc. genetic defects - homozygous sensitivity to suxamethonium - familial periodic paralysis 3. chest wall abnormalities abdominal distension • - obesity, ascites, obstruction, packs • extrapulmonary \downarrow compliance - pleural effusion, pneumothorax, empyema - kyphoscoliosis, ankylosing spondylitis 4. upper airway obstruction • insufficient upper airway tone - tongue, pharyngeal muscles - obesity, OSAS abnormal anatomy airway oedema - allergic - positional - surgical - infective - throat pack, secretions foreign body layngospasm 5. respiratory aspiration infection bronchospasm pulmonary oedema - respiratory & cardiac origins

Hypertension

- 1. factitious especially NIBP machines * check the reading manually x2
- 2. pain
- 3. hypoxia, hyperbarbia
- 4. hypothermia
- 5. hypervolaemia
- 6. pre-exisiting hypertension inadequately treated
 - acute withdrawal of medication
 - exaggerated response to trauma, pain, hypoxia
- 7. intercurrent disease Cushing's, Conn's
 - phaeochromocytoma
 - renal artery stenosis
 - hyperthyroidism
 - spinal hyperreflexia

- 8. raised ICP
- 9. drug related
 - i. direct effect- inotrope infusions, vasopressors
 - ii. interactions MAOI's, oxytocics, ergot alkaloids
 - iii. withdrawal states
 - iv. wrong drug

10. surgery specific

- i. CEA baroreceptor dysfunction
- ii. TURP hypo-osmolar syndrome
- iii. AAA pain, hypothermia, hypervolaemia, and (6)
- iv. CABG
- v. AVR acute relief of LV outflow obstruction

Hypotension

- 1. *assessment* airway, breathing, circulation
- 2. *factitious* * check the reading manually x2 ? normal BP for patient, may be normally "hypotensive" - abnormal $\rightarrow \pm 20\%$
- 3. residual effects of *anaesthesic agents*

4. hypovolaemia

i. *absolute*

- inadequate perioperative fluid replacement
- continuing blood-loss
- excessive use of diuretics
- rewarming especially post-bypass

ii. *relative*

- post-spinal or epidural anaesthesia
- vasodilator drugs
- anaphylaxis, anaphylactoid reactions
- sepsis
- spinal shock
- 5. *cardiogenic* "pump failure"
 - ischaemia, AMI
 - arrhythmias
 - hypoxia, hypercarbia, acidosis
 - electrolyte abnormalities
 - tamponade, tension pneumothorax
 - cardiomyopathy infective
 - infiltrative
 - endocrine/nutritional
 - embolism
- air, amniotic fluid, thrombus
- valvular malfunction

Prolonged Unconsciousness

- 1. hypoxia, hypercarbia
- 2. anaesthetic agents elderly, sensitive patients
 - absolute/relative overdosage
 - total spinal
 - central cholinergic syndrome
- 3. intracranial pathology
 - i. stroke TIA, RIND, thrombotic, ICH
 - ii. subdural, extradural haematoma
 - iii. oedema
- 4. metabolic / endocrine hyp
 - hypothermia
 - hypoglycaemia
 - hypo/hypernatraemia
 - myxoedema
 - ketoacidosis, hyperosmolar coma
 - thiamine deficiency
 - porphyria
 - uraemia, hyperammonaemia
- 5. hypotension
 - i. hypovolaemia
 - ii. cardiogenic failure
 - iii. sepsis
 - iv. drugs
- 6. preoperative sleep deprivation

• Cyanosis / Collapse Following LUSCS

- 1. **hypoxia** \pm hypercarbia
 - i. airway obstruction
 - ii. residual neuromuscular blockade
 - iii. aspiration
 - iv. opioid-induced respiratory depression
 - v. pneumothorax
 - vi. laryngospasm / severe bronchospasm
 - vii. acute LVF / pulmonary oedema

2. embolism

- i. air
- ii. thrombus
- iii. amniotic fluid

3. shock

- i. hypovolaemia / haemorrhage
- ii. eclampsia
- iii. total spinal
- iv. acute LVF
- 4. *anaphylaxis* / anaphylactoid reactions
 - i. drug induced
 - ii. blood product related

Problems Associated with Epidurals

- 1. efficacy of blockade
 - i. block too high
 - ii. block too low
 - iii. block incomplete, patchy
- 2. secondary to local anaesthetics
 - i. hypotension
 - ii. respiratory insufficiency, dyspnoea, failure
 - iii. urinary retention
- 3. secondary to opioids
 - i. nausea / vomiting
 - ii. pruritis
 - iii. urinary retention
- 4. related to the catheter
 - i. accidental removal
 - ii. disconnection of the filter/catheter
 - iii. inability to inject
 - iv. pain on injection
 - v. intravascular migration aspiration of blood
 - acute LA toxicity
 - vi. intrathecal migration
- aspiration of CSF total spinal

• *T-Wave Inversion In Recovery*

• Breslow, (Anesth. 1986), T-wave inversion is commonly seen in recovery and pathological significance is questionable

- 1. 394 patients, 71 (19%) had new T-wave changes
- 2. *no* adverse outcomes
- 3. *no* difference if a preceeding history of IHD
- 4. more comon with abdominal surgery
- *NB:* cause is *unknown*, but *may* represent myocardial ischaemia other possible causes,
 - i. autonomic imbalance
 - ii. pain
 - iii. hormonal
 - iv. hypothermia
 - v. electrolyte imbalance

• the main problem is of how to manage an otherwise healthy patient, admitted for day stay surgery, *asymptomatic*, who develops isolated T wave inversion

• suggested management,

- 1. history & examination of patient
- 2. compare with previous ECG if available
- 3. consult cardiology opinion if available
- 4. recommend,
 - i. admit overnight
 - ii. repeat ECG & cardiac enzymes the following morning
 - iii. discharge without follow-up if normal
 - iv. referral to cardiologists if abnormal

Criterea for Discharge

- 1. awake & oriented
- 2. able to protect own airway
- 3. adequate ventilation & oxygenation
- 4. haemodynamically stable HR & BP within 20% of "normal" x3
- 5. adequate control of pain